Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.265
Filter
1.
Mikrochim Acta ; 191(6): 297, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709347

ABSTRACT

A new detection platform based on a hydroxylated covalent organic framework (COF) integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was constructed and used for detecting adrenergic receptor agonists (ARAs) residues in milk. The hydroxylated COF was prepared by polymerization of tris(4-aminophenyl)amine and 1,3,5-tris(4-formyl-3-hydroxyphenyl)benzene and applied to solid-phase extraction (SPE) of ARAs. This hydroxylated COF was featured with hierarchical flower-like morphology, easy preparation, and copious active adsorption sites. The adsorption model fittings and molecular simulation were applied to explore the potential adsorption mechanism. This detection platform was suitable for detecting four α2- and five ß2-ARAs residues in milk. The linear ranges of the ARAs were from 0.25 to 50 µg·kg-1; the intra-day and the inter-day repeatability were in the range 2.9-7.9% and 2.0-10.1%, respectively. This work demonstrates this hydroxylated COF has great potential as SPE cartridge packing, and provides a new way to determine ARAs residues in milk.


Subject(s)
Milk , Solid Phase Extraction , Tandem Mass Spectrometry , Solid Phase Extraction/methods , Milk/chemistry , Animals , Tandem Mass Spectrometry/methods , Hydroxylation , Metal-Organic Frameworks/chemistry , Adsorption , Adrenergic Agonists/chemistry , Adrenergic Agonists/analysis , Limit of Detection , Cattle
2.
Mol Biol Rep ; 51(1): 624, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710963

ABSTRACT

BACKGROUND: Thyroid hormones are primarily responsible for the brain development in perinatal mammals. However, this process can be inhibited by external factors such as environmental chemicals. Perinatal mammals are viviparous, which makes direct fetal examination difficult. METHODS: We used metamorphic amphibians, which exhibit many similarities to perinatal mammals, as an experimental system. Therefore, using metamorphic amphibians, we characterized the gene expression of matrix metalloproteinases, which play an important role in brain development. RESULTS: The expression of many matrix metalloproteinases (mmps) was characteristically induced during metamorphosis. We also found that the expression of many mmps was induced by T3 and markedly inhibited by hydroxylated polychlorinated biphenyls (PCBs). CONCLUSION: Overall, our findings suggest that hydroxylated PCBs disrupt normal brain development by disturbing the gene expression of mmps.


Subject(s)
Brain , Matrix Metalloproteinases , Metamorphosis, Biological , Polychlorinated Biphenyls , Thyroid Hormones , Xenopus laevis , Animals , Brain/metabolism , Brain/drug effects , Brain/growth & development , Xenopus laevis/metabolism , Xenopus laevis/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Polychlorinated Biphenyls/toxicity , Metamorphosis, Biological/drug effects , Metamorphosis, Biological/genetics , Thyroid Hormones/metabolism , Gene Expression Regulation, Developmental/drug effects , Hydroxylation
3.
Protein Expr Purif ; 219: 106483, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38609025

ABSTRACT

Mussel foot proteins (Mfps) possess unique binding properties to various surfaces due to the presence of L-3,4-dihydroxyphenylalanine (DOPA). Mytilus edulis foot protein-3 (Mefp-3) is one of several proteins in the byssal adhesive plaque. Its localization at the plaque-substrate interface approved that Mefp-3 plays a key role in adhesion. Therefore, the protein is suitable for the development of innovative bio-based binders. However, recombinant Mfp-3s are mainly purified from inclusion bodies under denaturing conditions. Here, we describe a robust and reproducible protocol for obtaining soluble and tag-free Mefp-3 using the SUMO-fusion technology. Additionally, a microbial tyrosinase from Verrucomicrobium spinosum was used for the in vitro hydroxylation of peptide-bound tyrosines in Mefp-3 for the first time. The highly hydroxylated Mefp-3, confirmed by MALDI-TOF-MS, exhibited excellent adhesive properties comparable to a commercial glue. These results demonstrate a concerted and simplified high yield production process for recombinant soluble and tag-free Mfp3-based proteins with on demand DOPA modification.


Subject(s)
Dihydroxyphenylalanine , Mytilus edulis , Animals , Dihydroxyphenylalanine/chemistry , Dihydroxyphenylalanine/metabolism , Mytilus edulis/genetics , Mytilus edulis/chemistry , Mytilus edulis/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Verrucomicrobia/genetics , Verrucomicrobia/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/chemistry , Proteins/genetics , Proteins/chemistry , Proteins/isolation & purification , Hydroxylation , Escherichia coli/genetics , Escherichia coli/metabolism
4.
ACS Synth Biol ; 13(5): 1523-1536, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38662967

ABSTRACT

Streptomyces spp. are "nature's antibiotic factories" that produce valuable bioactive metabolites, such as the cytotoxic anthracycline polyketides. While the anthracyclines have hundreds of natural and chemically synthesized analogues, much of the chemical diversity stems from enzymatic modifications to the saccharide chains and, to a lesser extent, from alterations to the core scaffold. Previous work has resulted in the generation of a BioBricks synthetic biology toolbox in Streptomyces coelicolor M1152ΔmatAB that could produce aklavinone, 9-epi-aklavinone, auramycinone, and nogalamycinone. In this work, we extended the platform to generate oxidatively modified analogues via two crucial strategies. (i) We swapped the ketoreductase and first-ring cyclase enzymes for the aromatase cyclase from the mithramycin biosynthetic pathway in our polyketide synthase (PKS) cassettes to generate 2-hydroxylated analogues. (ii) Next, we engineered several multioxygenase cassettes to catalyze 11-hydroxylation, 1-hydroxylation, 10-hydroxylation, 10-decarboxylation, and 4-hydroxyl regioisomerization. We also developed improved plasmid vectors and S. coelicolor M1152ΔmatAB expression hosts to produce anthracyclinones. This work sets the stage for the combinatorial biosynthesis of bespoke anthracyclines using recombinant Streptomyces spp. hosts.


Subject(s)
Anthracyclines , Polyketide Synthases , Streptomyces coelicolor , Polyketide Synthases/metabolism , Polyketide Synthases/genetics , Anthracyclines/metabolism , Streptomyces coelicolor/metabolism , Streptomyces coelicolor/genetics , Streptomyces/metabolism , Streptomyces/genetics , Biosynthetic Pathways/genetics , Hydroxylation , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/chemistry
5.
Nat Commun ; 15(1): 3533, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670937

ABSTRACT

Oxygen is essential for aerobic organisms, but little is known about its role in antiviral immunity. Here, we report that during responses to viral infection, hypoxic conditions repress antiviral-responsive genes independently of HIF signaling. EGLN1 is identified as a key mediator of the oxygen enhancement of antiviral innate immune responses. Under sufficient oxygen conditions, EGLN1 retains its prolyl hydroxylase activity to catalyze the hydroxylation of IRF3 at proline 10. This modification enhances IRF3 phosphorylation, dimerization and nuclear translocation, leading to subsequent IRF3 activation. Furthermore, mice and zebrafish with Egln1 deletion, treatment with the EGLN inhibitor FG4592, or mice carrying an Irf3 P10A mutation are more susceptible to viral infections. These findings not only reveal a direct link between oxygen and antiviral responses, but also provide insight into the mechanisms by which oxygen regulates innate immunity.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases , Immunity, Innate , Interferon Regulatory Factor-3 , Oxygen , Proline , Zebrafish , Animals , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Interferon Regulatory Factor-3/metabolism , Hydroxylation , Humans , Proline/metabolism , Mice , Oxygen/metabolism , HEK293 Cells , Phosphorylation , Mice, Knockout , Signal Transduction , Mice, Inbred C57BL
6.
Org Biomol Chem ; 22(18): 3559-3583, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38639195

ABSTRACT

Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.


Subject(s)
Steroids , Steroids/chemistry , Steroids/metabolism , Humans , Biocatalysis , Enzymes/metabolism , Enzymes/chemistry , Hydroxylation , Molecular Structure
7.
ACS Chem Biol ; 19(5): 1131-1141, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38668630

ABSTRACT

Angucyclines are an important group of microbial natural products that display tremendous chemical diversity. Classical angucyclines are composed of a tetracyclic benz[a]anthracene scaffold with one ring attached at an angular orientation. However, in atypical angucyclines, the polyaromatic aglycone is cleaved at A-, B-, or C-rings, leading to structural rearrangements and enabling further chemical variety. Here, we have elucidated the branching points in angucycline biosynthesis leading toward cleavage of the C-ring in lugdunomycin and thioangucycline biosynthesis. We showed that 12-hydroxylation and 6-ketoreduction of UWM6 are shared steps in classical and C-ring-cleaved angucycline pathways, although the bifunctional 6-ketoreductase LugOIIred harbors additional unique 1-ketoreductase activity. We identified formation of the key intermediate 8-O-methyltetrangomycin by the LugN methyltransferase as the branching point toward C-ring-cleaved angucyclines. The final common step in lugdunomycin and thioangucycline biosynthesis is quinone reduction, catalyzed by the 7-ketoreductases LugG and TacO, respectively. In turn, the committing step toward thioangucyclines is 12-ketoreduction catalyzed by TacA, for which no orthologous protein exists on the lugdunomycin pathway. Our results confirm that quinone reductions are early tailoring steps and, therefore, may be mechanistically important for subsequent C-ring cleavage. Finally, many of the tailoring enzymes harbored broad substrate promiscuity, which we utilized in combinatorial enzymatic syntheses to generate the angucyclines SM 196 A and hydranthomycin. We propose that enzyme promiscuity and the competition of many of the enzymes for the same substrates lead to a branching biosynthetic network and formation of numerous shunt products typical for angucyclines rather than a canonical linear metabolic pathway.


Subject(s)
Streptomyces , Streptomyces/metabolism , Anthraquinones/metabolism , Anthraquinones/chemistry , Biological Products/metabolism , Biological Products/chemistry , Hydroxylation , Angucyclines and Angucyclinones
8.
ACS Chem Biol ; 19(5): 1169-1179, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38624108

ABSTRACT

Bufadienolides are a class of steroids with a distinctive α-pyrone ring at C17, mostly produced by toads and consisting of over 100 orthologues. They exhibit potent cardiotonic and antitumor activities and are active ingredients of the traditional Chinese medicine Chansu and Cinobufacini. Direct extraction from toads is costly, and chemical synthesis is difficult, limiting the accessibility of active bufadienolides with diverse modifications and trace content. In this work, based on the transcriptome and genome analyses, using a yeast-based screening platform, we obtained eight cytochrome P450 (CYP) enzymes from toads, which catalyze the hydroxylation of bufalin and resibufogenin at different sites. Moreover, a reported fungal CYP enzyme Sth10 was found functioning in the modification of bufalin and resibufogenin at multiple sites. A total of 15 bufadienolides were produced and structurally identified, of which six were first discovered. All of the compounds were effective in inhibiting the proliferation of tumor cells, especially 19-hydroxy-bufalin (2) and 1ß-hydroxy-bufalin (3), which were generated from bufalin hydroxylation catalyzed by CYP46A35. The catalytic efficiency of CYP46A35 was improved about six times and its substrate diversity was expanded to progesterone and testosterone, the common precursors for steroid drugs, achieving their efficient and site-specific hydroxylation. These findings elucidate the key modification process in the synthesis of bufadienolides by toads and provide an effective way for the synthesis of unavailable bufadienolides with site-specific modification and active potentials.


Subject(s)
Bufanolides , Cytochrome P-450 Enzyme System , Bufanolides/chemistry , Bufanolides/metabolism , Bufanolides/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Animals , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Hydroxylation , Cell Line, Tumor , Bufonidae/metabolism , Cell Proliferation/drug effects
9.
Pharmacol Res Perspect ; 12(3): e1197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644590

ABSTRACT

Human cytochrome P450 3A4 (CYP3A4) is a drug-metabolizing enzyme that is abundantly expressed in the liver and intestine. It is an important issue whether compounds of interest affect the expression of CYP3A4 because more than 30% of commercially available drugs are metabolized by CYP3A4. In this study, we examined the effects of cholesterol and cholic acid on the expression level and activity of CYP3A4 in hCYP3A mice that have a human CYP3A gene cluster and show human-like regulation of the coding genes. A normal diet (ND, CE-2), CE-2 with 1% cholesterol and 0.5% cholic acid (HCD) or CE-2 with 0.5% cholic acid was given to the mice. The plasma concentrations of cholesterol, cholic acid and its metabolites in HCD mice were higher than those in ND mice. In this condition, the expression levels of hepatic CYP3A4 and the hydroxylation activities of triazolam, a typical CYP3A4 substrate, in liver microsomes of HCD mice were higher than those in liver microsomes of ND mice. Furthermore, plasma concentrations of triazolam in HCD mice were lower than those in ND mice. In conclusion, our study suggested that hepatic CYP3A4 expression and activity are influenced by the combination of cholesterol and cholic acid in vivo.


Subject(s)
Cholesterol , Cholic Acid , Cytochrome P-450 CYP3A , Liver , Microsomes, Liver , Triazolam , Cholic Acid/metabolism , Animals , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Microsomes, Liver/metabolism , Cholesterol/metabolism , Cholesterol/blood , Mice , Liver/metabolism , Liver/drug effects , Male , Triazolam/pharmacokinetics , Triazolam/metabolism , Humans , Mice, Transgenic , Hydroxylation
10.
J Nat Prod ; 87(4): 1171-1178, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38557026

ABSTRACT

The potential of natural products as pharmaceutical and agricultural agents is based on their large structural diversity, resulting in part from modifications of the backbone structure by tailoring enzymes during biosynthesis. Flavin-dependent monooxygenases (FMOs), as one such group of enzymes, play an important role in the biosynthesis of diverse natural products, including cyclodipeptide (CDP) derivatives. The FMO PboD was shown to catalyze C-3 hydroxylation at the indole ring of cyclo-l-Trp-l-Leu in the biosynthesis of protubonines, accompanied by pyrrolidine ring formation. PboD substrate promiscuity was investigated in this study by testing its catalytic activity toward additional tryptophan-containing CDPs in vitro and biotransformation in Aspergillus nidulans transformants bearing a truncated protubonine gene cluster with pboD and two acetyltransferase genes. High acceptance of five CDPs was detected for PboD, especially of those with a second aromatic moiety. Isolation and structure elucidation of five pyrrolidine diketopiperazine products, with two new structures, proved the expected stereospecific hydroxylation and pyrrolidine ring formation. Determination of kinetic parameters revealed higher catalytic efficiency of PboD toward three CDPs consisting of aromatic amino acids than of its natural substrate cyclo-l-Trp-l-Leu. In the biotransformation experiments with the A. nidulans transformant, modest formation of hydroxylated and acetylated products was also detected.


Subject(s)
Aspergillus , Diketopiperazines , Aspergillus/enzymology , Aspergillus/chemistry , Aspergillus nidulans/enzymology , Aspergillus nidulans/metabolism , Diketopiperazines/chemistry , Diketopiperazines/metabolism , Flavins/metabolism , Hydroxylation , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Molecular Structure , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Substrate Specificity
11.
J Am Chem Soc ; 146(17): 11726-11739, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38636166

ABSTRACT

Lysine dioxygenase (KDO) is an important enzyme in human physiology involved in bioprocesses that trigger collagen cross-linking and blood pressure control. There are several KDOs in nature; however, little is known about the factors that govern the regio- and stereoselectivity of these enzymes. To understand how KDOs can selectively hydroxylate their substrate, we did a comprehensive computational study into the mechanisms and features of 4-lysine dioxygenase. In particular, we selected a snapshot from the MD simulation on KDO5 and created large QM cluster models (A, B, and C) containing 297, 312, and 407 atoms, respectively. The largest model predicts regioselectivity that matches experimental observation with rate-determining hydrogen atom abstraction from the C4-H position, followed by fast OH rebound to form 4-hydroxylysine products. The calculations show that in model C, the dipole moment is positioned along the C4-H bond of the substrate and, therefore, the electrostatic and electric field perturbations of the protein assist the enzyme in creating C4-H hydroxylation selectivity. Furthermore, an active site Tyr233 residue is identified that reacts through proton-coupled electron transfer akin to the axial Trp residue in cytochrome c peroxidase. Thus, upon formation of the iron(IV)-oxo species in the catalytic cycle, the Tyr233 phenol loses a proton to the nearby Asp179 residue, while at the same time, an electron is transferred to the iron to create an iron(III)-oxo active species. This charged tyrosyl residue directs the dipole moment along the C4-H bond of the substrate and guides the selectivity to the C4-hydroxylation of the substrate.


Subject(s)
Catalytic Domain , Lysine , Protons , Hydroxylation , Lysine/metabolism , Lysine/chemistry , Electron Transport , Tyrosine/chemistry , Tyrosine/metabolism , Molecular Dynamics Simulation , Stereoisomerism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Humans , Iron/chemistry , Iron/metabolism
12.
J Nat Prod ; 87(4): 1036-1043, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38600636

ABSTRACT

Triterpenoids are a type of specialized metabolites that exhibit a wide range of biological activities. However, the availability of some minor triterpenoids in nature is limited, which has hindered our understanding of their pharmacological potential. To overcome this limitation, heterologous biosynthesis of triterpenoids in yeast has emerged as a promising and time-efficient production platform for obtaining these minor compounds. In this study, we analyzed the transcriptomic data of Enkianthus chinensis to identify one oxidosqualene cyclase (EcOSC) gene and four CYP716s. Through heterologous expression of these genes in yeast, nine natural pentacyclic triterpenoids, including three skeleton products (1-3) produced by one multifunctional OSC and six minor oxidation products (4-9) catalyzed by CYP716s, were obtained. Of note, we discovered that CYP716E60 could oxidize ursane-type and oleanane-type triterpenoids to produce 6ß-OH derivatives, marking the first confirmed C-6ß hydroxylation in an ursuane-type triterpenoid. Compound 9 showed moderate inhibitory activity against NO production and dose-dependently reduced IL-1ß and IL-6 production at the transcriptional and protein levels. Compounds 1, 2, 8, and 9 exhibited moderate hepatoprotective activity with the survival rates of HepG2 cells from 61% to 68% at 10 µM.


Subject(s)
Anti-Inflammatory Agents , Cytochrome P-450 Enzyme System , Intramolecular Transferases , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Humans , Cytochrome P-450 Enzyme System/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Molecular Structure , Saccharomyces cerevisiae , Hydroxylation , Hep G2 Cells , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry
13.
Amino Acids ; 56(1): 21, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461423

ABSTRACT

Metformin (N,N-dimethylbiguanide), an inhibitor of gluconeogenesis and insulin sensitizer, is widely used for the treatment of type 2 diabetes. In some patients with renal insufficiency, metformin can accumulate and cause lactic acidosis, known as metformin-associated lactic acidosis (MALA, defined as lactate ≥ 5 mM, pH < 7.35, and metformin concentration > 38.7 µM). Here, we report on the post-translational modification (PTM) of proline (Pro) to 4-hydroxyproline (OH-Pro) in metformin-associated lactic acidosis and in metformin-treated patients with Becker muscular dystrophy (BMD). Pro and OH-Pro were measured simultaneously by gas chromatography-mass spectrometry before, during, and after renal replacement therapy in a patient admitted to the intensive care unit (ICU) because of MALA. At admission to the ICU, plasma metformin concentration was 175 µM, with a corresponding lactate concentration of 20 mM and a blood pH of 7.1. Throughout ICU admission, the Pro concentration was lower compared to healthy controls. Renal excretion of OH-Pro was initially high and decreased over time. Moreover, during the first 12 h of ICU admission, OH-Pro seems to be renally secreted while thereafter, it was reabsorbed. Our results suggest that MALA is associated with hyper-hydroxyprolinuria due to elevated PTM of Pro to OH-Pro by prolyl-hydroxylase and/or inhibition of OH-Pro metabolism in the kidneys. In BMD patients, metformin, at the therapeutic dose of 3 × 500 mg per day for 6 weeks, increased the urinary excretion of OH-Pro suggesting elevation of Pro hydroxylation to OH-Pro. Our study suggests that metformin induces specifically the expression/activity of prolyl-hydroxylase in metformin intoxication and BMD.


Subject(s)
Acidosis, Lactic , Diabetes Mellitus, Type 2 , Metformin , Muscular Dystrophy, Duchenne , Humans , Metformin/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Acidosis, Lactic/chemically induced , Acidosis, Lactic/therapy , Hydroxyproline , Gas Chromatography-Mass Spectrometry , Proline , Hydroxylation , Muscular Dystrophy, Duchenne/drug therapy , Lactic Acid , Mixed Function Oxygenases/therapeutic use , Hypoglycemic Agents/adverse effects
14.
J Pharm Biomed Anal ; 244: 116116, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38537542

ABSTRACT

EC5026 is a novel soluble epoxide hydrolase inhibitor being developed clinically to treat neuropathic pain and inflammation. In the current study, we employed the LC-ESI-Q-TOF-MS/MS technique to identify four in-vivo phase-I metabolites of EC5026 in rat model, out of which three were found to be novel. The identified metabolites include aliphatic hydroxylation, di-hydroxylation, terminal desaturation, and carboxylation. No phase-II metabolites were found. The pharmacokinetic profile of identified metabolites was established after a single oral dose of EC5026 to Wistar rats. The Tmax of the drug and metabolites were found to be in the range of 1-2 hours and 4-12 hours, respectively. The major metabolites M1 and M2 were found to have more than 2-fold (263.87% AUC) and equivalent exposure (96.33% AUC) compared to the parent drug, respectively. Further, the docking study revealed that the mono-hydroxylated and terminally desaturated metabolites possess better binding affinity than the parent drug. Therefore, these metabolites may hold sEH inhibition potential and can be followed through future research.


Subject(s)
Epoxide Hydrolases , Rats, Wistar , Tandem Mass Spectrometry , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Animals , Rats , Tandem Mass Spectrometry/methods , Male , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Chromatography, Liquid/methods , Hydroxylation , Administration, Oral , Spectrometry, Mass, Electrospray Ionization/methods
15.
J Steroid Biochem Mol Biol ; 240: 106507, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508471

ABSTRACT

Cytochrome P450 enzyme with 7ß-hydroxylation capacity has attracted widespread attentions due to the vital roles in the biosynthesis of ursodeoxycholic acid (UDCA), a naturally active molecule for the treatment of liver and gallbladder diseases. In this study, a novel P450 hydroxylase (P450FE) was screen out from Fusarium equiseti HG18 and identified by a combination of genome and transcriptome sequencing, as well as heterologous expression in Pichia pastoris. The biotransformation of lithocholic acid (LCA) by whole cells of recombinant Pichia pastoris further confirmed the C7ß-hydroxylation with 5.2% UDCA yield. It was firstly identified a fungal P450 enzyme from Fusarium equiseti HG18 with the capacity to catalyze the LCA oxidation producing UDCA. The integration of homology modeling and molecular docking discovered the substrate binding to active pockets, and the key amino acids in active center were validated by site-directed mutagenesis, and revealed that Q112, V362 and L363 were the pivotal residues of P450FE in regulating the activity and selectivity of 7ß-hydroxylation. Specifically, V362I mutation exhibited 2.6-fold higher levels of UDCA and higher stereospecificity than wild-type P450FE. This advance provided guidance for improving the catalytic efficiency and selectivity of P450FE in LCA hydroxylation, indicative of the great potential in green synthesis of UDCA from biologically toxic LCA.


Subject(s)
Cytochrome P-450 Enzyme System , Fusarium , Molecular Docking Simulation , Saccharomycetales , Ursodeoxycholic Acid , Fusarium/enzymology , Fusarium/genetics , Fusarium/metabolism , Ursodeoxycholic Acid/metabolism , Ursodeoxycholic Acid/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/chemistry , Hydroxylation , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Mutagenesis, Site-Directed , Lithocholic Acid/metabolism , Lithocholic Acid/chemistry , Substrate Specificity
16.
Nat Commun ; 15(1): 2339, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490987

ABSTRACT

Taxol is a widely-applied anticancer drug that inhibits microtubule dynamics in actively replicating cells. Although a minimum 19-step biosynthetic pathway has been proposed and 16 enzymes likely involved have been characterized, stepwise biosynthetic reactions from the well-characterized di-oxygenated taxoids to Taxol tetracyclic core skeleton are yet to be elucidated. Here, we uncover the biosynthetic pathways for a few tri-oxygenated taxoids via confirming the critical reaction order of the second and third hydroxylation steps, unearth a taxoid 9α-hydroxylase catalyzing the fourth hydroxylation, and identify CYP725A55 catalyzing the oxetane ester formation via a cascade oxidation-concerted acyl rearrangement mechanism. After identifying a acetyltransferase catalyzing the formation of C7-OAc, the pathway producing the highly-oxygenated 1ß-dehydroxybaccatin VI with the Taxol tetracyclic core skeleton is elucidated and its complete biosynthesis from taxa-4(20),11(12)-diene-5α-ol is achieved in an engineered yeast. These systematic studies lay the foundation for the complete elucidation of the biosynthetic pathway of Taxol.


Subject(s)
Paclitaxel , Taxoids , Taxoids/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Hydroxylation , Oxidation-Reduction
17.
Proc Natl Acad Sci U S A ; 121(13): e2321242121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38507448

ABSTRACT

All biological hydroxylation reactions are thought to derive the oxygen atom from one of three inorganic oxygen donors, O2, H2O2, or H2O. Here, we have identified the organic compound prephenate as the oxygen donor for the three hydroxylation steps of the O2-independent biosynthetic pathway of ubiquinone, a widely distributed lipid coenzyme. Prephenate is an intermediate in the aromatic amino acid pathway and genetic experiments showed that it is essential for ubiquinone biosynthesis in Escherichia coli under anaerobic conditions. Metabolic labeling experiments with 18O-shikimate, a precursor of prephenate, demonstrated the incorporation of 18O atoms into ubiquinone. The role of specific iron-sulfur enzymes belonging to the widespread U32 protein family is discussed. Prephenate-dependent hydroxylation reactions represent a unique biochemical strategy for adaptation to anaerobic environments.


Subject(s)
Cyclohexanecarboxylic Acids , Cyclohexenes , Escherichia coli , Ubiquinone , Hydroxylation , Ubiquinone/metabolism , Escherichia coli/metabolism , Oxygen/metabolism
18.
Int J Biol Macromol ; 264(Pt 1): 130545, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431000

ABSTRACT

Polyphenolic compounds have natural antioxidant properties, and their antioxidant activity is usually related to the number and position of hydroxyls. Here, we successfully applied the engineered 4-hydroxyphenylacetate 3-hydroxylases (4HPA3Hs) derived from Pseudomonas aeruginosa to catalyze ferulic acid (FA) synthesis of ortho-hydroxyferulic acid (5-hydroxyferulic acid, 5-OHFA). Through optimization of co-expression, the oxygenase component (PaHpaB) and the reductase component (PaHpaC) in E. coli, and optimization of whole-cell catalytic conditions, the engineered strain BC catalyzed ortho-hydroxylation of 2 g/L of FA with a yield of 75 % from 39 %. Through tunnel engineering of PaHpaB, the obtained mutants F301A and Q376A almost completely transformed 2 g/L of FA. Further, a multiple mutant L214A/F301A/Q376A converted 4 g/L FA into 5-OHFA within 12 h, and the yield reached 99.9 %, which was approximately 2.39-fold of the wild type. The kcat/Km value of L214A/F301A/Q376A was about 307 times greater than that of the wide type. Analysis of three-dimensional structural models showed that L214, F301, and Q376 mutated into Ala, which greatly shortened the side chain and broadened the tunnel size, thereby significantly improving the catalytic efficiency of L214A/F301A/Q376A. This biosynthesis of 5-OHFA is simple, efficient, and green, suggesting that it is useful for efficient biosynthesis of polyphenolic compounds.


Subject(s)
Coumaric Acids , Mixed Function Oxygenases , Phenylacetates , Pseudomonas aeruginosa , Mixed Function Oxygenases/chemistry , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Hydroxylation , Escherichia coli/metabolism
19.
Commun Biol ; 7(1): 240, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418569

ABSTRACT

Pacak-Zhuang syndrome is caused by mutations in the EPAS1 gene, which encodes for one of the three hypoxia-inducible factor alpha (HIFα) paralogs HIF2α and is associated with defined but varied phenotypic presentations including neuroendocrine tumors and polycythemia. However, the mechanisms underlying the complex genotype-phenotype correlations remain incompletely understood. Here, we devised a quantitative method for determining the dissociation constant (Kd) of the HIF2α peptides containing disease-associated mutations and the catalytic domain of prolyl-hydroxylase (PHD2) using microscale thermophoresis (MST) and showed that neuroendocrine-associated Class 1 HIF2α mutants have distinctly higher Kd than the exclusively polycythemia-associated Class 2 HIF2α mutants. Based on the co-crystal structure of PHD2/HIF2α peptide complex at 1.8 Å resolution, we showed that the Class 1 mutated residues are localized to the critical interface between HIF2α and PHD2, adjacent to the PHD2 active catalytic site, while Class 2 mutated residues are localized to the more flexible region of HIF2α that makes less contact with PHD2. Concordantly, Class 1 mutations were found to significantly increase HIF2α-mediated transcriptional activation in cellulo compared to Class 2 counterparts. These results reveal a structural mechanism in which the strength of the interaction between HIF2α and PHD2 is at the root of the general genotype-phenotype correlations observed in Pacak-Zhuang syndrome.


Subject(s)
Polycythemia , Prolyl Hydroxylases , Humans , Prolyl Hydroxylases/genetics , Hydroxylation , Polycythemia/genetics , Mutation , Procollagen-Proline Dioxygenase
20.
Curr Opin Chem Biol ; 79: 102428, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38330792

ABSTRACT

The hypoxia-inducible factors are α,ß-heterodimeric transcription factors that mediate the chronic response to hypoxia in humans and other animals. Protein hydroxylases belonging to two different structural subfamilies of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase superfamily modify HIFα. HIFα prolyl-hydroxylation, as catalysed by the PHDs, regulates HIFα levels and, consequently, α,ß-HIF levels. HIFα asparaginyl-hydroxylation, as catalysed by factor inhibiting HIF (FIH), regulates the transcriptional activity of α,ß-HIF. The activities of the PHDs and FIH are regulated by O2 availability, enabling them to act as hypoxia sensors. We provide an overview of the biochemistry of the HIF hydroxylases, discussing evidence that their kinetic and structural properties may be tuned to their roles in the HIF system. Avenues for future research and therapeutic modulation are discussed.


Subject(s)
Mixed Function Oxygenases , Transcription Factors , Animals , Humans , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Transcription Factors/metabolism , Hypoxia/metabolism , Hydroxylation
SELECTION OF CITATIONS
SEARCH DETAIL
...