Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.380
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 322, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713216

ABSTRACT

Schisandra henryi is an endemic species of medicinal potential known from traditional Chinese medicine. As part of this study, a complex biotechnological and phytochemical assessment was conducted on S. henryi with a focus on phenolic compounds and antioxidant profiling. The following in vitro cultures were tested: microshoot agar and callus, microshoot agitated, and suspension, along with the microshoot culture in PlantForm bioreactors. Qualitative profiling was performed by ultra-high-performance liquid chromatography with a photodiode array detector coupled with ion-trap mass spectrophotometry with electrospray ionization and then quantitative analysis by high-performance liquid chromatography with a diode array detector using standards. In the extracts, mainly the compounds from procyanidins were identified as well as phenolic acids (neochlorogenic acid, caffeic acid, protocatechuic acid) and catechin. The highest content of phenolic compounds was found for in vitro agar microshoot culture (max. total content 229.87 mg/100 g DW) and agitated culture (max. total content 22.82 mg/100 g DW). The max. TPC measured using the Folin-Ciocalteu assay was equal to 1240.51 mg GAE/100 g DW (agar microshoot culture). The extracts were evaluated for their antioxidant potential by the DPPH, FRAP, and chelate iron ion assays. The highest potential was indicated for agar microshoot culture (90% of inhibition and 59.31 nM/L TEAC, respectively). The research conducted on the polyphenol profiling and antioxidant potential of S. henryi in vitro culture extracts indicates the high therapeutic potential of this species. KEY POINTS: • Different types of S. henryi in vitro cultures were compared for the first time. • The S. henryi in vitro culture strong antioxidant potential was determined for the first time. • The polyphenol profiling of different types of S. henryi in vitro cultures was shown.


Subject(s)
Antioxidants , Biflavonoids , Phenols , Plant Extracts , Schisandra , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Phenols/chemistry , Chromatography, High Pressure Liquid , Schisandra/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Catechin/chemistry , Catechin/analysis , Catechin/metabolism , Catechin/pharmacology , Bioreactors
2.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731557

ABSTRACT

The supramolecular solvent (SUPRAS) has garnered significant attention as an innovative, efficient, and environmentally friendly solvent for the effective extraction and separation of bioactive compounds from natural resources. However, research on the use of a SUPRAS for the extraction of phenolic compounds from plants, which are highly valued in food products due to their exceptional antioxidant properties, remains scarce. The present study developed a green, ultra-sound-assisted SUPRAS method for the simultaneous determination of three phenolic acids in Prunella vulgaris using high-performance liquid chromatography (HPLC). The experimental parameters were meticulously optimized. The efficiency and antioxidant properties of the phenolic compounds obtained using different extraction methods were also compared. Under optimal conditions, the extraction efficiency of the SUPRAS, prepared with octanoic acid reverse micelles dispersed in ethanol-water, significantly exceeded that of conventional organic solvents. Moreover, the SUPRAS method demonstrated greater antioxidant capacity. Confocal laser scanning microscopy (CLSM) images revealed the spherical droplet structure of the SUPRAS, characterized by a well-defined circular fluorescence position, which coincided with the position of the phenolic acids. The phenolic acids were encapsulated within the SUPRAS droplets, indicating their efficient extraction capacity. Furthermore, molecular dynamics simulations combined with CLSM supported the proposed method's mechanism and theoretically demonstrated the superior extraction performance of the SUPRAS. In contrast to conventional methods, the higher extraction efficiency of the SUPRAS can be attributed to the larger solvent contact surface area, the formation of more types of hydrogen bonds between the extractants and the supramolecular solvents, and stronger, more stable interaction forces. The results of the theoretical studies corroborate the experimental outcomes.


Subject(s)
Antioxidants , Phenols , Plant Extracts , Solvents , Solvents/chemistry , Phenols/chemistry , Phenols/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Green Chemistry Technology , Molecular Dynamics Simulation , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification
3.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792074

ABSTRACT

The research on new compounds against plant pathogens is still socially and economically important. It results from the increasing resistance of pests to plant protection products and the need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and industrial oils and biofuels. We tested thirty-five semi-synthetic hydrazide-hydrazones with aromatic fragments of natural origin against phytopathogenic laccase-producing fungi such as Botrytis cinerea, Sclerotinia sclerotiorum, and Cerrena unicolor. Among the investigated molecules previously identified as potent laccase inhibitors were also strong antifungal agents against the fungal species tested. The highest antifungal activity showed derivatives of 4-hydroxybenzoic acid and salicylic aldehydes with 3-tert-butyl, phenyl, or isopropyl substituents. S. sclerotiorum appeared to be the most susceptible to the tested compounds, with the lowest IC50 values between 0.5 and 1.8 µg/mL. We applied two variants of phytotoxicity tests for representative crop seeds and selected hydrazide-hydrazones. Most tested molecules show no or low phytotoxic effect for flax and sunflower seeds. Moreover, a positive impact on seed germination infected with fungi was observed. With the potential for application, the cytotoxicity of the hydrazide-hydrazones of choice toward MCF-10A and BALB/3T3 cell lines was lower than that of the azoxystrobin fungicide tested.


Subject(s)
Hydrazones , Laccase , Hydrazones/pharmacology , Hydrazones/chemistry , Laccase/metabolism , Crops, Agricultural/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Ascomycota/drug effects , Animals , Plant Diseases/microbiology , Plant Diseases/prevention & control , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Botrytis/drug effects , Humans , Mice , Parabens
4.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731982

ABSTRACT

Plant extracts can be a valuable source of biologically active compounds in many cosmetic preparations. Their effect depends on the phytochemicals they contain and their ability to penetrate the skin. Therefore, in this study, the possibility of skin penetration by phenolic acids contained in dogwood extracts of different fruit colors (yellow, red, and dark ruby red) prepared using different extractants was investigated. These analyses were performed using a Franz chamber and HPLC-UV chromatography. Moreover, the antioxidant properties of the tested extracts were compared and their impact on the intracellular level of free radicals in skin cells was assessed. The cytotoxicity of these extracts towards keratinocytes and fibroblasts was also analyzed and their anti-inflammatory properties were assessed using the enzyme-linked immunosorbent assay (ELISA). The analyses showed differences in the penetration of individual phenolic acids into the skin and different biological activities of the tested extracts. None of the extracts had cytotoxic effects on skin cells in vitro, and the strongest antioxidant and anti-inflammatory properties were found in dogwood extracts with dark ruby red fruits.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cornus , Plant Extracts , Skin , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cornus/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Skin/metabolism , Skin/drug effects , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Fruit/chemistry , Animals , Chromatography, High Pressure Liquid
5.
J Agric Food Chem ; 72(20): 11549-11560, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718199

ABSTRACT

Corinthian currants are dried fruits produced from Vitis vinifera L. var. Apyrena grape. This study investigated the distribution of phenolic compounds in male Wistar rat livers following two distinct Corinthian currant long-term dietary intake protocols (3 and 10% w/w). Method optimization, comparing fresh and lyophilized tissues, achieved satisfactory recoveries (>70%) for most analytes. Enzymatic hydrolysis conditions (37 °C, pH 5.0) minimally affected phenolics, but enzyme addition showed diverse effects. Hydrolyzed lyophilized liver tissue from rats consuming Corinthian currants (3 and 10% w/w) exhibited elevated levels of isorhamnetin (20.62 ± 2.27 ng/g tissue and 33.80 ± 1.38 ng/g tissue, respectively), along with similar effects for kaempferol, quercetin, and chrysin after prolonged Corinthian currant intake. This suggests their presence as phase II metabolites in the fasting-state liver. This study is the first to explore phenolic accumulation in rat liver, simulating real conditions of dried fruit consumption, as seen herein with Corinthian currant.


Subject(s)
Flavonoids , Fruit , Liver , Rats, Wistar , Tandem Mass Spectrometry , Vitis , Animals , Flavonoids/metabolism , Flavonoids/chemistry , Male , Rats , Vitis/chemistry , Vitis/metabolism , Liver/metabolism , Liver/chemistry , Fruit/chemistry , Fruit/metabolism , Hydroxybenzoates/metabolism , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/administration & dosage , Chromatography, High Pressure Liquid
6.
Article in English | MEDLINE | ID: mdl-38744158

ABSTRACT

Farfarae Flos is a traditional herb widely employed for treating coughs, bronchitis, and asthmatic disorders. In the current study, we utilized SWATH and IDA data acquisition modes in combination with multiple data processing techniques to identify Farfarae Flos metabolites in mice serum. A total of 56 compounds were characterized, including 31 phenolic acids, 13 flavonoids, 11 sesquiterpenoids and 1 alkaloid. Further quantitative analysis was conducted on 12 absorbed metabolites, utilizing a newly developed and rigorously validated analytical method. Our approach demonstrated an acceptable level of specificity, accuracy, precision, and stability. When applied to compare the serum of mice treated with FF, all 12 metabolites showed the highest concentration at 0.5 h. Overall, this study presented a novel strategy for unraveling the active compounds of FF via serum pharmacochemistry analysis, which made a foundation for exploring the pharmacodynamic material basis of FF.


Subject(s)
Drugs, Chinese Herbal , Animals , Chromatography, High Pressure Liquid/methods , Mice , Reproducibility of Results , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Male , Linear Models , Mass Spectrometry/methods , Flavonoids/blood , Flavonoids/pharmacokinetics , Flavonoids/chemistry , Limit of Detection , Flowers/chemistry , Hydroxybenzoates/blood , Hydroxybenzoates/chemistry , Alkaloids/blood , Alkaloids/chemistry , Alkaloids/pharmacokinetics
7.
SAR QSAR Environ Res ; 35(5): 391-410, 2024 May.
Article in English | MEDLINE | ID: mdl-38769919

ABSTRACT

Alpinia officinarum is a commonly used spice with proven folk uses in various traditional medicines. In the current study, six compounds were isolated from its rhizomes, compounds 1-3 were identified as diarylheptanoids, while 4-6 were identified as flavonoids and phenolic acids. The isolated compounds were subjected to virtual screening against α-glucosidase, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) enzymes to evaluate their potential antidiabetic and anti-Alzheimer's activities. Molecular docking and dynamics studies revealed that 3 exhibited a strong binding affinity to human a α- glucosidase crystal structure compared to acarbose. Furthermore, 2 and 5 demonstrated high potency against AChE. The virtual screening results were further supported by in vitro assays, which assessed the compounds' effects on α-glucosidase, cholinesterases, and their antioxidant activities. 5-Hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one (2) showed potent antioxidant effect in both ABTs and ORAC assays, while p-hydroxy cinnamic acid (6) was the most potent in the ORAC assay. In contrary, kaempferide (4) and galangin (5) showed the most potent effect in metal chelation assay. 5-Hydroxy-1,7-diphenylhepta-4,6-dien-3-one (3) and 6 revealed the most potent effect as α-glucosidase inhibitors where compound 3 showed more potent effect compared to acarbose. Galangin (5) revealed a higher selectivity to BChE, while 2 showed the most potent activity to (AChE).


Subject(s)
Acetylcholinesterase , Alpinia , Antioxidants , Butyrylcholinesterase , Cholinesterase Inhibitors , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Rhizome , Alpinia/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Rhizome/chemistry , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , alpha-Glucosidases/metabolism , Quantitative Structure-Activity Relationship , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Humans
8.
Int J Biol Macromol ; 267(Pt 1): 131443, 2024 May.
Article in English | MEDLINE | ID: mdl-38588837

ABSTRACT

Facial masks have become ubiquitous in our daily life to endow skin enough moisture and activated nutrition through mask nonwovens infused with skincare ingredients. However, the active nutrients in wet masks are prone to deterioration and deactivation. Herein, a novel multifunctional nanofiber dry mask was successfully prepared using aqueous-electrospun phenolic acid grafted chitosan/collagen peptides. When used, the functional nanofibers in the mask dissolve through spraying moisture, activating active ingredients in response to water and providing in-situ free radical scavenging, moisturizing and antibacterial effects to the skin. In this work, a series of gallic acid (GA), caffeic acid (CA), and protocatechuic acid (PA) have been studied to be grafted with chitosan to improve water solubility of chitosan (CS). Also, through aqueous electrospinning of phenolic acid-grafted chitosan/collagen peptides, a one-step green multifunctional nanofiber mask was obtained. The results showed that the mask had a 12.14 % moisturizing rate and a 94.09 % activity for removing free radicals from the skin after encountering moisture. Considering its high efficiency, controllable function release, and easy processability, the nanofiber multifunctional mask may provide a competitive alternative to facial masks and promote potential value-added applications of bio-based macro-molecules.


Subject(s)
Chitosan , Collagen , Hydroxybenzoates , Nanofibers , Chitosan/chemistry , Hydroxybenzoates/chemistry , Collagen/chemistry , Nanofibers/chemistry , Peptides/chemistry , Water/chemistry , Skin/drug effects , Solubility , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
9.
Fitoterapia ; 175: 105956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604261

ABSTRACT

ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism, and abnormally high expression of ACLY occurs in many diseases, including cancers, dyslipidemia and cardiovascular diseases. ACLY inhibitors are prospective treatments for these diseases. However, the scaffolds of ACLY inhibitors are insufficient with weak activity. The discovery of inhibitors with structural novelty and high activity continues to be a research hotpot. Acanthopanax senticosus (Rupr. & Maxim.) Harms is used for cardiovascular disease treatment, from which no ACLY inhibitors have ever been found. In this work, we discovered three novel ACLY inhibitors, and the most potent one was isochlorogenic acid C (ICC) with an IC50 value of 0.14 ± 0.04 µM. We found dicaffeoylquinic acids with ortho-dihydroxyphenyl groups were important features for inhibition by studying ten phenolic acids. We further investigated interactions between the highly active compound ICC and ACLY. Thermal shift assay revealed that ICC could directly bind to ACLY and improve its stability in the heating process. Enzymatic kinetic studies indicated ICC was a noncompetitive inhibitor of ACLY. Our work discovered novel ACLY inhibitors, provided valuable structure-activity patterns and deepened knowledge on the interactions between this targe tand its inhibitors.


Subject(s)
ATP Citrate (pro-S)-Lyase , Eleutherococcus , Eleutherococcus/chemistry , Molecular Structure , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Quinic Acid/isolation & purification , Quinic Acid/chemistry , Hydroxybenzoates/pharmacology , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/chemistry , Structure-Activity Relationship
10.
Food Chem ; 450: 139326, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38615530

ABSTRACT

Although nanozymes sensor arrays have the potential to recognize multiple target substances simultaneously, they currently rarely identify phenolic acids in food due to limited catalytic performance and complex preparation conditions of nanozymes. Here, inspired by the structure of polyphenol oxidase, we have successfully prepared a novel gallic acid-Cu (GA-Cu) nanozyme with laccase-like activity. Due to the different catalytic efficiency of GA-Cu nanozymes towards six common phenolic acids, a three-channel colorimetric sensor array was constructed using reaction kinetics as the sensing unit to achieve high-throughput detection and identification of six phenolic acids within a concentration range from 1 to 100 µM. This method avoids the creation of numerous sensing units. Notably, the successful discrimination of six phenolic acids in samples of juice, beer, and wine has been achieved by the sensor array. Finally, aided by smartphones, a portable technique has been devised for the detection of phenolic acids.


Subject(s)
Colorimetry , Gallic Acid , Hydroxybenzoates , Wine , Hydroxybenzoates/chemistry , Hydroxybenzoates/analysis , Colorimetry/methods , Wine/analysis , Gallic Acid/chemistry , Gallic Acid/analysis , Beer/analysis , Copper/chemistry , Copper/analysis , Fruit and Vegetable Juices/analysis , Catalysis , Nanostructures/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Food Analysis/instrumentation , Food Analysis/methods
11.
Chem Biodivers ; 21(4): e202301962, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38415915

ABSTRACT

Stingless bees belong to the Meliponini tribe and are widely distributed in the tropics and subtropics, where they perform important ecological services. Among the best distributed groups of stingless bees is the genus Scaptotrigona, which includes 22 species distributed throughout the neotropical region, including the area from Mexico to Argentina. Bees of this genus are responsible for the production of products such as honey, propolis, geopropolis and fermented pollen ("saburá"). This review aimed to provide an overview of the chemical composition and biological activities associated with derived products from stingless bees of the genus Scaptotrigona. The bibliographic review was carried out through searches in the Scopus, Web of Science, ScienceDirect and PubMed databases, including publications from 2003 to January 2023. The study of the chemodiversity of products derived from Scaptotrigona demonstrated the mainly presence of flavonoids, phenolic acids, terpenoids and alkaloids. It was also demonstrated that products derived from bees of the genus Scaptotrigona exhibit a wide range of biological effects, such as antibacterial, antioxidant, anti-inflammatory and antifungal activities, among other bioactivities. This review provides an overview of phytochemical and pharmacological investigations of the genus Scaptotrigona. However, it is essential to clarify the toxicity and food safety of these products.


Subject(s)
Honey , Hymenoptera , Propolis , Animals , Anti-Bacterial Agents/pharmacology , Bees , Mexico , Propolis/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology , Terpenes/chemistry , Terpenes/isolation & purification , Terpenes/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology
12.
Food Chem ; 441: 138337, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38199114

ABSTRACT

This study synthesized five phenolic acid-chitosan copolymers utilizing the carbodiimide-mediated chemical crosslinking reaction. Comprehensive evaluations were conducted on their structural attributes, physicochemical properties, and biological activities. Fourier transform infrared confirmed successful grafting of phenolic acids onto chitosan via amide linkages. Additionally, ultraviolet-visible absorption spectroscopy and proton nuclear magnetic resonance analyses revealed novel absorption peaks between 200 and 400 nm and 6.0-8.0 ppm, respectively, attributable to the incorporated phenolic acids. Notably, the chitosan-gentisate acid copolymer exhibited significantly enhanced biological activity (p < 0.05) compared to pure chitosan and the other four conjugates, attributed to its highest grafting degree of approximately 295.93 mg/g. These modified chitosan derivatives effectively preserved the quality of sea bass (Lateolabrax japonicus) during refrigerated storage, extending its shelf-life by up to 9 days, 7 days, and 4 days relative to control, chitosan, and gentisate acid groups.


Subject(s)
Bass , Chitosan , Animals , Chitosan/chemistry , Gentisates , Hydroxybenzoates/chemistry , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared
13.
Food Res Int ; 173(Pt 1): 113250, 2023 11.
Article in English | MEDLINE | ID: mdl-37803562

ABSTRACT

Phenolic acids are commonly used as food biological preservatives. Grafting phenolic acids onto polysaccharides could effectively enhance their biological activities and environmental stability to varying degrees. However, grafting methods and raw materials could affect the physical properties and biological activities of the phenolic acid-grafted polysaccharides. In this study, caffeic acid (CA) and gallic acid (GA) were grafted onto oat ß-glucan (OG) and hydrolyzed oat ß-glucan (OGH) through N,N'-carbonyldiimidazole-mediated (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride coupling N-hydroxysuccinimide (EDC/NHS) methods. Graft modification decreased the crystallinity and thermal stability of the conjugates, but retained good bioactivities for the conjugates. The antioxidant and bacteriostatic activities of the conjugates prepared by the EDC method were better than those of the CDI method, and the OGH-conjugates showed better biological activities than OG-conjugates. EDC-GAOGH showed best DPPH (89.78%) and ABTS (92.32%) scavenging activities. The inhibitory effect of EDC-GAOGH on Escherichia coli was significantly better than that of EDC-CAOGH, but for Staphylococcus aureus, the results are opposite, which indicating that different phenolic acid grafting products have different inhibitory effects on pathogenic microbes. In general, grafting phenolic acids onto OGH using EDC method is an effective strategy for preparing food biological preservative.


Subject(s)
Hydroxybenzoates , beta-Glucans , Hydroxybenzoates/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry
14.
Carbohydr Res ; 534: 108972, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852129

ABSTRACT

Hemicellulose extracted from ecalyptus APMP pulping waste liquor and undergoes etherification modification to produce carboxymethyl hemicellulose (CMHC). Subsequently, CMHC undergoes esterification reaction with p-hydroxybenzoic acid to synthesize a novel polysaccharide-based preservative known as carboxymethyl hemicellulose p-hydroxybenzoate (P-CMHC). The synthesis conditions of P-CMHC were optimized using the response surface methodology, resulting in an optimal esterification condition that achieved a degree of substitution of 0.232. P-CMHC exhibits excellent antioxidant activity, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activities. Additionally, it demonstrates favorable hygroscopic and moisturizing properties. Thiazole blue (MTT) experiments evaluating cell proliferation rate indicate that P-CMHC possesses negligible cytotoxicity, making it a promising, safe, and healthy preservative. Consequently, it can be considered as a new material for applications in the fields of biomedicine, food, and cosmetics.


Subject(s)
Antioxidants , Polysaccharides , Antioxidants/pharmacology , Antioxidants/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Hydroxybenzoates/chemistry , Community Mental Health Centers
15.
Food Chem ; 426: 136571, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37331145

ABSTRACT

The impact of intermolecular copigmentation between five phenolic acids, two flavonoid and three amino acids with R. arboreum anthocyanins (ANS) and its isolated cyanidin-3-O-monoglycosides were investigated through experimental and theoretical approach. On addition of different copigments, phenolic acid induced strong hyperchromic (0.26-0.55 nm) and bathochromic shift (6.6-14.2 nm). The color intensity and stability of ANS with, storage at 4 °C & 25 °C, sunlight, oxidation and heat were evaluated by chromaticity, anthocyanin content, kinetic and structural simulation analysis. The strongest copigmentation reaction was observed with narningin (NA) and also showed high thermostability and highest half-life i.e. 3.39 h-1.24 h at 90-160 °C. The cyanidin-3-O-monoglycosides were analysed for their copigmentation effect and observations revealed that NA displayed best copigmentation effect to cyanidin-3-O-arabinoside (B) followed by cyanidin-3-O-galactoside (A), and cyanidin-3-O-rhamnoside (C). Additionally, structural simulation and steered molecular dynamics insights NA is the most favourable co-pigment involving π-π stacking and H-bonding.


Subject(s)
Anthocyanins , Rhododendron , Anthocyanins/chemistry , Hydroxybenzoates/chemistry , Flavonoids
16.
ACS Chem Biol ; 18(4): 861-874, 2023 04 21.
Article in English | MEDLINE | ID: mdl-36920304

ABSTRACT

Streptomycetes are bacteria known for their extraordinary biosynthetic capabilities. Herein, we describe the genome and metabolome of a particularly talented strain, Streptomyces ID71268. Its 8.4-Mbp genome harbors 32 bioinformatically predicted biosynthetic gene clusters (BGCs), out of which 10 are expressed under a single experimental condition. In addition to five families of known metabolites with previously assigned BGCs (nigericin, azalomycin F, ectoine, SF2766, and piericidin), we were able to predict BGCs for three additional metabolites: streptochlorin, serpetene, and marinomycin. The strain also produced two families of presumably novel metabolites, one of which was associated with growth inhibitory activity against the human opportunistic pathogen Acinetobacter baumannii in an iron-dependent manner. Bioassay-guided fractionation, followed by extensive liquid chromatography-mass spectrometry (LC-MS) and NMR analyses, established that the molecule responsible for the observed antibacterial activity is an unusual tridecapeptide siderophore with a ring-and-tail structure: the heptapeptide ring is formed through a C-C bond between a 2,3-dihydroxybenzoate (DHB) cap on Gly1 and the imidazole moiety of His7, while the hexapeptide tail is sufficient for binding iron. This molecule, named megalochelin, is the largest known siderophore. The megalochelin BGC encodes a 13-module nonribosomal peptide synthetase for the synthesis of the tridecapeptide, and a copper-dependent oxidase, likely responsible for the DHB-imidazole cross-link, whereas the genes for synthesis of the DHB starter unit are apparently specified in trans by a different BGC. Our results suggest that prolific producers of specialized metabolites may conceal hidden treasures within a background of known compounds.


Subject(s)
Iron , Peptides , Siderophores , Hydroxybenzoates/chemistry , Imidazoles , Iron/metabolism , Mass Spectrometry , Multigene Family , Siderophores/chemistry , Peptides/chemistry , Streptomyces/chemistry , Acinetobacter baumannii/metabolism
18.
ACS Chem Biol ; 17(10): 2923-2935, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36122366

ABSTRACT

Siderophores produced via nonribosomal peptide synthetase (NRPS) pathways serve as critical virulence factors for many pathogenic bacteria. Improved knowledge of siderophore biosynthesis guides the development of inhibitors, vaccines, and other therapeutic strategies. Fimsbactin A is a mixed ligand siderophore derived from human pathogenic Acinetobacter baumannii that contains phenolate-oxazoline, catechol, and hydroxamate metal chelating groups branching from a central l-Ser tetrahedral unit via amide and ester linkages. Fimsbactin A is derived from two molecules of l-Ser, two molecules of 2,3-dihydroxybenzoic acid (DHB), and one molecule of l-Orn and is a product of the fbs biosynthetic operon. Here, we report the complete in vitro reconstitution of fimsbactin A biosynthesis in a cell-free system using purified enzymes. We demonstrate the conversion of l-Orn to N1-acetyl-N1-hydroxy-putrescine (ahPutr) via ordered action of FbsJ (decarboxylase), FbsI (flavin N-monooxygenase), and FbsK (N-acetyltransferase). We achieve conversion of l-Ser, DHB, and l-Orn to fimsbactin A using FbsIJK in combination with the NRPS modules FbsEFGH. We also demonstrate chemoenzymatic conversion of synthetic ahPutr to fimsbactin A using FbsEFGH and establish the substrate selectivity for the NRPS adenylation domains in FbsH (DHB) and FbsF (l-Ser). We assign a role for the type II thioesterase FbsM in producing the shunt metabolite 2-(2,3-dihydroxyphenyl)-4,5-dihydrooxazole-4-carboxylic acid (DHB-oxa) via cleavage of the corresponding thioester intermediate that is tethered to NRPS peptidyl carrier domains during biosynthetic assembly. We propose a mechanism for branching NRPS-derived peptides via amide and ester linkages via the dynamic equilibration of N-DHB-Ser and O-DHB-Ser thioester intermediates via hydrolysis of DHB-oxa thioester intermediates. We also propose a genetic signature for NRPS "branching" in the presence of a terminating C-T-C motif (FbsG).


Subject(s)
Acinetobacter baumannii , Carboxy-Lyases , Humans , Siderophores/metabolism , Acinetobacter baumannii/metabolism , Putrescine/metabolism , Ligands , Peptide Synthases/metabolism , Catechols/metabolism , Virulence Factors/metabolism , Hydroxybenzoates/chemistry , Amides/metabolism , Esters/metabolism , Flavins/metabolism , Mixed Function Oxygenases/metabolism , Acetyltransferases/metabolism , Carboxy-Lyases/metabolism , Peptides/metabolism
19.
Mar Drugs ; 20(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36005492

ABSTRACT

A series of phenolic acid chitooligosaccharide (COS) derivatives synthesized by two mild and green methods were illuminated in this paper. Seven phenolic acids were selected to combine two kinds of COS derivatives: the phenolic acid chitooligosaccharide salt derivatives and the phenolic-acid-acylated chitooligosaccharide derivatives. The structures of the derivatives were characterized by FT-IR and 1H NMR spectra. The antioxidant experiment results in vitro (including DPPH-radical scavenging activity, superoxide-radical scavenging activity, hydroxyl-radical scavenging ability, and reducing power) demonstrated that the derivatives exhibited significantly enhanced antioxidant activity compared to COS. Moreover, the study showed that the phenolic acid chitooligosaccharide salts had stronger antioxidant activity than phenolic-acid-acylated chitooligosaccharide. The cytotoxicity assay of L929 cells in vitro indicated that the derivatives had low cytotoxicity and good biocompatibility. In conclusion, this study provides a possible synthetic method for developing novel and nontoxic antioxidant agents which can be used in the food and cosmetics industry.


Subject(s)
Antioxidants , Hydroxybenzoates , Antioxidants/chemistry , Antioxidants/pharmacology , Chitosan , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Oligosaccharides , Spectroscopy, Fourier Transform Infrared
20.
Mar Drugs ; 20(3)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35323494

ABSTRACT

Six new ß-resorcylic acid derivatives (1-5 and 7) were isolated from a halophyte-associated fungus, Colletotrichum gloeosporioides JS0419, together with four previously reported ß-resorcylic acid lactones (RALs). The relative and absolute stereochemistry of 1 was completely established by a combination of spectroscopic data and chemical reactions. The structures of the isolated compounds were elucidated by analysis of HRMS and NMR data. Notably, compounds 1-3 had a ß-resorcylic acid harboring a long unesterified aliphatic side chain, whereas the long aliphatic chains were esterified to form macrolactones in 4-9. Among the isolated compounds, monocillin I and radicicol showed potent antifungal activities against Cryptococcus neoformans, comparable to clinically available antifungal agents and radicicol showed weak antifungal activity against Candida albicans. These findings provide insight into the chemical diversity of fungal RAL-type compounds and their pharmacological potential.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Chenopodiaceae/microbiology , Colletotrichum/chemistry , Cryptococcus neoformans/drug effects , Hydroxybenzoates/pharmacology , Salt-Tolerant Plants/microbiology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Candida albicans/growth & development , Cryptococcus neoformans/growth & development , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...