Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 266(Pt 1): 131012, 2024 May.
Article in English | MEDLINE | ID: mdl-38522709

ABSTRACT

Medicinal tropane alkaloids (TAs), including hyoscyamine, anisodamine and scopolamine, are essential anticholinergic drugs specifically produced in several solanaceous plants. Atropa belladonna is one of the most important medicinal plants that produces TAs. Therefore, it is necessary to cultivate new A. belladonna germplasm with the high content of TAs. Here, we found that the levels of TAs were elevated under low nitrogen (LN) condition, and identified a LN-responsive bHLH transcription factor (TF) of A. belladonna (named LNIR) regulating the biosynthesis of TAs. The expression level of LNIR was highest in secondary roots where TAs are synthesized specifically, and was significantly induced by LN. Further research revealed that LNIR directly activated the transcription of hyoscyamine 6ß-hydroxylase gene (H6H) by binding to its promoter, which converts hyoscyamine into anisodamine and subsequently epoxidizes anisodamine to form scopolamine. Overexpression of LNIR upregulated the expression levels of TA biosynthesis genes and consequently led to the increased production of TAs. In summary, we functionally identified a LN-responsive bHLH gene that facilitated the development of A. belladonna with high-yield TAs under the decreased usage of nitrogen fertilizer.


Subject(s)
Atropa belladonna , Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Plant , Mixed Function Oxygenases , Nitrogen , Tropanes , Nitrogen/metabolism , Gene Expression Regulation, Plant/drug effects , Atropa belladonna/metabolism , Atropa belladonna/genetics , Tropanes/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Medicinal/metabolism , Plants, Medicinal/genetics , Hyoscyamine/metabolism , Hyoscyamine/genetics , Scopolamine/metabolism , Promoter Regions, Genetic
2.
Nat Commun ; 14(1): 8457, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38114555

ABSTRACT

Hyoscyamine and scopolamine (HS), two valuable tropane alkaloids of significant medicinal importance, are found in multiple distantly related lineages within the Solanaceae family. Here we sequence the genomes of three representative species that produce HS from these lineages, and one species that does not produce HS. Our analysis reveals a shared biosynthetic pathway responsible for HS production in the three HS-producing species. We observe a high level of gene collinearity related to HS synthesis across the family in both types of species. By introducing gain-of-function and loss-of-function mutations at key sites, we confirm the reduced/lost or re-activated functions of critical genes involved in HS synthesis in both types of species, respectively. These findings indicate independent and repeated losses of the HS biosynthesis pathway since its origin in the ancestral lineage. Our results hold promise for potential future applications in the artificial engineering of HS biosynthesis in Solanaceae crops.


Subject(s)
Hyoscyamine , Solanaceae , Solanaceae/genetics , Solanaceae/metabolism , Biosynthetic Pathways/genetics , Tropanes/metabolism , Scopolamine/metabolism , Hyoscyamine/genetics , Hyoscyamine/analysis , Hyoscyamine/metabolism
3.
Appl Microbiol Biotechnol ; 107(11): 3459-3478, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37099059

ABSTRACT

The tropane alkaloids hyoscyamine, anisodamine, and scopolamine are extensively used medicines. In particular, scopolamine has the greatest value in the market. Hence, strategies to enhance its production have been explored as an alternative to traditional field-plant cultivation. In this work, we developed biocatalytic strategies for the transformation of hyoscyamine into its products utilizing a recombinant Hyoscyamine 6ß-hydroxylase (H6H) fusion protein to the chitin-binding domain of the chitinase A1 from Bacillus subtilis (ChBD-H6H). Catalysis was carried out in batch, and recycling of H6H constructions was performed via affinity-immobilization, glutaraldehyde crosslinking, and adsorption-desorption of the enzyme to different chitin matrices. ChBD-H6H utilized as free enzyme achieved complete conversion of hyoscyamine in 3- and 22-h bioprocesses. Chitin particles demonstrated to be the most convenient support for ChBD-H6H immobilization and recycling. Affinity-immobilized ChBD-H6H operated in a three-cycle bioprocess (3 h/cycle, 30 °C) yielded in the first and third reaction cycle 49.8% and 22.2% of anisodamine and 0.7% and 0.3% of scopolamine, respectively. However, glutaraldehyde crosslinking decreased enzymatic activity in a broad range of concentrations. Instead, the adsorption-desorption approach equaled the maximal conversion of the free enzyme in the first cycle and retained higher enzymatic activity than the carrier-bound strategy along the consecutive cycles. The adsorption-desorption strategy permitted the reutilization of the enzyme in a simple and economical manner while exploiting the maximal conversion activity displayed by the free enzyme. This approach is valid since other enzymes present in the E. coli lysate do not interfere with the reaction. KEY POINTS: • A biocatalytic system for anisodamine and scopolamine production was developed. • Affinity-immobilized ChBD-H6H in ChP retained catalytic activity. • Enzyme-recycling by adsorption-desorption strategies improves product yields.


Subject(s)
Hyoscyamine , Scopolamine , Scopolamine/metabolism , Hyoscyamine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glutaral
4.
Nat Commun ; 14(1): 1446, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922496

ABSTRACT

Tropane alkaloids (TAs) are widely distributed in the Solanaceae, while some important medicinal tropane alkaloids (mTAs), such as hyoscyamine and scopolamine, are restricted to certain species/tribes in this family. Little is known about the genomic basis and evolution of TAs biosynthesis and specialization in the Solanaceae. Here, we present chromosome-level genomes of two representative mTAs-producing species: Atropa belladonna and Datura stramonium. Our results reveal that the two species employ a conserved biosynthetic pathway to produce mTAs despite being distantly related within the nightshade family. A conserved gene cluster combined with gene duplication underlies the wide distribution of TAs in this family. We also provide evidence that branching genes leading to mTAs likely have evolved in early ancestral Solanaceae species but have been lost in most of the lineages, with A. belladonna and D. stramonium being exceptions. Furthermore, we identify a cytochrome P450 that modifies hyoscyamine into norhyoscyamine. Our results provide a genomic basis for evolutionary insights into the biosynthesis of TAs in the Solanaceae and will be useful for biotechnological production of mTAs via synthetic biology approaches.


Subject(s)
Alkaloids , Atropa belladonna , Hyoscyamine , Solanaceae , Solanaceae/genetics , Solanaceae/metabolism , Hyoscyamine/genetics , Hyoscyamine/metabolism , Tropanes/metabolism , Scopolamine/metabolism , Atropa belladonna/genetics , Atropa belladonna/metabolism
5.
Metab Eng ; 72: 237-246, 2022 07.
Article in English | MEDLINE | ID: mdl-35390492

ABSTRACT

Atropa belladonna is an important industrial crop for producing anticholinergic tropane alkaloids (TAs). Using glyphosate as selection pressure, transgenic homozygous plants of A. belladonna are generated, in which a novel calmodulin gene (AbCaM1) and a reported EPSPS gene (G2-EPSPS) are co-overexpressed. AbCaM1 is highly expressed in secondary roots of A. belladonna and has calcium-binding activity. Three transgenic homozygous lines were generated and their glyphosate tolerance and TAs' production were evaluated in the field. Transgenic homozygous lines produced TAs at much higher levels than wild-type plants. In the leaves of T2GC02, T2GC05, and T2GC06, the hyoscyamine content was 8.95-, 10.61-, and 9.96 mg/g DW, the scopolamine content was 1.34-, 1.50- and 0.86 mg/g DW, respectively. Wild-type plants of A. belladonna produced hyoscyamine and scopolamine respectively at the levels of 2.45 mg/g DW and 0.30 mg/g DW in leaves. Gene expression analysis indicated that AbCaM1 significantly up-regulated seven key TA biosynthesis genes. Transgenic homozygous lines could tolerate a commercial recommended dose of glyphosate in the field. In summary, new varieties of A. belladonna not only produce pharmaceutical TAs at high levels but tolerate glyphosate, facilitating industrial production of TAs and weed management at a much lower cost.


Subject(s)
Atropa belladonna , Hyoscyamine , Atropa belladonna/genetics , Atropa belladonna/metabolism , Gene Expression Regulation, Plant , Glycine/analogs & derivatives , Hyoscyamine/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Scopolamine/metabolism , Tropanes/metabolism , Glyphosate
6.
PLoS One ; 15(5): e0231355, 2020.
Article in English | MEDLINE | ID: mdl-32437389

ABSTRACT

The overexploitation of medicinal plants is depleting gene pool at an alarming rate. In this scenario inducing the genetic variability through targeted mutations could be beneficial in generating varieties with increased content of active compounds. The present study aimed to develop a reproducible protocol for in vitro multiplication and mutagenesis of Hyoscyamus niger targeting putrescine N-methyltransferase (PMT) and 6ß-hydroxy hyoscyamine (H6H) genes of alkaloid biosynthetic pathway. In vitro raised callus were treated with different concentrations (0.01% - 0.1%) of Ethyl Methane Sulfonate (EMS). Emerging multiple shoots and roots were obtained on the MS media supplemented with cytokinins and auxins. Significant effects on morphological characteristics were observed following exposure to different concentrations of EMS. EMS at a concentration of 0.03% was seen to be effective in enhancing the average shoot and root number from 14.5±0.30 to 22.2 ±0.77 and 7.2±0.12 to 8.8±0.72, respectively. The lethal dose (LD50) dose was calculated at 0.08% EMS. The results depicted that EMS has an intense effect on PMT and H6H gene expression and metabolite accumulation. The transcripts of PMT and H6H were significantly upregulated at 0.03-0.05% EMS compared to control. EMS treated explants showed increased accumulation of scopolamine (0.639 µg/g) and hyoscyamine (0.0344µg/g) compared to untreated.


Subject(s)
Ethyl Methanesulfonate/toxicity , Hyoscyamine/metabolism , Hyoscyamus/growth & development , Methyltransferases/genetics , Mixed Function Oxygenases/genetics , Mutagenesis , Mutation , Scopolamine/metabolism , Biosynthetic Pathways , Gene Expression Regulation, Plant , Hyoscyamus/drug effects , Hyoscyamus/genetics , Hyoscyamus/metabolism , Mutagens/toxicity , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism
7.
Sci Rep ; 8(1): 17951, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30560886

ABSTRACT

Plant secondary metabolites play a major role in plant adaptation to stress. Species belonging to Solanaceae family and Datura genus produce tropane alkaloids: D. stramonium, D. tatula and D. innoxia. These species are cultivated for their hyoscyamine (HS) content, whence the interest of this study to induce transformed roots of these species with strain A4 of Agrobacterium rhizogenes. Hairy roots (HRs) of Datura were established at high frequency by infecting vitroplants. All HRs (343 independent lines) were next employed to study the production of HS and growth. A screening of HRs alkaloid content by GC/MS is performed; it reveals, for the first time, the production of 13 alkaloids by the selected root lines. The selection of high productive line offers an interesting option to enhance the productivity. As HS is the dominant compound, the lines of Datura species were selected for their characteristics for biomass and HS production. The elicitors salicylic acid (SA) and acetyl salicylic acid (ASA) were also used to increase HS production. The results showed that the optimal concentration of the two elicitors (AS and ASA) was 0.1 mM. The highest HS content (17.94 ± 0.14 mg g-1 D.W.) obtained in HRs of D. tatula treated with 0.1 mM of acetyl salicylic acid.


Subject(s)
Biosynthetic Pathways/drug effects , Datura/drug effects , Datura/metabolism , Hyoscyamine/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Tropanes/pharmacology , Gas Chromatography-Mass Spectrometry , Tropanes/chemistry , Tropanes/isolation & purification
8.
Zhongguo Zhong Yao Za Zhi ; 43(20): 4044-4049, 2018 Oct.
Article in Chinese | MEDLINE | ID: mdl-30486528

ABSTRACT

Hyoscyamine and scopolamine are important secondary metabolites of tropane alkaloid in Atropa belladonna with pharmacological values in many aspects.In this study, the seedlings of A.belladonna were planted by soil culture and treated with different concentrations of methyl jasmonate (MeJA). The contents of hyoscyamine and scopolamine,the upstream products in alkaloid synthesis,and the expression levels of key enzyme genes PMT, TR Ⅰ and H6H in secondary metabolites of A. belladonna seedlings were measured to clarify the mechanism of MeJA regulating alkaloids synthesis.The results showed that MeJA(200 µmol·L⁻¹) treatment was more favorable for the accumulation of alkaloids.The content of putrescine was almost consistent with the change of key enzymes activities in the synthesis of putrescine,the both increased first and then decreased with the increased MeJA concentration and the content of putrescine reached the highest at 200 µmol·L⁻¹ MeJA.Further detection of gene expression of PMT, TR Ⅰ and H6H in TAs synthesis pathway showed that no significant trend in PMT gene expression levels.The expression levels of TR Ⅰ and H6H in leaves and roots under 200 µmol·L⁻¹ MeJA were the highest.It can be speculated that the regulation of the formation of hyoscyamine and scopolamine by MeJA mainly through affecting the expression of key enzyme genes.Appropriate concentration of MeJA increased the gene expression of TR Ⅰ in both leaves and roots as well as H6H in roots,promoting the accumulation of alkaloids and the conversion of hyoscyamine to scopolamine.


Subject(s)
Acetates/pharmacology , Atropa belladonna/drug effects , Cyclopentanes/pharmacology , Hyoscyamine/metabolism , Oxylipins/pharmacology , Scopolamine/metabolism , Atropa belladonna/genetics , Atropa belladonna/metabolism , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Roots/metabolism
9.
J Biotechnol ; 211: 123-9, 2015 Oct 10.
Article in English | MEDLINE | ID: mdl-26239231

ABSTRACT

Hyoscyamine 6ß-hydroxylase (H6H, EC 1.14.11.11), an α-ketoglutarate dependent dioxygenase catalyzes the hydroxylation of (-)-hyoscyamine and the subsequent epoxidation of 6ß-hydroxyhyoscyamine to form scopolamine, a valuable natural alkaloid. In this study, random mutagenesis and site-directed saturation mutagenesis were used to enhance the hydroxylation activity of H6H from Anisodus acutangulus (AaH6H). A double mutant, AaH6HM1 (S14P/K97A), showed a 3.4-fold improved hydroxylation activity compared with the wild-type enzyme, and the in vivo epoxidation activity was also improved by 2.3 times. After 34h cultivation of Escherichia coli cells harboring Aah6hm1 in a 5-L bioreactor with a working volume of 3L, scopolamine was produced via a single-enzyme-mediated two-step transformation from 500mgL(-1) (-)-hyoscyamine in 97% conversion, and 1.068g of the product were isolated, corresponding to a space-time yield of 251mgL(-1)d(-1). This study shows that the protein engineering of some key enzymes is a promising and effective way for improving the production of rare natural products such as scopolamine.


Subject(s)
Biological Products/metabolism , Escherichia coli/cytology , Mixed Function Oxygenases/metabolism , Mutant Proteins/metabolism , Scopolamine/metabolism , Biocatalysis , Bioreactors , Biotransformation , Hydroxylation , Hyoscyamine/metabolism , Mutagenesis, Site-Directed , Scopolamine/isolation & purification , Solanaceae/enzymology , Solanaceous Alkaloids/metabolism , Substrate Specificity
10.
Zhongguo Zhong Yao Za Zhi ; 39(1): 52-8, 2014 Jan.
Article in Chinese | MEDLINE | ID: mdl-24754168

ABSTRACT

Atropa belladonna is a medicinal plant and main commercial source of tropane alkaloids (TAs) including scopolamine and hyoscyamine, which are anticholine drugs widely used clinically. Based on the high throughput transcriptome sequencing results, the digital expression patterns of UniGenes representing 9 structural genes (ODC, ADC, AIH, CPA, SPDS, PMT, CYP80F1, H6H, TRII) involved in TAs biosynthesis were constructed, and simultaneously expression analysis of 4 released genes in NCBI (PMT, CYP80F1, H6H, TRII) for verification was performed using qPCR, as well as the TAs contents detection in 8 different tissues. Digital expression patterns results suggested that the 4 genes including ODC, ADC, AIH and CPA involved in the upstream pathway of TAs, and the 2 branch pathway genes including SPDS and TRII were found to be expressed in all the detected tissues with high expression level in secondary root. While the 3 TAs-pathway-specific genes including PMT, CYP80F1, H6H were only expressed in secondary roots and primary roots, mainly in secondary roots. The qPCR detection results of PMT, CYP80F1 and H6H were consistent with the digital expression patterns, but their expression levels in primary root were too low to be detected. The highest content of hyoscyamine was found in tender stems (3.364 mg x g(-1)), followed by tender leaves (1.526 mg x g(-1)), roots (1.598 mg x g(-1)), young fruits (1.271 mg x g(-1)) and fruit sepals (1.413 mg x g(-1)). The highest content of scopolamine was detected in fruit sepals (1.003 mg x g(-1)), then followed by tender stems (0.600 mg x g(-1)) and tender leaves (0.601 mg x g(-1)). Both old stems and old leaves had the lowest content of hyoscyamine and scopolamine. The gene expression profile and TAs accumulation indicated that TAs in Atropa belladonna were mainly biosynthesized in secondary root, and then transported and deposited in tender aerial parts. Screening Atropa belladonna secondary root transcriptome database will facilitate unveiling the unknown enzymatic reactions and the mechanisms of transcriptional control.


Subject(s)
Alkaloids/biosynthesis , Alkaloids/genetics , Atropa belladonna/genetics , Atropa belladonna/metabolism , Gene Expression Regulation, Plant/genetics , Tropanes/metabolism , Alkaloids/metabolism , Hyoscyamine/genetics , Hyoscyamine/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Scopolamine/metabolism
11.
Plant Physiol Biochem ; 70: 188-94, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23786817

ABSTRACT

A cDNA encoding hyoscyamine 6ß-hydroxylase (H6H, EC 1.14.11.11), a bifunctional enzyme catalyzing the last two steps in the scopolamine biosynthetic pathway, was isolated from Hyoscyamus senecionis, a medicinal plant endemic to the Iranian plateau. Expression analysis indicates that Hsh6h is expressed in all tested organs of H. senecionis including roots, rhizomes, leaves, stems and flowers unlike the other tropane alkaloid producing species. In parallel to this, in leaves, levels of scopolamine, the product of H6H, were higher than the substrate hyoscyamine. These data suggest that not only does the conversion of hyoscyamine to scopolamine take place in the root, followed by translocation to aerial parts, but also accumulated hyoscyamine in the aerial parts may be converted to scopolamine by activity of HsH6H. Analysis of expression profiles of putrescine N-methyltransferase and tropinone reductase I and II genes also indicates the organ-independent expression of these genes. Here we also introduce H. senecionis as an important tropane alkaloid producing species with its thick underground parts as a source of hyoscyamine, while its leaves can be considered as a source of scopolamine.


Subject(s)
Genes, Plant , Hyoscyamine/metabolism , Hyoscyamus/metabolism , Mixed Function Oxygenases/metabolism , Plant Proteins/metabolism , Plant Structures/metabolism , Scopolamine/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Biological Transport , DNA, Complementary , Gene Expression , Hyoscyamine/genetics , Hyoscyamus/genetics , Iran , Metabolic Networks and Pathways/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Mixed Function Oxygenases/genetics , Plant Proteins/genetics , Plants, Medicinal , Transcriptome
12.
Yao Xue Xue Bao ; 48(2): 243-9, 2013 Feb.
Article in Chinese | MEDLINE | ID: mdl-23672021

ABSTRACT

Atropa belladonna L. is the officially medicinal plant species and the main commercial source of scopolamine and hyoscyamine in China. In this study, we reported the simultaneous overexpression of two functional genes involved in biosynthesis of scopolamine, which respectively encoded the upstream key enzyme putrescine N-methyltransferase (PMT; EC 2.1.1.53) and the downstream key enzyme hyoscyamine 6beta-hydroxylase (H6H; EC 1.14.11.11) in transgenic hair root cultures of Atropa belladonna L. HPLC results suggested that four transgenic hair root lines produced higher content of scopolamine at different levels compared with nontransgenic hair root cultures. And scopolamine content increased to 8.2 fold in transgenic line PH2 compared with that of control line; and the other four transgenic lines showed an increase of scopolamine compared with the control. Two of the transgenic hair root lines produced higher levels of tropane alkaloids, and the content increased to 2.7 fold in transgenic line PH2 compared with the control. The gene expression profile indicated that both PMT and H6H expressed at a different levels in different transgenic hair root lines, which would be helpful for biosynthesis of scopolamine. Our studies suggested that overexpression of A. belladonna endogenous genes PMT and H6H could enhance tropane alkaloid biosynthesis.


Subject(s)
Atropa belladonna , Methyltransferases/metabolism , Mixed Function Oxygenases/metabolism , Scopolamine/metabolism , Synthetic Biology , Tropanes/metabolism , Atropa belladonna/enzymology , Atropa belladonna/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Hyoscyamine/metabolism , Methyltransferases/genetics , Mixed Function Oxygenases/genetics , Plant Roots/enzymology , Plant Roots/genetics , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Medicinal/enzymology , Plants, Medicinal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...