Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
Molecules ; 29(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257267

ABSTRACT

In our search for bioactive components, various chromatographic separations of the organic fractions from Filipendula glaberrima leaves led to the isolation of a new ellagitannin and a triterpenoid, along with 26 known compounds. The structures of the isolates were determined based on their spectroscopic properties and chemical evidence, which were then evaluated for their antioxidant activities, inhibitory activities on 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and foam cell formation in THP-1 cells to prevent atherosclerosis. Rugosin B methyl ester (1) showed the best HMG-CoA reductase inhibition and significantly reduced ox-low-density lipoprotein-induced THP-1 macrophage-derived foam cell formation at 25 µM. In addition, no cytotoxicity was observed in THP-1 cells at 50 µg/mL of all extracts in the macrophage foam cell formation assay. Therefore, F. glaberrima extract containing 1 is promising in the development of dietary supplements due to its potential behavior as a novel source of nutrients for preventing and treating atherosclerosis.


Subject(s)
Acyl Coenzyme A , Atherosclerosis , Filipendula , Foam Cells , Antioxidants/pharmacology , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent , Macrophages , Atherosclerosis/drug therapy , Plant Leaves
2.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069194

ABSTRACT

Candida glabrata and Candida albicans, the most frequently isolated candidiasis species in the world, have developed mechanisms of resistance to treatment with azoles. Among the clinically used antifungal drugs are statins and other compounds that inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), resulting in decreased growth and ergosterol levels in yeasts. Ergosterol is a key element for the formation of the yeast cell membrane. However, statins often cause DNA damage to yeast cells, facilitating mutation and drug resistance. The aim of the current contribution was to synthesize seven series of compounds as inhibitors of the HMGR enzyme of Candida ssp., and to evaluate their effect on cellular growth, ergosterol synthesis and generation of petite mutants of C. glabrata and C. albicans. Compared to the reference drugs (fluconazole and simvastatin), some HMGR inhibitors caused lower growth and ergosterol synthesis in the yeast species and generated fewer petite mutants. Moreover, heterologous expression was achieved in Pichia pastoris, and compounds 1a, 1b, 6g and 7a inhibited the activity of recombinant CgHMGR and showed better binding energy values than for α-asarone and simvastatin. Thus, we believe these are good candidates for future antifungal drug development.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Candida albicans , Candida glabrata/genetics , Antifungal Agents/pharmacology , Simvastatin/pharmacology , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent , Oxidoreductases , Ergosterol/metabolism , Microbial Sensitivity Tests
3.
PLoS One ; 17(3): e0264646, 2022.
Article in English | MEDLINE | ID: mdl-35239727

ABSTRACT

The assigned work was aimed to examine the capability of phytoconstituents of an aqueous seed extract of Acacia senegal (L.) Willd to inhibit HMG-CoA reductase and regression of the atherosclerotic plaque. The chemical fingerprinting of the test extract was assessed by LC-MS/MS. Consequently, the analyses of in-vitro, in-vivo, and in-silico were executed by using the standard protocols. The in-vitro assessment of the test extract revealed 74.1% inhibition of HMG-CoA reductase. In-vivo assessments of the test extract indicated that treated hypercholesterolemic rabbits exhibited a significant (P≤0.001) amelioration in the biomarker indices of the dyslipidaemia i.e., atherogenic index, Castelli risk index(I&II), atherogenic coefficient along with lipid profile. Subsequently, significant reductions were observed in the atherosclerotic plaque and antioxidant levels. The in-silico study of molecular docking shown interactions capabilities of the leading phytoconstituents of the test extract i.e., eicosanoic acid, linoleic acid, and flavan-3-ol with target protein of HMG-CoA reductase. The values of RSMF and potential energy of top docked complexes were show significant interactions. Accordingly, the free energy of solvation, interaction angle, radius of gyration and SASA were shown significant stabilities of top docked complex. The cumulative data of results indicate phytoconstituents of an aqueous seed extract of Acacia senegal have capabilities to inhibit the HMG-CoA reductase and improve the levels of antioxidants.


Subject(s)
Acacia , Dyslipidemias , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Plaque, Atherosclerotic , Acacia/metabolism , Acyl Coenzyme A , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, Liquid , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rabbits , Senegal , Tandem Mass Spectrometry
4.
J Plant Physiol ; 267: 153543, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34678642

ABSTRACT

Autoregulation of nodulation (AON) plays a central role in nodulation by inhibiting the formation of excess number of legume root nodules. In this study, the effect of hydroxymethylglutaryl-coenzyme A reductase 1 (GmHMGR1) gene expression on nodulation and the AON system in Glycine max (L.) Merr was investigated. Wild-type soybean (cultivar Bragg) and its near-isogenic supernodulating mutant (nitrate tolerant symbiotic) nts1007 were selected to identify the expression pattern of this gene in rootlets after inoculation by its microsymbiont Bradyrhizobium. For further analysis, the full length of GmHMGR1 and its promoter were cloned after amplification by inverse-PCR and BAC library screening. Also, we constructed an intron hairpin RNA interference (ihpRNAi) and a GmHMGR1 promoter: ß-glucuronidase fusion constructs, consequently for suppression of GmHMGR1 and histochemical analysis in transgenic soybean hairy roots induced by Agrobacterium rhizogenes strain K599. The GmHMGR1 gene was functional during the early stages of nodulation with the AON system having a negative effect on GmHMGR1 expression and nodule formation in wild-type rootlets. GmHMGR1 was particularly expressed in the developing phloem within the root, nodules and nodule lenticels. Expression of GmHMGR1 in transgenic hairy roots was suppressed by RNAi silencing approximately 85% as compared to empty vector controls. This suggests that the GmHMGR1 gene has an important role in triggering nodule formation as its suppression caused a reduction of nodule formation in nts mutant lines with a deficient AON system.


Subject(s)
Glycine max , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent , Plant Proteins , Plant Root Nodulation , Gene Expression Regulation, Plant , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation/genetics , Plants, Genetically Modified/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Glycine max/genetics , Glycine max/metabolism
5.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502042

ABSTRACT

The membrane domain of eukaryotic HMG-CoA reductase (HMGR) has the conserved capacity to induce endoplasmic reticulum (ER) proliferation and membrane association into Organized Smooth Endoplasmic Reticulum (OSER) structures. These formations develop in response to overexpression of particular proteins, but also occur naturally in cells of the three eukaryotic kingdoms. Here, we characterize OSER structures induced by the membrane domain of Arabidopsis HMGR (1S domain). Immunochemical confocal and electron microscopy studies demonstrate that the 1S:GFP chimera co-localizes with high levels of endogenous HMGR in several ER compartments, such as the ER network, the nuclear envelope, the outer and internal membranes of HMGR vesicles and the OSER structures, which we name ER-HMGR domains. After high-pressure freezing, ER-HMGR domains show typical crystalloid, whorled and lamellar ultrastructural patterns, but with wide heterogeneous luminal spaces, indicating that the native OSER is looser and more flexible than previously reported. The formation of ER-HMGR domains is reversible. OSER structures grow by incorporation of ER membranes on their periphery and progressive compaction to the inside. The ER-HMGR domains are highly dynamic in their formation versus their disassembly, their variable spherical-ovoid shape, their fluctuating borders and their rapid intracellular movement, indicating that they are not mere ER membrane aggregates, but active components of the eukaryotic cell.


Subject(s)
Arabidopsis Proteins/metabolism , Endoplasmic Reticulum/ultrastructure , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/metabolism , Arabidopsis , Arabidopsis Proteins/chemistry , Endoplasmic Reticulum/metabolism , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/chemistry , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Protein Domains
6.
Int J Biol Macromol ; 164: 1328-1341, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32726652

ABSTRACT

Tocotrienols (T3) are vitamin E components that inhibit 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), a primary target for cholesterol management. T3 was extracted from rice bran (RBE) using ultrasonic energy keeping solute: solvent ratio, power and time on specific energy and T3 concentration as responses as per Box-Behnken Design. The lowest specific energy (52.38 ± 0.14 J mL-1) uptake by the sample was most effective in enhancing the concentration of T3 in RBE (199.34 ± 0.63 µg mL-1). In vitro HMGR kinetics and in silico binding interactions of the identified α-, δ- and γ-T3 fractions were studied. Enzyme kinetic studies revealed an uncompetitive mode of inhibition by α-T3, γ-T3, and RBE and a mixed mode of inhibition for δ-T3. γ-T3 showed lowest IC50 concentration (11.33 µg mL-1) followed by α-T3 (16.73 µg mL-1), RBE (20.45 µg mL-1) and δ-T3 (23.16 µg mL-1). Molecular docking studies highlighted the hydrogen bonding of δ-T3 with Gln766 and α- and γ-T3 with Met655 and Val805 amino acid residues at the NADPH binding site of HMGR. Results indicate the potential use of T3 enriched RBE optimally extracted using ultrasound as potent HMGR inhibitor.


Subject(s)
Dietary Fiber/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/chemistry , Oryza/chemistry , Tocotrienols/chemistry , Ultrasonics , Binding Sites , Cholesterol , Chromatography, High Pressure Liquid , Fatty Acids, Nonesterified/chemistry , Imaging, Three-Dimensional , Inhibitory Concentration 50 , Kinetics , Ligands , Molecular Conformation , Molecular Docking Simulation , Oxidoreductases , Peroxides , Protein Binding , Solvents , Sonication , Vitamin E
7.
Plant Physiol Biochem ; 146: 269-277, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31783202

ABSTRACT

3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) is the first rate-limiting enzyme regulating the synthesis of terpenoids upstream of the mevalonate (MVA) pathway. In higher plants, members of the HMGR genes families play an important role in plant growth and development and in response to various environmental stresses. In the present study, a novel HMGR gene, designated MdHMGR5, was isolated from apple (Malus domestica L.) and characterized. Expression of MdHMGR5 enhanced the activity of HMGR enzyme in transgenic Arabidopsis thaliana L. plants. Under oxidative stress, transgenic A. thaliana plants over-expressing MdHMGR5 had a higher germination rate, a longer main root length, higher chlorophyll and proline content, and higher activities of antioxidant enzymes. On the other hand, malondialdehyde (MDA) content, relative conductivity and reactive oxygen species (ROS) production rate were significantly lower than in wild type plants. These results indicated that over-expression of MdHMGR5 enhanced plant tolerance to oxidative stress by scavenging ROS in transgenic plants. Over-expression of MdHMGR5 also affected the expression levels of genes in mevalonic acid and 2C-methyl-D-erythritol 4-phosphate (MVA and MEP) pathways of A. thaliana plants. These results indicate that over-expression of MdHMGR5 enhances tolerance to oxidative stress by maintaining photosynthesis and scavenging ROS in transgenic A. thaliana plants.


Subject(s)
Arabidopsis , Malus , Acyl Coenzyme A , Arabidopsis Proteins , Gene Expression Regulation, Plant , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent , Oxidative Stress , Plants, Genetically Modified
8.
Zhongguo Zhong Yao Za Zhi ; 44(5): 942-947, 2019 Mar.
Article in Chinese | MEDLINE | ID: mdl-30989853

ABSTRACT

To research the correlation between accumulation of triterpenoids and expression of key enzymes genes in triterpenoid biosynthesis of Alisma orientale,the study utilized UPLC-MS/MS method to detect eight triterpenoids content in the tuber of A. orientale from different growth stages,including alisol A,alisol A 24 acetate,alisol B,alisol B 23 acetate,alisol C 23 acetate,alisol F,alisol F 24 acetate and alisol G,and then the Real time quantitative PCR was used to analyze the expression of key enzymes genes HMGR and FPPS in triterpenoid biosynthesis. Correlation analysis showed that there was a significant positive relation between the total growth of these eight triterpenoids and the average relative expression of HMGR and FPPS(HMGR: r = 0. 998,P<0. 01; FPPS: r = 0. 957,P<0. 05),respectively. Therefore,the study preliminarily determined that HMGR and FPPS genes could regulate the biosynthesis of triterpenoids in A. orientale,which laid a foundation for further research on the biosynthesis and regulation mechanism of triterpenoids in A. orientale.


Subject(s)
Alisma/chemistry , Alisma/genetics , Geranyltranstransferase/genetics , Triterpenes/analysis , Chromatography, Liquid , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Phytochemicals/analysis , Plant Extracts , Plant Proteins/genetics , Plant Tubers/chemistry , Tandem Mass Spectrometry
9.
J Exp Bot ; 70(8): 2325-2338, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30753728

ABSTRACT

Sucrose non-fermenting 1 (SNF1)-related protein kinase 1.1 (SnRK1.1; also known as KIN10 or SnRK1α) has been identified as the catalytic subunit of the complex SnRK1, the Arabidopsis thaliana homologue of a central integrator of energy and stress signalling in eukaryotes dubbed AMPK/Snf1/SnRK1. A nuclear localization of SnRK1.1 has been previously described and is in line with its function as an integrator of energy and stress signals. Here, using two biological models (Nicotiana benthamiana and Arabidopsis thaliana), native regulatory sequences, different microscopy techniques, and manipulations of cellular energy status, it was found that SnRK1.1 is localized dynamically between the nucleus and endoplasmic reticulum (ER). This distribution was confirmed at a spatial and temporal level by co-localization studies with two different fluorescent ER markers, one of them being the SnRK1.1 phosphorylation target HMGR. The ER and nuclear localization displayed a dynamic behaviour in response to perturbations of the plastidic electron transport chain. These results suggest that an ER-associated SnRK1.1 fraction might be sensing the cellular energy status, being a point of crosstalk with other ER stress regulatory pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Nucleus/metabolism , Endoplasmic Reticulum/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/cytology , Chloroplasts/metabolism , Electron Transport , Energy Metabolism , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Plants, Genetically Modified/cytology , Plants, Genetically Modified/metabolism , Signal Transduction/physiology , Stress, Physiological , Nicotiana/cytology , Nicotiana/metabolism , Transcription Factors/metabolism
11.
J Biomol Struct Dyn ; 37(16): 4374-4383, 2019 10.
Article in English | MEDLINE | ID: mdl-30470158

ABSTRACT

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is mainly involved in the regulation of cholesterol biosynthesis. HMGR catalyses the reduction of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate at the expense of two NADPH molecules in a two-step reversible reaction. In the present study, we constructed a model of human HMGR (hHMGR) to explore the conformational changes of HMGR in complex with HMG-CoA and NADPH. In addition, we analysed the complete sequence of the Flap domain using molecular dynamics (MD) simulations and principal component analysis (PCA). The simulations revealed that the Flap domain plays an important role in catalytic site activation and substrate binding. The apo form of hHMGR remained in an open state, while a substrate-induced closure of the Flap domain was observed for holo hHMGR. Our study also demonstrated that the phosphorylation of Ser872 induces significant conformational changes in the Flap domain that lead to a complete closure of the active site, suggesting three principal conformations for the first stage of hHMGR catalysis. Our results were consistent with previous proposed models for the catalytic mechanism of hHMGR. Communicated by Ramaswamy H. Sarma.


Subject(s)
Computational Biology , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/chemistry , Protein Binding/genetics , Protein Conformation , Amino Acid Sequence/genetics , Binding Sites , Catalytic Domain/genetics , Humans , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/ultrastructure , Phosphorylation/genetics , Substrate Specificity
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-777534

ABSTRACT

To research the correlation between accumulation of triterpenoids and expression of key enzymes genes in triterpenoid biosynthesis of Alisma orientale,the study utilized UPLC-MS/MS method to detect eight triterpenoids content in the tuber of A. orientale from different growth stages,including alisol A,alisol A 24 acetate,alisol B,alisol B 23 acetate,alisol C 23 acetate,alisol F,alisol F 24 acetate and alisol G,and then the Real time quantitative PCR was used to analyze the expression of key enzymes genes HMGR and FPPS in triterpenoid biosynthesis. Correlation analysis showed that there was a significant positive relation between the total growth of these eight triterpenoids and the average relative expression of HMGR and FPPS(HMGR: r = 0. 998,P<0. 01; FPPS: r = 0. 957,P<0. 05),respectively. Therefore,the study preliminarily determined that HMGR and FPPS genes could regulate the biosynthesis of triterpenoids in A. orientale,which laid a foundation for further research on the biosynthesis and regulation mechanism of triterpenoids in A. orientale.


Subject(s)
Alisma , Chemistry , Genetics , Chromatography, Liquid , Geranyltranstransferase , Genetics , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent , Genetics , Phytochemicals , Plant Extracts , Plant Proteins , Genetics , Plant Tubers , Chemistry , Tandem Mass Spectrometry , Triterpenes
13.
Monoclon Antib Immunodiagn Immunother ; 37(3): 147-152, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29901419

ABSTRACT

Incubation of B10.MLM cells, a cell line of alveolar macrophages, with lycopene, a carotenoid, leads to an increase of lycopene content in their microsomal fraction. That increase was higher and developed faster when the cells were incubated with immune complexes formed by lycopene and mAb 6B9 (L-6B9 mAb), a monoclonal hapten-specific antibody raised against lycopene, as compared with dimethyl sulfoxide (DMSO)-dissolved lycopene (DMSO-L). Moreover, incubation of B10.MLM cells with L-6B9 mAb complexes was accompanied by more efficient accumulation of lipid droplets in the cultured cells and more significant inhibition of mRNA for 3-hydroxy-3-methylglutaryl-coenzyme (HMG-CoA) reductase, a rate-limiting enzyme of cholesterol biosynthesis known to be targeted by lycopene. Additionally, there was a better inhibition of Chlamydia trachomatis infection in B10.MLM cells infected with the pathogen and incubated thereafter with L-6B9 mAb complexes as compared with DMSO-L. Altogether, the results suggest that association with monoclonal antibody promotes intracellular delivery of lycopene in cultured cells possibly through Fc-receptor mediated uptake.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antibodies, Monoclonal/chemistry , Anticholesteremic Agents/pharmacology , Antigen-Antibody Complex/pharmacology , Carotenoids/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Anti-Bacterial Agents/metabolism , Anticholesteremic Agents/metabolism , Antigen-Antibody Complex/metabolism , Biological Transport , Carotenoids/metabolism , Cell Line , Chlamydia trachomatis/drug effects , Chlamydia trachomatis/growth & development , Cholesterol/biosynthesis , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/metabolism , Lipid Droplets/drug effects , Lycopene , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , Microsomes/drug effects , Microsomes/metabolism , Microsomes/microbiology , Protein Binding
14.
J Photochem Photobiol B ; 183: 164-171, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29709801

ABSTRACT

The effect of light-emitting diodes (LEDs) on the production of secondary metabolites in medicinal plants and hairy roots is receiving much attention. The roots and rhizomes of the traditional Chinese medicinal plant Salvia miltiorrhiza Bunge are widely used for treating cardiovascular and cerebrovascular diseases. The main components are liposoluble tanshinones and hydrophilic phenolic acids. Moreover, hairy root culture of S. miltiorrhiza has been used in research of valuable plant-derived secondary metabolites. In this study, we examined the effect of LEDs with different combinations of wavelengths on the content of the main components in hairy roots of S. miltiorrhiza. Tanshinone IIA (TSIIA) content in hairy roots was significantly decreased with all light treatments containing blue light by >60% and was 9 times lower with LED treatment duration changed from 1 week to 3 weeks. HMGR, DXS2, DXR, GGPPS, CPS and CYP76AH1 genes involved in the tanshinone biosynthesis pathway were downregulated by blue light. Furthermore, light quality treatments have different effect on the accumulation of phenolic acids in hairy roots of S. miltiorrhiza. The light treatments 6R3B, 6B3IR, 7RGB and 2R6BUV for 3 weeks could increase rosmarinic acid (RA) content slightly but not salvianolic acid B (SAB) content. Different secondary metabolite contents could be regulated by different wavelength combinations of LEDs. Blue light could reduce TSIIA content in hairy roots of S. miltiorrhiza via gene regulation.


Subject(s)
Abietanes/metabolism , Gene Expression Regulation, Plant/radiation effects , Light , Salvia miltiorrhiza/metabolism , Abietanes/analysis , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Benzofurans/analysis , Benzofurans/metabolism , Biomass , Chromatography, High Pressure Liquid , Farnesyltranstransferase/genetics , Farnesyltranstransferase/metabolism , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Roots/radiation effects , Salvia miltiorrhiza/growth & development , Salvia miltiorrhiza/radiation effects
15.
Plant Physiol Biochem ; 127: 414-424, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29680705

ABSTRACT

Natural rubber (cis-1, 4-polyisoprene) is being produced from bark laticifer cells of Hevea brasiliensis and the popular high latex yielding Indian rubber clones are easily prone to onset of tapping panel dryness syndrome (TPD) which is considered as a physiological syndrome affecting latex production either partially or completely. This report describes an efficient protocol for development of transgenic rubber plants by over-expression of 3-hydroxy 3-methylglutaryl Co-enzyme A reductase 1 (hmgr1) gene which is considered as rate limiting factor for latex biosynthesis via Agrobacterium-mediated transformation. The pBIB plasmid vector containing hmgr1 gene cloned under the control of a super-promoter was used for genetic transformation using embryogenic callus. Putatively transgenic cell lines were obtained on selection medium and produced plantlets with 44% regeneration efficiency. Transgene integration was confirmed by PCR amplification of 1.8 kb hmgr1 and 0.6 kb hpt genes from all putatively transformed callus lines as well as transgenic plants. Southern blot analysis showed the stable integration and presence of transgene in the transgenic plants. Over expression of hmgr1 transgene was determined by Northern blot hybridization, semi-quantitative PCR and real-time PCR (qRT-PCR) analysis. Accumulation of hmgr1 mRNA transcripts was more abundant in transgenic plants than control. Increased level of photosynthetic pigments, protein contents and HMGR enzyme activity was also noticed in transgenic plants over control. Interestingly, the latex yield was significantly enhanced in all transgenic plants compared to the control. The qRT-PCR results exhibit that the hmgr1 mRNA transcript levels was 160-fold more abundance in transgenic plants over untransformed control. These results altogether suggest that there is a positive correlation between latex yield and accumulation of mRNA transcripts level as well as HMGR enzyme activity in transgenic rubber plants. It is presumed that there is a possibility for enhanced level of latex biosynthesis in transgenic plants as the level of mRNA transcripts and HMGR enzyme activity is directly correlated with latex yield in rubber tree. Further, the present results clearly suggest that the quantification of HMGR enzyme activity in young seedlings will be highly beneficial for early selection of high latex yielding plants in rubber breeding programs.


Subject(s)
Hevea , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent , Latex/biosynthesis , Plant Proteins , Plants, Genetically Modified , Hevea/genetics , Hevea/metabolism , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/biosynthesis , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
16.
Molecules ; 23(3)2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29509695

ABSTRACT

As the main bioactive constituents of Panax species, ginsenosides possess a wide range of notable medicinal effects such as anti-cancer, anti-oxidative, antiaging, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, the increasing medical demand for ginsenosides cannot be met due to the limited resource of Panax species and the low contents of ginsenosides. In recent years, biotechnological approaches have been utilized to increase the production of ginsenosides by regulating the key enzymes of ginsenoside biosynthesis, while synthetic biology strategies have been adopted to produce ginsenosides by introducing these genes into yeast. This review summarizes the latest research progress on cloning and functional characterization of key genes dedicated to the production of ginsenosides, which not only lays the foundation for their application in plant engineering, but also provides the building blocks for the production of ginsenosides by synthetic biology.


Subject(s)
Ginsenosides/biosynthesis , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Biosynthetic Pathways/genetics , Cloning, Molecular , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Ginsenosides/chemistry , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/metabolism , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Squalene Monooxygenase/genetics , Squalene Monooxygenase/metabolism
17.
Molecules ; 23(2)2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29364830

ABSTRACT

Terpenes are the largest and most diverse class of secondary metabolites in plants and play a very important role in plant adaptation to environment. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a rate-limiting enzyme in the process of terpene biosynthesis in the cytosol. Previous study found the HMGR genes underwent gene expansion in Gossypium raimondii, but the characteristics and evolution of the HMGR gene family in Gossypium genus are unclear. In this study, genome-wide identification and comparative study of HMGR gene family were carried out in three Gossypium species with genome sequences, i.e., G. raimondii, Gossypium arboreum, and Gossypium hirsutum. In total, nine, nine and 18 HMGR genes were identified in G. raimondii, G. arboreum, and G. hirsutum, respectively. The results indicated that the HMGR genes underwent gene expansion and a unique gene cluster containing four HMGR genes was found in all the three Gossypium species. The phylogenetic analysis suggested that the expansion of HMGR genes had occurred in their common ancestor. There was a pseudogene that had a 10-bp deletion resulting in a frameshift mutation and could not be translated into functional proteins in G. arboreum and the A-subgenome of G. hirsutum. The expression profiles of the two pseudogenes showed that they had tissue-specific expression. Additionally, the expression pattern of the pseudogene in the A-subgenome of G. hirsutum was similar to its paralogous gene in the D-subgenome of G. hirsutum. Our results provide useful information for understanding cytosolic terpene biosynthesis in Gossypium species.


Subject(s)
Genome, Plant , Genome-Wide Association Study , Genomics , Gossypium/genetics , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Multigene Family , Amino Acid Motifs , Chromosome Mapping , Conserved Sequence , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genome-Wide Association Study/methods , Genomics/methods , Gossypium/classification , Gossypium/metabolism , Phylogeny , Pseudogenes , Terpenes/metabolism
18.
Biochemistry ; 57(5): 654-662, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29224355

ABSTRACT

The key mevalonate pathway enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR) uses the cofactor NAD(P)H to reduce HMG-CoA to mevalonate in the production of countless metabolites and natural products. Although inhibition of HMGR by statin drugs is well-understood, several mechanistic details of HMGR catalysis remain unresolved, and the structural basis for the wide range of cofactor specificity for either NADH or NADPH among HMGRs from different organisms is also unknown. Here, we present crystal structures of HMGR from Streptococcus pneumoniae (SpHMGR) alongside kinetic data of the enzyme's cofactor preferences. Our structure of SpHMGR bound with its kinetically preferred NADPH cofactor suggests how NADPH-specific binding and recognition are achieved. In addition, our structure of HMG-CoA-bound SpHMGR reveals large, previously unknown conformational domain movements that may control HMGR substrate binding and enable cofactor exchange without intermediate release during the catalytic cycle. Taken together, this work provides critical new insights into both the HMGR reaction mechanism and the structural basis of cofactor specificity.


Subject(s)
Acyl Coenzyme A/metabolism , Bacterial Proteins/chemistry , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/chemistry , NADP/metabolism , Streptococcus pneumoniae/enzymology , Bacterial Proteins/metabolism , Binding Sites , Coenzymes/metabolism , Crystallography, X-Ray , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/metabolism , Kinetics , Models, Molecular , NAD/metabolism , Oxidation-Reduction , Protein Binding , Protein Conformation , Protein Domains , Recombinant Proteins/chemistry , Structure-Activity Relationship , Substrate Specificity
19.
Sci Rep ; 7(1): 14991, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118396

ABSTRACT

Combinatorial design is an effective strategy to acquire the optimal solution in complex systems. In this study, the combined effects of pathway combination, promoters' strength fine-tuning, copy numbers and integration locus variations caused by δ-integration were explored in Saccharomyces cerevisiae using geranylgeraniol (GGOH) production as an example. Two GGOH biosynthetic pathway branches were constructed. In branch 1, GGOH was converted from isopentenyl pyrophosphate (IPP) and farnesyl diphosphate (FPP). In branch 2, GGOH was derived directly from IPP and dimethylallyl pyrophosphate (DMAPP). Regulated by 10 combinations of 11 diverse promoters, a fusion gene BTS1-ERG20, a heterologous geranylgeranyl diphosphate synthase from Sulfolobus acidocaldarius (GGPPSsa) and an endogenous N-terminal truncated gene 3-hydroxyl-3-methylglutaryl-CoA reductase isoenzyme 1 (tHMGR), were incorporated into yeast by δ-integration, leading to a series of GGOH producing strains with yields ranging from 18.45 mg/L to 161.82 mg/L. The yield was further increased to 437.52 mg/L by optimizing the fermentation medium. Consequently, the GGOH yield reached 1315.44 mg/L in a 5-L fermenter under carbon restriction strategy. Our study not only opens large opportunities for downstream diterpenes overproductions, but also demonstrates that pathway optimization based on combinatorial design is a promising strategy to engineer microbes for overproducing natural products with complex structure.


Subject(s)
Bacterial Proteins/metabolism , Diterpenes/metabolism , Metabolic Engineering/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Bacterial Proteins/genetics , Biosynthetic Pathways/genetics , Farnesyltranstransferase/genetics , Farnesyltranstransferase/metabolism , Hemiterpenes/metabolism , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/metabolism , Organophosphorus Compounds/metabolism , Polyisoprenyl Phosphates/metabolism , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Sesquiterpenes/metabolism
20.
PLoS One ; 12(8): e0182243, 2017.
Article in English | MEDLINE | ID: mdl-28771546

ABSTRACT

Hedera helix L. is an important traditional medicinal plant in Europe. The main active components are triterpenoid saponins, but none of the potential enzymes involved in triterpenoid saponins biosynthesis have been discovered and annotated. Here is reported the first study of global transcriptome analyses using the Illumina HiSeq™ 2500 platform for H. helix. In total, over 24 million clean reads were produced and 96,333 unigenes were assembled, with an average length of 1385 nt; more than 79,085 unigenes had at least one significant match to an existing gene model. Differentially Expressed Gene analysis identified 6,222 and 7,012 unigenes which were expressed either higher or lower in leaf samples when compared with roots. After functional annotation and classification, two pathways and 410 unigenes related to triterpenoid saponins biosynthesis were discovered. The accuracy of these de novo sequences was validated by RT-qPCR analysis and a RACE clone. These data will enrich our knowledge of triterpenoid saponin biosynthesis and provide a theoretical foundation for molecular research on H. helix.


Subject(s)
Hedera/genetics , Plant Leaves/genetics , Plant Roots/genetics , Saponins/biosynthesis , Saponins/genetics , Transcriptome , Amino Acid Sequence , DNA, Complementary/chemistry , DNA, Complementary/metabolism , Gene Expression Profiling , Hedera/metabolism , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/chemistry , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/metabolism , Plant Leaves/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , RNA, Plant/isolation & purification , RNA, Plant/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...