Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 599
Filter
1.
Cancer Lett ; 592: 216919, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38704133

ABSTRACT

Efforts to develop targetable molecular bases for drug resistance for pancreatic ductal adenocarcinoma (PDAC) have been equivocally successful. Using RNA-seq and ingenuity pathway analysis we identified that the superpathway of cholesterol biosynthesis is upregulated in gemcitabine resistant (gemR) tumors using a unique PDAC PDX model with resistance to gemcitabine acquired in vivo. Analysis of additional in vitro and in vivo gemR PDAC models showed that HMG-CoA synthase 2 (HMGCS2), an enzyme involved in cholesterol biosynthesis and rate limiting in ketogenesis, is overexpressed in these models. Mechanistic data demonstrate the novel findings that HMGCS2 contributes to gemR and confers metastatic properties in PDAC models, and that HMGCS2 is BRD4 dependent. Further, BET inhibitor JQ1 decreases levels of HMGCS2, sensitizes PDAC cells to gemcitabine, and a combination of gemcitabine and JQ1 induced regressions of gemR tumors in vivo. Our data suggest that decreasing HMGCS2 may reverse gemR, and that HMGCS2 represents a useful therapeutic target for treating gemcitabine resistant PDAC.


Subject(s)
Azepines , Carcinoma, Pancreatic Ductal , Deoxycytidine , Drug Resistance, Neoplasm , Gemcitabine , Hydroxymethylglutaryl-CoA Synthase , Pancreatic Neoplasms , Triazoles , Xenograft Model Antitumor Assays , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Humans , Drug Resistance, Neoplasm/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Cell Line, Tumor , Triazoles/pharmacology , Azepines/pharmacology , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Antimetabolites, Antineoplastic/pharmacology , Bromodomain Containing Proteins
2.
Int Immunopharmacol ; 133: 112033, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608446

ABSTRACT

Psoriasis is an immuno-inflammatory disease characterized by excessive keratinocyte proliferation, requiring extensive lipids. 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) is an essential enzyme in the mevalonate pathway, involved in cholesterol synthesis and the inflammatory response. However, the role of HMGCS1 in psoriasis has remained elusive. This study aims to elucidate the mechanism by which HMGCS1 controls psoriasiform inflammation. We discovered an increased abundance of HMGCS1 in psoriatic lesions when analyzing two Gene Expression Omnibus (GEO) datasets and confirmed this in psoriatic animal models and psoriatic patients by immunohistochemistry. In a TNF-α stimulated psoriatic HaCaT cell line, HMGCS1 was found to be overexpressed. Knockdown of HMGCS1 using siRNA suppressed the migration and proliferation of HaCaT cells. Mechanistically, HMGCS1 downregulation also reduced the expression of IL-23 and the STAT3 phosphorylation level. In imiquimod-induced psoriatic mice, intradermal injection of HMGCS1 siRNA significantly decreased the expression of HMGCS1 in the epidermis, which in turn led to an improvement in the Psoriasis Area and Severity Index score, epidermal thickening, and pathological Baker score. Additionally, expression levels of inflammatory cytokines IL-23, IL1-ß, chemokine CXCL1, and innate immune mediator S100A7-9 were downregulated in the epidermis. In conclusion, HMGCS1 downregulation improved psoriasis in vitro and in vivo through the STAT3/IL-23 axis.


Subject(s)
Cell Proliferation , Hydroxymethylglutaryl-CoA Synthase , Imiquimod , Interleukin-23 , Keratinocytes , Psoriasis , STAT3 Transcription Factor , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/pathology , Animals , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Proliferation/drug effects , Mice , Interleukin-23/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Signal Transduction/drug effects , HaCaT Cells , Cell Line , Male , Disease Models, Animal , Female , Mice, Inbred BALB C
3.
Respir Res ; 25(1): 176, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658970

ABSTRACT

BACKGROUND: Abnormal lipid metabolism has recently been reported as a crucial signature of idiopathic pulmonary fibrosis (IPF). However, the origin and biological function of the lipid and possible mechanisms of increased lipid content in the pathogenesis of IPF remains undetermined. METHODS: Oil-red staining and immunofluorescence analysis were used to detect lipid accumulation in mouse lung fibrosis frozen sections, Bleomycin-treated human type II alveolar epithelial cells (AECIIs) and lung fibroblast. Untargeted Lipid omics analysis was applied to investigate differential lipid species and identified LysoPC was utilized to treat human lung fibroblasts and mice. Microarray and single-cell RNA expression data sets identified lipid metabolism-related differentially expressed genes. Gain of function experiment was used to study the function of 3-hydroxy-3-methylglutaryl-Coa Synthase 2 (HMGCS2) in regulating AECIIs lipid metabolism. Mice with AECII-HMGCS2 high were established by intratracheally delivering HBAAV2/6-SFTPC- HMGCS2 adeno-associated virus. Western blot, Co-immunoprecipitation, immunofluorescence, site-directed mutation and flow cytometry were utilized to investigate the mechanisms of HMGCS2-mediated lipid metabolism in AECIIs. RESULTS: Injured AECIIs were the primary source of accumulated lipids in response to Bleomycin stimulation. LysoPCs released by injured AECIIs could activate lung fibroblasts, thus promoting the progression of pulmonary fibrosis. Mechanistically, HMGCS2 was decreased explicitly in AECIIs and ectopic expression of HMGCS2 in AECIIs using the AAV system significantly alleviated experimental mouse lung fibrosis progression via modulating lipid degradation in AECIIs through promoting CPT1A and CPT2 expression by interacting with PPARα. CONCLUSIONS: These data unveiled a novel etiological mechanism of HMGCS2-mediated AECII lipid metabolism in the genesis and development of pulmonary fibrosis and provided a novel target for clinical intervention.


Subject(s)
Down-Regulation , Fibroblasts , Hydroxymethylglutaryl-CoA Synthase , Lipid Metabolism , Mice, Inbred C57BL , Animals , Humans , Male , Mice , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Bleomycin/toxicity , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/pathology , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/biosynthesis , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/genetics , Lipid Metabolism/physiology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/genetics
4.
J Cell Mol Med ; 28(6): e18137, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38445791

ABSTRACT

Hepatocellular cancer is one of the most serious types of cancer in the world, with high incidence and mortality rates. Most HCC patients with long-term chemotherapy develop chemoresistance, leading to a poor prognosis. However, the underlying mechanism of circRNAs in HCC chemoresistance remains unclear. Our research found that circ_0072391(circ_HMGCS1) expression was significantly upregulated in cisplatin-resistant HCC cells. The silence of circ_HMGCS1 attenuated the cisplatin resistance in HCC. Results showed that circ_HMGCS1 regulated the expression of miR-338-5p via acting as microRNA sponges. Further study confirmed that miR-338-5p regulated the expression of IL-7. IL-7 could remodel the immune system by improving T-cell function and antagonising the immunosuppressive network. IL-7 is an ideal target used to enhance the function of the immune system. circ_HMGCS1 exerts its oncogenic function through the miR-338-5p/IL-7 pathway. Inhibition of circ_HMGCS1/miR-338-5p/IL-7 could effectively attenuate the chemoresistance of HCC. IL-7 might be a promising immunotherapy target for HCC cancer treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Interleukin-7/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , MicroRNAs/genetics , Hydroxymethylglutaryl-CoA Synthase
5.
Phytomedicine ; 126: 155445, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412666

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is the primary cause of end-stage renal disease (ESRD), and the therapeutic strategies for DN are limited. Notoginsenoside Fc (Fc), a novel saponin isolated from Panax Notoginseng (PNG), has been reported to alleviate vascular injury in diabetic rats. However, the protective effects of Fc on DN remain unclear. PURPOSE: To investigate the beneficial effects and mechanisms of Fc on DN. METHODS: Db/db mice were treated with 2.5, 5 and 10 mg·kg-1·d-1 of Fc for 8 weeks. High glucose (HG) induced mouse glomerular endothelial cells (GECs) were treated with 2.5, 5 and 10 µM of Fc for 24 h. RESULTS: Our data found that Fc ameliorated urinary microalbumin level, kidney dysfunction and histopathological damage in diabetic mice. Moreover, Fc alleviated the accumulation of oxidative stress, the collapse of mitochondrial membrane potential and the expression of mitochondrial fission proteins, such as Drp-1 and Fis1, while increased the expression of mitochondrial fusion protein Mfn2. Fc also decreased pyroptosis-related proteins levels, such as TXNIP, NLRP3, cleaved caspase-1, and GSDMD-NT, indicating that Fc ameliorated GECs pyroptosis. In addition, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) expression was increased in diabetic group, which was partially abrogated by Fc. Our data further proved that knockdown of HMGCS2 could restrain HG-induced GECs mitochondrial dysfunction and pyroptosis. These results indicated that the inhibitory effects of Fc on mitochondrial damage and pyroptosis were associated with the suppression of HMGCS2. CONCLUSION: Taken together, this study clearly demonstrated that Fc ameliorated GECs pyroptosis and mitochondrial dysfunction partly through regulating HMGCS2 pathway, which might provide a novel drug candidate for DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ginsenosides , Mitochondrial Diseases , Rats , Mice , Animals , Diabetic Nephropathies/metabolism , Endothelial Cells , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Pyroptosis , Mitochondrial Diseases/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Cell Cycle Proteins/metabolism
6.
Adv Sci (Weinh) ; 11(14): e2306827, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308184

ABSTRACT

Cholesterol metabolism has important roles in maintaining membrane integrity and countering the development of diseases such as obesity and cancers. Cancer cells sustain cholesterol biogenesis for their proliferation and microenvironment reprograming even when sterols are abundant. However, efficacy of targeting cholesterol metabolism for cancer treatment is always compromised. Here it is shown that CSN6 is elevated in HCC and is a positive regulator of hydroxymethylglutaryl-CoA synthase 1 (HMGCS1) of mevalonate (MVA) pathway to promote tumorigenesis. Mechanistically, CSN6 antagonizes speckle-type POZ protein (SPOP) ubiquitin ligase to stabilize HMGCS1, which in turn activates YAP1 to promote tumor growth. In orthotopic liver cancer models, targeting CSN6 and HMGCS1 hinders tumor growth in both normal and high fat diet. Significantly, HMGCS1 depletion improves YAP inhibitor efficacy in patient derived xenograft models. The results identify a CSN6-HMGCS1-YAP1 axis mediating tumor outgrowth in HCC and propose a therapeutic strategy of targeting non-alcoholic fatty liver diseases- associated HCC.


Subject(s)
Carcinoma, Hepatocellular , Hydroxymethylglutaryl-CoA Synthase , Liver Neoplasms , Repressor Proteins , YAP-Signaling Proteins , Humans , Carcinoma, Hepatocellular/metabolism , Cholesterol/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Liver Neoplasms/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Tumor Microenvironment , Ubiquitin/metabolism , YAP-Signaling Proteins/metabolism
7.
J Transl Med ; 22(1): 93, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263056

ABSTRACT

BACKGROUND: Pancreatic neuroendocrine neoplasms (pNENs) are relatively rare. Hypoxia and lipid metabolism-related gene acetyl-CoA synthetase 2 (ACSS2) is involved in tumor progression, but its role in pNENs is not revealed. This study showed that hypoxia can upregulate ACSS2, which plays an important role in the occurrence and development of pNENs through lipid metabolism reprogramming. However, the precise role and mechanisms of ACSS2 in pNENs remain unknown. METHODS: mRNA and protein levels of ACSS2 and 3-hydroxy-3-methylglutaryl-CoA synthase1 (HMGCS1) were detected using quantitative real-time PCR (qRT-PCR) and Western blotting (WB). The effects of ACSS2 and HMGCS1 on cell proliferation were examined using CCK-8, colony formation assay and EdU assay, and their effects on cell migration and invasion were examined using transwell assay. The interaction between ACSS2 and HMGCS1 was verified by Co-immunoprecipitation (Co-IP) experiments, and the functions of ACSS2 and HMGCS1 in vivo were determined by nude mouse xenografts. RESULTS: We demonstrated that hypoxia can upregulate ACSS2 while hypoxia also promoted the progression of pNENs. ACSS2 was significantly upregulated in pNENs, and overexpression of ACSS2 promoted the progression of pNENs and knockdown of ACSS2 and ACSS2 inhibitor (ACSS2i) treatment inhibited the progression of pNENs. ACSS2 regulated lipid reprogramming and the PI3K/AKT/mTOR pathway in pNENs, and ACSS2 regulated lipid metabolism reprogramming through the PI3K/AKT/mTOR pathway. Co-IP experiments indicated that HMGCS1 interacted with ACSS2 in pNENs. Overexpression of HMGCS1 can reverse the enhanced lipid metabolism reprogramming and tumor-promoting effects of knockdown of ACSS2. Moreover, overexpression of HMGCS1 reversed the inhibitory effect of knockdown of ACSS2 on the PI3K/AKT/mTOR pathway. CONCLUSION: Our study revealed that hypoxia can upregulate the lipid metabolism-related gene ACSS2, which plays a tumorigenic effect by regulating lipid metabolism through activating the PI3K/AKT/mTOR pathway. In addition, HMGCS1 can reverse the oncogenic effects of ACSS2, providing a new option for therapeutic strategy.


Subject(s)
Lipid Metabolism , Pancreatic Neoplasms , Humans , Animals , Mice , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Metabolic Reprogramming , TOR Serine-Threonine Kinases , Lipids , Acetate-CoA Ligase , Hydroxymethylglutaryl-CoA Synthase
8.
Adv Biol (Weinh) ; 8(2): e2300481, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37990936

ABSTRACT

The liver is the major ketogenic organ of the body, and ketones are reported to possess favorable neuroprotective effects. This study aims to elucidate whether ketone bodies generated from the liver play a critical role in bridging the liver and spinal cord. Mice model with a contusive spinal cord injury (SCI) surgery is established, and SCI induces significant histological changes in mice liver. mRNA-seq of liver tissue shows the temporal changes of ketone bodies-related genes, ß-hydroxybutyrate dehydrogenase (BDH1) and solute carrier family 16 (monocarboxylic acid transporters), member 6 (SLC16A6). Then, an activated ketogenesis model is created with adult C57BL/6 mice receiving the tail intravenous injection of GPAAV8-TBG-Mouse-Hmgcs2-CMV- mCherry -WPRE (HMGCS2liver ) and mice receiving equal AAV8-Null being the control group (Vectorliver ). Then, the mice undergo either a contusive SCI or sham surgery. The results show that overexpression of HMG-CoA synthase (Hmgcs2) in mice liver dramatically alleviates SCI-mediated pathological changes and promotes ketogenesis in the liver. Amazingly, liver-derived ketogenesis evidently alleviates neuron apoptosis and inflammatory microglia activation and improves the recovery of motor function of SCI mice. In conclusion, a liver-spinal cord axis can be bridged via ketone bodies, and enhancing the production of the ketone body within the liver has neuroprotective effects on traumatic SCI.


Subject(s)
Neuroprotective Agents , Spinal Cord Injuries , Mice , Animals , Mice, Inbred C57BL , Ketone Bodies , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , Liver/pathology , Hydroxymethylglutaryl-CoA Synthase/genetics
9.
Exp Hematol ; 129: 104124, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898316

ABSTRACT

Erythroid terminal differentiation and maturation depend on an enormous energy supply. During periods of fasting, ketone bodies from the liver are transported into circulation and utilized as crucial fuel for peripheral tissues. However, the effects of fasting or ketogenesis on erythroid behavior remain unknown. Here, we generated a mouse model with insufficient ketogenesis by conditionally knocking out the gene encoding the hepatocyte-specific ketogenic enzyme hydroxymethylglutary-CoA synthase 2 (Hmgcs2 KO). Intriguingly, erythroid maturation was enhanced with boosted fatty acid synthesis in the bone marrow of a hepatic Hmgcs2 KO mouse under fasting conditions, suggesting that systemic ketogenesis has a profound effect on erythropoiesis. Moreover, we observed significantly activated fatty acid synthesis and mevalonate pathways along with reduced histone acetylation in immature erythrocytes under a less systemic ketogenesis condition. Our findings revealed a new insight into erythroid differentiation, in which metabolic homeostasis and histone acetylation mediated by ketone bodies are essential factors in adaptation toward nutrient deprivation and stressed erythropoiesis.


Subject(s)
Histones , Hydroxymethylglutaryl-CoA Synthase , Mice , Animals , Histones/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Ketone Bodies/genetics , Ketone Bodies/metabolism , Liver/metabolism , Fasting/physiology , Fatty Acids/metabolism
10.
Int Immunopharmacol ; 125(Pt A): 111131, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149572

ABSTRACT

BACKGROUND: Previous study found that supplements with active vitamin D3 alleviated experimental colitis. The objective of this study was to investigate the possible role of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a ketone synthase, on vitamin D3 protecting against experimental colitis. METHODS: HMGCS2 and vitamin D receptor (VDR) were measured in UC patients. The effects of vitamin D deficiency (VDD) and exogenous 1,25(OH)2D3 supplementation on experimental colitis were investigated in dextran sulfate sodium (DSS)-treated mice. DSS-induced oxidative stress and inflammation were analyzed in HT-29 cells. HMGCS2 was detected in 1,25(OH)2D3-pretreated HT-29 cells and mouse intestines. HMGCS2 was silenced to investigate the role of HMGCS2 in 1,25(OH)2D3 protecting against experimental colitis. RESULTS: Intestinal HMGCS2 downregulation was positively correlated with VDR reduction in UC patients. The in vivo experiments showed that VDD exacerbated DSS-induced colitis. By contrast, 1,25(OH)2D3 supplementation ameliorated DSS-induced colon damage, oxidative stress and inflammation. HMGCS2 was up-regulated after 1,25(OH)2D3 supplementation both in vivo and in vitro. Transfection with HMGCS2-siRNA inhibited antioxidant and anti-inflammatory effects of 1,25(OH)2D3 in DSS-treated HT-29 cells. CONCLUSION: 1,25(OH)2D3 supplementation up-regulates HMGCS2, which is responsible for 1,25(OH)2D3-mediated protection against oxidative stress and inflammation in DSS-induced colitis. These findings provide a potential therapeutic strategy for alleviating colitis-associated oxidative stress and inflammation.


Subject(s)
Colitis , Humans , Mice , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/prevention & control , Inflammation/drug therapy , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Cholecalciferol/therapeutic use , Oxidative Stress , Dextran Sulfate/pharmacology , Mice, Inbred C57BL , Hydroxymethylglutaryl-CoA Synthase
11.
BMJ Case Rep ; 16(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37931961

ABSTRACT

Mitochondrial 3-hydroxymethylglutaryl-CoA synthase-2 (HMGCS2) is the main enzyme involved in ketogenesis. It is an essential enzyme for the catalysis of ß-oxidation-derived-acetyl-CoA and acetoacetyl Co-A to produce ß-hydroxy-ß-methylglutaryl-CoA (HMG-CoA) and free coenzyme A.The deficiency of this enzyme (3-hydoxy-3-methylglutaryl-CoA synthase) is a very rare metabolic disorder with limited cases described in the literature. The manifestations of this disease include hypoketotic hypoglycaemia, metabolic acidosis, lethargy, hepatomegaly with fatty liver and encephalopathy.We report a middle childhood male who presented with hepatosplenomegaly, lymphadenopathy and bicytopenia. The case was diagnosed by the whole exome sequencing which revealed a homozygous missense variant of uncertain significance in HMGCS2 gene.


Subject(s)
Acidosis , Blood Coagulation Disorders , Child , Humans , Male , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Mitochondria/metabolism , Ketone Bodies/metabolism , Mutation, Missense
12.
Sci Rep ; 13(1): 14629, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670031

ABSTRACT

3-Hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) is the rate-limiting enzyme for ketone body synthesis, and most current studies focus on mitochondrial maturation and metabolic reprogramming. The role of HMGCS2 was evaluated in a pan-cancer multi-database using R language, and HMGCS2 was lowly expressed or not differentially expressed in all tumor tissues compared with normal tissues. Correlation analysis of clinical case characteristics, genomic heterogeneity, tumor stemness, and overall survival revealed that HMGCS2 is closely related to clear cell renal cell carcinoma (KIRC). Single-cell sequencing data from normal human kidneys revealed that HMGCS2 is specifically expressed in proximal tubular cells of normal adults. In addition, HMGCS2 is associated with tumor immune infiltration and microenvironment, and KIRC patients with low expression of HMGCS2 have worse prognosis. Finally, the results of cell counting kit 8 assays, colony formation assays, flow cytometry, and Western blot analysis suggested that upregulation of HMGCS2 increased the expression of key tumor suppressor proteins, inhibited the proliferation of clear cell renal cell carcinoma cells and promoted cell apoptosis. In conclusion, HMGCS2 is abnormally expressed in pan-cancer, may play an important role in anti-tumor immunity, and is expected to be a potential tumor prognostic marker, especially in clear cell renal cell carcinoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Adult , Humans , Hydroxymethylglutaryl-CoA Synthase , Biomarkers, Tumor , Inhibition, Psychological , Tumor Microenvironment
13.
Chem Biol Interact ; 383: 110674, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37604220

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high morbidity and mortality. Targeting abnormal cholesterol metabolism is a potential therapeutic direction. Therefore, more natural drugs targeting cholesterol in HCC need to be developed. Gypenosides (Gyp), the major constituent of Gynostemma pentaphyllum, has been demonstrated to have pharmacological properties on anti-cancer, anti-obesity, and hepatoprotective. We investigated whether Gyp, isolated and purified by our lab, could inhibit HCC progression by inhibiting cholesterol synthesis. The present research showed that Gyp inhibited proliferation and migration, and induced apoptosis in Huh-7 and Hep3B cells. Metabolomics, transcriptomics, and target prediction all suggested that lipid metabolism and cholesterol biosynthesis were the mechanisms of Gyp. Gyp could limit the production of cholesterol and target HMGCS1, the cholesterol synthesis-related protein. Downregulation of HMGCS1 could suppress the progression and abnormal cholesterol metabolism of HCC. In terms of mechanism, Gyp suppressed mevalonate (MVA) pathway mediated cholesterol synthesis by inhibiting HMGCS1 transcription factor SREBP2. And the high expression of HMGCS1 in HCC human specimens was correlated with poor clinical prognosis. The data suggested that Gyp could be a promising cholesterol-lowering drug for the prevention and treatment of HCC. And targeting SREBP2-HMGCS1 axis in MVA pathway might be an effective HCC therapeutic strategy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Gynostemma , Mevalonic Acid , Liver Neoplasms/drug therapy , Hydroxymethylglutaryl-CoA Synthase
14.
Clin Lab ; 69(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37560864

ABSTRACT

BACKGROUND: The aim was to investigate circ-HMGCS1 expression and its correlation with clinical features and survival in cervical cancer (CC) patients. METHODS: This prospective study recruited 100 patients with CC who underwent surgical resection. Circ-HMGCS1 expression was measured by RT-qPCR. Disease-free survival (DFS) and overall survival (OS) were recorded. RESULTS: Circ-HMGCS1 was upregulated in tumor tissues and had a good value in separating tumor tissues from normal tissues. Circ-HMGCS1 expression in tumor tissues was positively correlated with tumor size, lymph node metastasis, and FIGO stage. High circ-HMGCS1 expression predicted worse DFS and OS. CONCLUSIONS: circ-HMGCS1 serves as an indicator of survival and prognosis in CC patients.


Subject(s)
RNA, Circular , Uterine Cervical Neoplasms , Female , Humans , Hydroxymethylglutaryl-CoA Synthase , Lymphatic Metastasis/physiopathology , Prognosis , Prospective Studies , RNA, Circular/genetics , RNA, Circular/metabolism , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Disease-Free Survival , Adult , Middle Aged , Up-Regulation , Predictive Value of Tests
15.
Biomed Pharmacother ; 166: 115323, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37579692

ABSTRACT

Dyslipidemia is characterized by elevated levels of total cholesterol and triglycerides in serum, and has become the primary human health killer because of the major risk factors for cardiovascular diseases. Although there exist plenty of drugs for dyslipidemia, the number of patients who could benefit from lipid-lowering drugs still remains a concern. Ligustilide (Lig), a natural phthalide derivative, was reported to regulate lipid metabolic disorders. However, its specific targets and underlying molecular mechanism are still unclear. In this study, we found that Lig alleviated high fat diet-induced dyslipidemia by inhibiting cholesterol biosynthesis. Furthermore, a series of chemical biological analysis methods were used to identify its target protein for regulating lipid metabolism. Collectively, 3-hydroxy-3-methylglutaryl coenzyme A synthetase 1 (HMGCS1) of hepatic cells was identified as a target for Lig to regulate lipid metabolism. The mechanistic study confirmed that Lig irreversibly binds to Cys129 of HMGCS1 via its metabolic intermediate 6,7-epoxyligustilide, thereby reducing cholesterol synthesis and improving lipid metabolism disorders. These findings not only systematically elucidated the lipid-lowering mechanism of Lig, but also provided a new structural compound for the treatment of dyslipidemia.


Subject(s)
Coenzyme A Ligases , Dyslipidemias , Humans , Triglycerides , Dyslipidemias/drug therapy , Cholesterol , Hydroxymethylglutaryl-CoA Synthase
16.
Front Immunol ; 14: 1185517, 2023.
Article in English | MEDLINE | ID: mdl-37457727

ABSTRACT

Introduction: The Unfolded Protein Response, a mechanism triggered by the cell in response to Endoplasmic reticulum stress, is linked to inflammatory responses. Our aim was to identify novel Unfolded Protein Response-mechanisms that might be involved in triggering or perpetuating the inflammatory response carried out by the Intestinal Epithelial Cells in the context of Inflammatory Bowel Disease. Methods: We analyzed the transcriptional profile of human Intestinal Epithelial Cell lines treated with an Endoplasmic Reticulum stress inducer (thapsigargin) and/or proinflammatory stimuli. Several genes were further analyzed in colonic biopsies from Ulcerative Colitis patients and healthy controls. Lastly, we generated Caco-2 cells lacking HMGCS2 by CRISPR Cas-9 and analyzed the functional implications of its absence in Intestinal Epithelial Cells. Results: Exposure to a TLR ligand after thapsigargin treatment resulted in a powerful synergistic modulation of gene expression, which led us to identify new genes and pathways that could be involved in inflammatory responses linked to the Unfolded Protein Response. Key differentially expressed genes in the array also exhibited transcriptional alterations in colonic biopsies from active Ulcerative Colitis patients, including NKG2D ligands and the enzyme HMGCS2. Moreover, functional studies showed altered metabolic responses and epithelial barrier integrity in HMGCS2 deficient cell lines. Conclusion: We have identified new genes and pathways that are regulated by the Unfolded Protein Response in the context of Inflammatory Bowel Disease including HMGCS2, a gene involved in the metabolism of Short Chain Fatty Acids that may have an important role in intestinal inflammation linked to Endoplasmic Reticulum stress and the resolution of the epithelial damage.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Humans , Colitis, Ulcerative/pathology , Caco-2 Cells , Thapsigargin , Endoplasmic Reticulum Stress/genetics , Inflammatory Bowel Diseases/metabolism , Epithelial Cells/metabolism , Hydroxymethylglutaryl-CoA Synthase
17.
Life Sci ; 328: 121827, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37276910

ABSTRACT

AIMS: In this study, we aimed to investigate previously unrecognized lipid metabolic perturbations in tamoxifen-resistant breast cancer (BC) by conducting comprehensive metabolomics and transcriptomics analysis. We identified the role of 3-hydroxy-3-methylglutary-coenzyme-A-synthase 2 (HMGCS2), a key enzyme responsible for ketogenesis, in tamoxifen-resistant BC growth. MAIN METHODS: Comprehensive metabolomics (CE-TOFMS, LC-TOFMS) and transcriptiomics analysis were performed to characterize metabolic pathways in tamoxifen-resistant BC cells. The upregulation of HMGCS2 were verified thorugh immunohistochemistry (IHC) in clinical samples obtained from patients with recurrent BC. HMGCS2 inhibitor was discovered through surface plasmon resonance analysis, enzyme assay, and additional molecular docking studies. The effect of HMGCS2 suppression on tumor growth was studied thorugh BC xenograft model, and intratumoral lipid metabolites were analyzed via MALDI-TOFMS imaging. KEY FINDINGS: We revealed that the level of HMGCS2 was highly elevated in both tamoxifen-resistant T47D sublines (T47D/TR) and clinical refractory tumor specimens from patients with ER+ breast cancer, who had been treated with adjuvant tamoxifen. Suppression of HMGCS2 in T47D/TR resulted in the accumulation of mitochondrial reactive oxygen species (mtROS) and apoptotic cell death. Further, we identified alphitolic acid, a triterpenoid natural product, as a novel HMGCS2-specific inhibitor that elevated mtROS levels and drastically retarded the growth of T47D/TR in in vitro and in vivo experiments. SIGNIFICANCE: Enhanced ketogenesis with upregulation of HMGCS2 is a potential metabolic vulnerability of tamoxifen-resistant BC that offers a new therapeutic opportunity for treating patients with ER+ BC that are refractory to tamoxifen treatment.


Subject(s)
Breast Neoplasms , Tamoxifen , Humans , Female , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Breast Neoplasms/pathology , Hydroxymethylglutaryl-CoA Synthase/metabolism , HMGB2 Protein/metabolism , HMGB2 Protein/pharmacology , Molecular Docking Simulation , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , Apoptosis , Oxidative Stress , Lipids/pharmacology , Drug Resistance, Neoplasm
18.
Int J Oncol ; 62(3)2023 03.
Article in English | MEDLINE | ID: mdl-36734275

ABSTRACT

VIM­AS1, a cancer­specific long non­coding RNA, has been recognized as a pivotal regulator in multiple types of cancer. However, the role of VIM­AS1 in the proliferation and resistance to anti­androgen therapy of LNCaP and C4­2 prostate cancer cells remains to be determined. In the current study, gain­and­loss experiments were used to investigate the effects of VIM­AS on the proliferation and anti­androgen therapy of LNCaP and C4­2 cells. RNA sequencing, RNA pulldown and RNA immunoprecipitation were used to elucidate the underlying mechanism of VIM­AS1 driving prostate progression. It was demonstrated that VIM­AS1 was upregulated in C4­2 cells, an established castration­resistant prostate cancer (CRPC) cell line, compared with in LNCaP cells, an established hormone­sensitive prostate cancer cell line. The present study further demonstrated that VIM­AS1 was positively associated with the clinical stage of prostate cancer. Functionally, overexpression of VIM­AS1 decreased the sensitivity to enzalutamide treatment and enhanced the proliferation of LNCaP cells in vitro, whereas knockdown of VIM­AS1 increased the sensitivity to enzalutamide treatment and reduced the proliferation of C4­2 cells in vitro and in vivo. Mechanistically, 3­hydroxy­3­methylglutaryl­CoA synthase 1 (HMGCS1) was identified as one of the direct downstream targets of VIM­AS1, and VIM­AS1 promoted HMGCS1 expression by enhancing HMGCS1 mRNA stability through a VIM­AS1/insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2)/HMGCS1 RNA­protein complex. Rescue assays indicated that knockdown of HMGCS1 expression ameliorated the increase in proliferation and enzalutamide resistance of prostate cancer cells induced by VIM­AS1 overexpression. Overall, the present study determined the roles and mechanism of the VIM­AS1/IGF2BP2/HMGCS1 axis in regulating proliferation and enzalutamide sensitivity of prostate cancer cells and suggested that VIM­AS1 may serve as a novel therapeutic target for the treatment of patients with CRPC.


Subject(s)
Drug Resistance, Neoplasm , Prostatic Neoplasms, Castration-Resistant , RNA, Long Noncoding , Humans , Male , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Nitriles/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , RNA, Long Noncoding/genetics , RNA Stability
19.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835419

ABSTRACT

Estrogen-related receptor alpha (ERRα) plays an important role in endometrial cancer (EC) progression. However, the biological roles of ERRα in EC invasion and metastasis are not clear. This study aimed to investigate the role of ERRα and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) in regulating intracellular cholesterol metabolism to promote EC progression. ERRα and HMGCS1 interactions were detected by co-immunoprecipitation, and the effects of ERRα/HMGCS1 on the metastasis of EC were investigated by wound-healing and transwell chamber invasion assays. Cellular cholesterol content was measured to verify the relationship between ERRα and cellular cholesterol metabolism. Additionally, immunohistochemistry was performed to confirm that ERRα and HMGCS1 were related to EC progression. Furthermore, the mechanism was investigated using loss-of-function and gain-of-function assays or treatment with simvastatin. High expression levels of ERRα and HMGCS1 promoted intracellular cholesterol metabolism for invadopodia formation. Moreover, inhibiting ERRα and HMGCS1 expression significantly weakened the malignant progression of EC in vitro and in vivo. Our functional analysis showed that ERRα promoted EC invasion and metastasis through the HMGCS1-mediated intracellular cholesterol metabolism pathway, which was dependent on the epithelial-mesenchymal transition pathway. Our findings suggest that ERRα and HMGCS1 are potential targets to suppress EC progression.


Subject(s)
Endometrial Neoplasms , Podosomes , Female , Humans , Cell Line, Tumor , Endometrial Neoplasms/pathology , Hydroxymethylglutaryl-CoA Synthase , Podosomes/physiology , Receptors, Estrogen/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , ERRalpha Estrogen-Related Receptor
20.
EMBO Mol Med ; 15(2): e16581, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36629048

ABSTRACT

Mitochondria comprise the central metabolic hub of cells and their imbalance plays a pathogenic role in chronic kidney disease (CKD). Here, we studied Lon protease 1 (LONP1), a major mitochondrial protease, as its role in CKD pathogenesis is unclear. LONP1 expression was decreased in human patients and mice with CKD, and tubular-specific Lonp1 overexpression mitigated renal injury and mitochondrial dysfunction in two different models of CKD, but these outcomes were aggravated by Lonp1 deletion. These results were confirmed in renal tubular epithelial cells in vitro. Mechanistically, LONP1 downregulation caused mitochondrial accumulation of the LONP1 substrate, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), which disrupted mitochondrial function and further accelerated CKD progression. Finally, computer-aided virtual screening was performed, which identified a novel LONP1 activator. Pharmacologically, the LONP1 activator attenuated renal fibrosis and mitochondrial dysfunction. Collectively, these results imply that LONP1 is a promising therapeutic target for treating CKD.


Subject(s)
Protease La , Renal Insufficiency, Chronic , Animals , Humans , Mice , ATP-Dependent Proteases/metabolism , Epithelial Cells/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Kidney/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protease La/metabolism , Renal Insufficiency, Chronic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...