Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
1.
Am J Reprod Immunol ; 91(5): e13854, 2024 May.
Article in English | MEDLINE | ID: mdl-38716832

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder characterized by oligo-anovulation, hyperandrogenism, and polycystic ovaries, with hyperandrogenism being the most prominent feature of PCOS patients. However, whether excessive androgens also exist in the ovarian microenvironment of patients with PCOS, and their modulatory role on ovarian immune homeostasis and ovarian function, is not clear. METHODS: Follicular fluid samples from patients participating in their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment were collected. Androgen concentration of follicular fluid was assayed by chemiluminescence, and the macrophage M1:M2 ratio was detected by flow cytometry. In an in vitro model, we examined the regulatory effects of different concentrations of androgen on macrophage differentiation and glucose metabolism levels using qRT-PCR, Simple Western and multi-factor flow cytometry assay. In a co-culture model, we assessed the effect of a hyperandrogenic environment in the presence or absence of macrophages on the function of granulosa cells using qRT-PCR, Simple Western, EdU assay, cell cycle assay, and multi-factor flow cytometry assay. RESULTS: The results showed that a significantly higher androgen level and M1:M2 ratio in the follicular fluid of PCOS patients with hyperandrogenism. The hyperandrogenic environment promoted the expression of pro-inflammatory and glycolysis-related molecules and inhibited the expression of anti-inflammatory and oxidative phosphorylation-related molecules in macrophages. In the presence of macrophages, a hyperandrogenic environment significantly downregulated the function of granulosa cells. CONCLUSION: There is a hyperandrogenic microenvironment in the ovary of PCOS patients with hyperandrogenism. Hyperandrogenic microenvironment can promote the activation of ovarian macrophages to M1, which may be associated with the reprogramming of macrophage glucose metabolism. The increased secretion of pro-inflammatory cytokines by macrophages in the hyperandrogenic microenvironment would impair the normal function of granulosa cells and interfere with normal ovarian follicle growth and development.


Subject(s)
Androgens , Follicular Fluid , Granulosa Cells , Hyperandrogenism , Macrophages , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/immunology , Female , Granulosa Cells/metabolism , Macrophages/immunology , Macrophages/metabolism , Hyperandrogenism/metabolism , Adult , Follicular Fluid/metabolism , Androgens/metabolism , Cells, Cultured , Macrophage Activation , Cellular Microenvironment , Coculture Techniques , Cell Differentiation
2.
Cytokine ; 179: 156639, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733946

ABSTRACT

AIMS: Polycystic ovarian syndrome (PCOS) is one of the most common (about 5-20%) reproductive disorders in women of reproductive age; it is characterized by polycystic ovaries, hyperandrogenism, and oligo/ anovulation. The levels and expression of ovarian adipokines are deregulated in the PCOS. Apelin is an adipokine that acts through its receptor (APJ) and is known to express in the various tissues including the ovary. It has also been suggested that apelin and APJ could be targeted as therapeutic adjuncts for the management of PCOS. However, no study has been conducted on the management of PCOS by targeting the apelin system. Thus, we aimed to evaluate its impact on combating PCOS-associated ovarian pathogenesis. METHODS: The current work employed a letrozole-induced-hyperandrogenism PCOS-like mice model to investigate the effects of apelin13 and APJ, antagonist ML221. The PCOS model was induced by oral administration of letrozole (1 mg/kg) for 21 days. A total of four experimental groups were made, control, PCOS control, PCOS + aplein13, and PCOS + ML221. The treatment of apelin13 and ML221 was given from day 22 for two weeks. KEY FINDINGS: The letrozole-induced PCOS-like features such as hyperandrogenism, cystic follicle, decreased corpus luteum, elevated levels of LH/FSH ratio, and up-regulation of ovarian AR expression were ameliorated by apelin13 and ML221 treatment. However, the PCOS-augmented oxidative stress and apoptosis were suppressed by apelin 13 treatments only. ML221 treatment still showed elevated oxidative stress and stimulated apoptosis as reflected by decreased antioxidant enzymes and increased active caspase3 and Bax expression. The expression of ERs was elevated in all groups except control. Furthermore, the PCOS model showed elevated expression of APJ and apelin13 treatment down-regulated its own receptor. Overall, observing the ovarian histology, corpus luteum formation, and decreased androgen levels by both apelin13 and ML221 showed ameliorative effects on the cystic ovary. SIGNIFICANCE: Despite the similar morphological observation of ovarian histology, apelin13 and ML221 exhibited opposite effects on oxidative stress and apoptosis. Therefore, apelin13 (which down-regulates APJ) and ML221 (an APJ antagonist) may have suppressed APJ signalling, which would account for our findings on the mitigation of polycystic ovarian syndrome. In conclusion, both apelin13 and ML221 mediated mitigation have different mechanisms, which need further investigation.


Subject(s)
Apelin Receptors , Apelin , Letrozole , Ovary , Polycystic Ovary Syndrome , Letrozole/pharmacology , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Animals , Female , Apelin Receptors/metabolism , Mice , Apelin/metabolism , Ovary/metabolism , Ovary/pathology , Ovary/drug effects , Oxidative Stress/drug effects , Hyperandrogenism/metabolism , Hyperandrogenism/chemically induced , Apoptosis/drug effects , Disease Models, Animal
3.
Mol Hum Reprod ; 30(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38603629

ABSTRACT

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, but its pathology has not been fully characterized and the optimal treatment strategy remains unclear. Cellular senescence is a permanent state of cell-cycle arrest that can be induced by multiple stresses. Senescent cells contribute to the pathogenesis of various diseases, owing to an alteration in secretory profile, termed 'senescence-associated secretory phenotype' (SASP), including with respect to pro-inflammatory cytokines. Senolytics, a class of drugs that selectively eliminate senescent cells, are now being used clinically, and a combination of dasatinib and quercetin (DQ) has been extensively used as a senolytic. We aimed to investigate whether cellular senescence is involved in the pathology of PCOS and whether DQ treatment has beneficial effects in patients with PCOS. We obtained ovaries from patients with or without PCOS, and established a mouse model of PCOS by injecting dehydroepiandrosterone. The expression of the senescence markers p16INK4a, p21, p53, γH2AX, and senescence-associated ß-galactosidase and the SASP-related factor interleukin-6 was significantly higher in the ovaries of patients with PCOS and PCOS mice than in controls. To evaluate the effects of hyperandrogenism and DQ on cellular senescence in vitro, we stimulated cultured human granulosa cells (GCs) with testosterone and treated them with DQ. The expression of markers of senescence and a SASP-related factor was increased by testosterone, and DQ reduced this increase. DQ reduced the expression of markers of senescence and a SASP-related factor in the ovaries of PCOS mice and improved their morphology. These results indicate that cellular senescence occurs in PCOS. Hyperandrogenism causes cellular senescence in GCs in PCOS, and senolytic treatment reduces the accumulation of senescent GCs and improves ovarian morphology under hyperandrogenism. Thus, DQ might represent a novel therapy for PCOS.


Subject(s)
Cellular Senescence , Granulosa Cells , Polycystic Ovary Syndrome , Quercetin , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Female , Cellular Senescence/drug effects , Humans , Animals , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Granulosa Cells/pathology , Quercetin/pharmacology , Mice , Senescence-Associated Secretory Phenotype , Adult , Dasatinib/pharmacology , Disease Models, Animal , Senotherapeutics/pharmacology , Hyperandrogenism/pathology , Hyperandrogenism/metabolism , Interleukin-6/metabolism , Dehydroepiandrosterone/pharmacology
4.
Mol Cell Endocrinol ; 588: 112234, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38588858

ABSTRACT

Hyperandrogenic disorders, such as polycystic ovary syndrome, are often associated with metabolic disruptions such as insulin resistance and hyperinsulinemia. Studies in sheep, a precocial model of translational relevance, provide evidence that in utero exposure to excess testosterone during days 30-90 of gestation (the sexually dimorphic window where males naturally experience elevated androgens) programs insulin resistance and hyperinsulinemia in female offspring. Extending earlier findings that adverse effects of testosterone excess are evident in fetal day 90 pancreas, the end of testosterone treatment, the present study provides evidence that transcriptomic and phenotypic effects of in utero testosterone excess on female pancreas persist after cessation of treatment, suggesting lasting organizational changes, and induce a male-like phenotype in female pancreas. These findings demonstrate that the female pancreas is susceptible to programmed masculinization during the sexually dimorphic window of fetal development and shed light on underlying connections between hyperandrogenism and metabolic homeostasis.


Subject(s)
Pancreas , Testosterone , Transcriptome , Animals , Female , Sheep , Transcriptome/drug effects , Transcriptome/genetics , Pregnancy , Pancreas/metabolism , Pancreas/drug effects , Male , Prenatal Exposure Delayed Effects/metabolism , Insulin Resistance , Hyperandrogenism/metabolism , Hyperandrogenism/genetics , Fetal Development/drug effects , Sex Characteristics
5.
Fertil Steril ; 121(6): 1040-1052, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38307453

ABSTRACT

OBJECTIVE: To determine whether alterations in nonesterified fatty acid (NEFA) dynamics or degree of hyperandrogenism (HA) contribute to the difference in insulin sensitivity between women with metabolically healthy obese polycystic ovary syndrome (PCOS) (MHO-PCOS) and women with metabolically unhealthy obese PCOS (MUO-PCOS). DESIGN: Prospective cross-sectional study. SETTING: Tertiary-care academic center. PATIENTS: One hundred twenty-five obese women with PCOS. INTERVENTION: Consecutive obese (body mass index [BMI] ≥ 30 kg/m2) oligo-ovulatory women (n = 125) with PCOS underwent an oral glucose tolerance test and a subgroup of 16 participants underwent a modified frequently sampled intravenous glucose tolerance test to determine insulin-glucose and -NEFA dynamics. MAIN OUTCOME MEASURES: Degree of insulin resistance (IR) in adipose tissue (AT) basally (Adipo-IR) and dynamically (the nadir in NEFA levels observed [NEFAnadir], the time it took for NEFA levels to reach nadir [TIMEnadir], and the percent suppression in plasma NEFA levels from baseline to nadir [%NEFAsupp]); peak lipolysis rate (SNEFA) and peak rate of NEFA disposal from plasma pool (KNEFA); whole-body insulin-glucose interaction (acute response of insulin to glucose [AIRg], insulin sensitivity index [Si], glucose effectiveness [Sg], and disposition index [Di]); and HA (hirsutism score, total and free testosterone levels, and dehydroepiandrosterone sulfate levels). RESULTS: A total of 85 (68%) women were MUO-PCOS and 40 (32%) were MHO-PCOS using the homeostasis model of assessment of IR. Subjects with MUO-PCOS and MHO-PCOS did not differ in mean age, BMI, waist-to-hip ratio, HA, and lipoprotein levels. By a modified frequently sampled intravenous glucose tolerance test, eight women with MUO-PCOS had lesser Si, KNEFA, and the percent suppression in plasma NEFA levels from baseline to nadir (%NEFAsupp) and greater TIMEnadir, NEFAnadir, and baseline adipose tissue IR index (Adipo-IR) than eight subjects with MHO-PCOS, but similar fasting NEFA levels and SNEFA. Women with MUO-PCOS had a higher homeostasis model of assessment-ß% and fasting insulin levels than women with MHO-PCOS. In bivalent analysis, Si correlated strongly and negatively with Adipo-IR and NEFAnadir, weakly and negatively with TIMEnadir, and positively with KNEFA and %NEFAsupp, in women with MUO-PCOS only. CONCLUSION: Independent of age and BMI, women with MUO-PCOS have reduced NEFA uptake and altered insulin-mediated NEFA suppression, but no difference in HA, compared with women with MHO-PCOS. Altered insulin-mediated NEFA suppression, rather than HA or lipolysis rate, contributes to variations in insulin sensitivity among obese women with PCOS.


Subject(s)
Fatty Acids, Nonesterified , Hyperandrogenism , Insulin Resistance , Obesity , Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/complications , Hyperandrogenism/metabolism , Hyperandrogenism/blood , Adult , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Obesity/metabolism , Obesity/blood , Obesity/complications , Cross-Sectional Studies , Insulin Resistance/physiology , Prospective Studies , Young Adult , Glucose Tolerance Test , Blood Glucose/metabolism , Insulin/blood , Biomarkers/blood
6.
Endocr Pract ; 30(4): 348-355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244859

ABSTRACT

OBJECTIVE: We determined (1) if 11-oxygenated androgens better identify polycystic ovary syndrome (PCOS) diagnosis in women with obesity compared to total or free testosterone (T) and free androgen index; (2) how biochemical hyperandrogenism and metabolic factors cluster in a cohort of women with infertility and obesity. METHODS: Women with obesity and PCOS comprised the study group (N = 132). Ovulatory women with obesity and idiopathic, tubal or male factor infertility were the control group (N = 83). Steroid hormones were measured by means of liquid chromatography tandem mass spectrometry. Receiver operating characteristic curves and principal component analysis were used. RESULTS: Women with obesity and PCOS had higher 11-ketotestosterone (11 KT) (1.22 nmol/L [0.84; 1.65] vs 1.05 [0.78; 1.35], P = .04) compared to controls, but not 11ß-hydroxyandrostenedione 4.30 [2.87; 5.92] vs 4.06 [3.22; 5.73], P = .44). 11-ketotestosterone (area under the curve: 0.59) did not better discriminate PCOS in women with obesity compared to: total T (0.84), free T (0.91), and free androgen index (0.85). We identified 4 principal components (PCs) in the PCOS group (72.1% explained variance): (1) insulin resistance status; (2) blood pressure; (3) obesity; (4) androgen status and 4 PCs in the control group (68.7% explained variance) with variables representing metabolism being dispersed in component 2, 3, and 4. CONCLUSIONS: Eleven-oxygenated androgens do not aid in the diagnosis of PCOS in women with obesity. Insulin resistance is the strongest PC in the PCOS group. There is no major dominant characteristic that defines obese non-PCOS women.


Subject(s)
Hyperandrogenism , Infertility , Insulin Resistance , Polycystic Ovary Syndrome , Female , Male , Humans , Polycystic Ovary Syndrome/complications , Hyperandrogenism/diagnosis , Hyperandrogenism/metabolism , Androgens , Testosterone , Obesity/complications , Obesity/metabolism , Cluster Analysis
7.
Endocrinol Diabetes Metab ; 7(1): e443, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37872876

ABSTRACT

INTRODUCTION: Polycystic ovary syndrome (PCOS) is a common endocrine pathology in women. In addition to infertility, women with PCOS have metabolic dysregulation which predisposes them to Type 2 diabetes, cardiovascular disease and non-alcoholic fatty liver disease. Moreover, women with PCOS have changes in their gut microbial community that may be indicative of dysbiosis. While hyperandrogenism is associated with both the development of metabolic dysfunction and gut dysbiosis in females, the mechanisms involved are not well understood. METHODS: We used dihydrotestosterone (DHT) and ovariectomy (OVX) mouse models coupled with metabolic assessments and 16S rRNA gene sequencing to explore the contributions of hyperandrogenism and oestrogen deficiency to the development of insulin resistance and gut microbial dysbiosis in pubertal female mice. RESULTS: We demonstrated that, while DHT treatment or OVX alone were insufficient to induce insulin resistance during the pubertal-to-adult transition, combining OVX with DHT resulted in insulin resistance similar to that observed in letrozole-treated mice with elevated testosterone and decreased oestrogen levels. In addition, our results showed that OVX and DHT in combination resulted in a distinct shift in the gut microbiome compared to DHT or OVX alone, suggesting that the substantial metabolic dysregulation occurring in the OVX + DHT model was accompanied by unique changes in the abundances of gut bacteria including S24-7, Rikenellaceae and Mucispirillum schaedleri. CONCLUSIONS: While hyperandrogenism plays an important role in the development of metabolic dysregulation in female mice, our results indicate that investigation into additional factors influencing insulin resistance and the gut microbiome during the pubertal-to-adult transition could provide additional insight into the pathophysiology of PCOS.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperandrogenism , Insulin Resistance , Polycystic Ovary Syndrome , Humans , Adult , Female , Mice , Animals , Hyperandrogenism/complications , Hyperandrogenism/metabolism , Dysbiosis/complications , Dysbiosis/metabolism , Diabetes Mellitus, Type 2/complications , RNA, Ribosomal, 16S , Polycystic Ovary Syndrome/complications , Estrogens
8.
Am J Pathol ; 193(12): 1916-1935, 2023 12.
Article in English | MEDLINE | ID: mdl-37689383

ABSTRACT

Pregnancy-related problems have been linked to impairments in maternal uterine spiral artery (SpA) remodeling. The mechanisms underlying this association are still unclear. It is also unclear whether hyperandrogenism and insulin resistance, the two common manifestations of polycystic ovary syndrome, affect uterine SpA remodeling. We verified previous work in which exposure to 5-dihydrotestosterone (DHT) and insulin (INS) in rats during pregnancy resulted in hyperandrogenism, insulin intolerance, and higher fetal mortality. Exposure to DHT and INS dysregulated the expression of angiogenesis-related genes in the uterus and placenta and also decreased expression of endothelial nitric oxide synthase and matrix metallopeptidases 2 and 9, increased fibrotic collagen deposits in the uterus, and reduced expression of marker genes for SpA-associated trophoblast giant cells. These changes were related to a greater proportion of unremodeled uterine SpAs and a smaller proportion of highly remodeled arteries in DHT + INS-exposed rats. Placentas from DHT + INS-exposed rats exhibited decreased basal and labyrinth zone regions, reduced maternal blood spaces, diminished labyrinth vascularity, and an imbalance in the abundance of vascular and smooth muscle proteins. Furthermore, placentas from DHT + INS-exposed rats showed expression of placental insufficiency markers and a significant increase in cell senescence-associated protein levels. Altogether, this work demonstrates that increased pregnancy complications in polycystic ovary syndrome may be mediated by problems with uterine SpA remodeling, placental functionality, and placental senescence.


Subject(s)
Hyperandrogenism , Polycystic Ovary Syndrome , Humans , Rats , Pregnancy , Female , Animals , Placenta/metabolism , Polycystic Ovary Syndrome/metabolism , Hyperandrogenism/metabolism , Uterus/metabolism , Arteries , Dihydrotestosterone/metabolism , Insulin , Uterine Artery/metabolism
9.
Drug Res (Stuttg) ; 73(8): 441-447, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37591259

ABSTRACT

Poly cystic ovary syndrome (PCOS) is considered as one of the common hormonal disorders affecting 6-20% of women in their reproductive age with characteristic features include anovulatory infertility, hyperandrogenism, cystic follicles and insulin resistance. The gene CYP play an important role in pathophysiology of hyperandrogenism associated with PCOS. An elevated androgens are reported in PCOS condition due to overexpression of the enzyme CYP450 17 α: . As well as diminished levels of aromatase (CYP450 19) were observed in several hyperandrogenic PCOS patients. The powdered leafy material of Cinnamomum malabatrum was subjected to Soxhlet extraction. The plant extract was subjected to Gas chromatography-MS analysis (GC-MS), and the chromatogram obtained revealed the presence of active chemical constituents like 1(10),9(11)-B-Homolanistadiene for the first time and other potential compounds. Hypothesis has raised to interpret the efficiency of phytoconstituents of Cinnamomum malabatrum on these enzyme targets and which may be a novel drug candidate for the treatment and maintenance of hyperandrogenism associated with PCOS. Thus, the results obtained from the in-silico study of Cinnamomum malabatrum leaf extract using computational approaches indicate that the phytoconstituents have good affinities for the selected two key targets. ADME and PASS studies has been performed for active phytoconstituents homolanistadiene, ß-sitosterol, cycloartenol and a pyrazole derivative, and results revealed the Lipinski drug-likeness and pharmacological potential. In conclusion, this work throws a new insight into the possibility of the active phytoconstituents on binding the two active CYP45017 α and CYP45019 aromatase enzymes which facilitates development of novel compounds for hyperandrogenism associated with PCOS.


Subject(s)
Hyperandrogenism , Insulin Resistance , Polycystic Ovary Syndrome , Female , Humans , Hyperandrogenism/drug therapy , Hyperandrogenism/complications , Hyperandrogenism/metabolism , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Aromatase , Gas Chromatography-Mass Spectrometry
10.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445796

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by hyperandrogenemia of ovarian thecal cell origin, resulting in anovulation/oligo-ovulation and infertility. Our previous studies established that ovarian theca cells isolated and propagated from ovaries of normal ovulatory women and women with PCOS have distinctive molecular and cellular signatures that underlie the increased androgen biosynthesis in PCOS. To evaluate differences between gene expression in single-cells from passaged cultures of theca cells from ovaries of normal ovulatory women and women with PCOS, we performed single-cell RNA sequencing (scRNA-seq). Results from these studies revealed differentially expressed pathways and genes involved in the acquisition of cholesterol, the precursor of steroid hormones, and steroidogenesis. Bulk RNA-seq and microarray studies confirmed the theca cell differential gene expression profiles. The expression profiles appear to be directed largely by increased levels or activity of the transcription factors SREBF1, which regulates genes involved in cholesterol acquisition (LDLR, LIPA, NPC1, CYP11A1, FDX1, and FDXR), and GATA6, which regulates expression of genes encoding steroidogenic enzymes (CYP17A1) in concert with other differentially expressed transcription factors (SP1, NR5A2). This study provides insights into the molecular mechanisms underlying the hyperandrogenemia associated with PCOS and highlights potential targets for molecular diagnosis and therapeutic intervention.


Subject(s)
Hyperandrogenism , Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/metabolism , Single-Cell Gene Expression Analysis , Hyperandrogenism/complications , Hyperandrogenism/genetics , Hyperandrogenism/metabolism , Transcription Factors/genetics
11.
Horm Behav ; 153: 105392, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37295324

ABSTRACT

Polycystic ovary syndrome (PCOS) is a complex disorder characterized by endocrine and metabolic abnormalities such as obesity and insulin resistance. PCOS is also associated with psychiatric disorders and cognitive impairment. The animal model of PCOS was induced by treating rats with 5α-dihydrotestosterone (5α-DHT) and additionally modified to induce adiposity by litter size reduction (LSR). Spatial learning and memory were assessed using the Barnes Maze test, and striatal markers of synaptic plasticity were analyzed. Striatal insulin signaling was estimated by the levels of insulin receptor substrate 1 (IRS1), its inhibitory phosphorylation at Ser307, and glycogen synthase kinase-3α/ß (GSK3α/ß) activity. Both LSR and DHT treatment significantly decreased striatal protein levels of IRS1, followed by increased GSK3α/ß activity in small litters. Results of the behavioral study showed that LSR had a negative effect on learning rate and memory retention, whereas DHT treatment did not induce impairment in memory formation. While protein levels of synaptophysin, GAP43, and postsynaptic density protein 95 (PSD-95) were not altered by the treatments, DHT treatment induced an increase in phosphorylation of PSD-95 at Ser295 in both normal and small litters. This study revealed that LSR and DHT treatment suppressed insulin signaling by downregulating IRS1 in the striatum. However, DHT treatment did not have an adverse effect on learning and memory, probably due to compensatory elevation in pPSD-95-Ser295, which had a positive effect on synaptic strength. This implies that hyperandrogenemia in this setting does not represent a threat to spatial learning and memory, opposite to the effect of overnutrition-related adiposity.


Subject(s)
Hyperandrogenism , Insulin Resistance , Polycystic Ovary Syndrome , Female , Humans , Rats , Animals , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/metabolism , Hyperandrogenism/complications , Hyperandrogenism/metabolism , Spatial Learning , Insulin Resistance/physiology , Insulin/metabolism , Dihydrotestosterone/pharmacology , Obesity/complications , Disease Models, Animal
12.
Endocrinology ; 164(6)2023 04 17.
Article in English | MEDLINE | ID: mdl-37191144

ABSTRACT

Polycystic ovarian syndrome (PCOS) is the leading cause of anovulatory infertility and is a heterogenous condition associated with a range of reproductive and metabolic impairments. While its etiology remains unclear, hyperandrogenism and impaired steroid negative feedback have been identified as key factors underpinning the development of PCOS-like features both clinically and in animal models. We tested the hypothesis that androgen signaling in kisspeptin-expressing neurons, which are key drivers of the neuroendocrine reproductive axis, is critically involved in PCOS pathogenesis. To this end, we used a previously validated letrozole (LET)-induced hyperandrogenic mouse model of PCOS in conjunction with Cre-lox technology to generate female mice exhibiting kisspeptin-specific deletion of androgen receptor (KARKO mice) to test whether LET-treated KARKO females are protected from the development of reproductive and metabolic PCOS-like features. LET-treated mice exhibited hyperandrogenism, and KARKO mice exhibited a significant reduction in the coexpression of kisspeptin and androgen receptor mRNA compared to controls. In support of our hypothesis, LET-treated KARKO mice exhibited improved estrous cyclicity, ovarian morphology, and insulin sensitivity in comparison to LET-treated control females. However, KARKO mice were not fully protected from the effects of LET-induced hyperandrogenism and still exhibited reduced corpora lutea numbers and increased body weight gain. These data indicate that increased androgen signaling in kisspeptin-expressing neurons plays a critical role in PCOS pathogenesis but highlight that other mechanisms are also involved.


Subject(s)
Hyperandrogenism , Polycystic Ovary Syndrome , Animals , Female , Mice , Androgens/metabolism , Disease Models, Animal , Hyperandrogenism/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Letrozole , Neurons/metabolism , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
14.
Placenta ; 137: 70-77, 2023 06.
Article in English | MEDLINE | ID: mdl-37087951

ABSTRACT

INTRODUCTION: Trophoblast mitochondria play important roles in placental energy metabolism, physiology and pathophysiology. Hyperandrogenism has been associated with mitochondrial abnormalities in pregnancy disorders such as pre-eclampsia, gestational diabetes, and intrauterine growth restriction, but the direct impacts of androgen exposure on placental mitochondrial function are unknown. Given the inherent limitations of studying the human placenta during pregnancy, trophoblast cell lines are routinely used to model placental biology in vitro. The aim of this study was to characterize mitochondrial respiratory function in four commonly used trophoblast cell lines to provide a basis for selecting one well-suited to investigating the impact of androgens on trophoblast mitochondrial function. METHODS: Androgen receptor expression, mitochondrial respiration (JO2) and reactive oxygen species (ROS) release rates were evaluated in three human trophoblast cell lines (ACH-3P, BeWo and Swan-71) and one immortalized ovine trophoblast line (iOTR) under basal and substrate-stimulated conditions using high-resolution fluorespirometry. RESULTS: ACH-3P cells exhibited the greatest mitochondrial respiratory capacity and coupling efficiency of the four trophoblast lines tested, along with robust expression of androgen receptor protein that was found to co-localize with mitochondria by immunoblot and immunofluorescence. Acute testosterone administration (10 nM) tended to decrease ACH-3P mitochondrial JO2 and increase ROS release, while chronic (7 days) testosterone exposure increased expression of mitochondrial proteins, JO2, and ROS release. DISCUSSION: These studies establish ACH-3P as a suitable cell line for investigating trophoblast mitochondrial function, and provide foundational evidence supporting links between hyperandrogenism and placental mitochondrial ROS production with potential relevance to several common pregnancy disorders.


Subject(s)
Hyperandrogenism , Trophoblasts , Pregnancy , Female , Animals , Sheep , Humans , Trophoblasts/metabolism , Placenta/metabolism , Reactive Oxygen Species/metabolism , Receptors, Androgen/metabolism , Testosterone/pharmacology , Testosterone/metabolism , Hyperandrogenism/metabolism , Mitochondria/metabolism
15.
Iran J Med Sci ; 48(2): 187-197, 2023 03.
Article in English | MEDLINE | ID: mdl-36895462

ABSTRACT

Background: Polycystic ovary syndrome (PCOS) is the most common reproductive dysfunction in premenopausal women. PCOS is associated with oxidative stress (OS), which is the main risk factor for renal diseases. This study aimed to investigate the mechanisms responsible for renal injury in a hyperandrogenemic female rat model. Methods: This study was conducted from December 2019 to September 2021 at Shiraz Nephro-Urology Research Centre, Shiraz University of Medical Sciences (Shiraz, Iran). Thirty female Sprague-Dawley rats were randomly divided into three groups (n=10), namely control, sham, and dehydroepiandrosterone (DHEA). Plasma total testosterone, plasma creatinine (Cr), and blood urea nitrogen (BUN) levels were measured. In addition, total oxidant status (TOS), total antioxidant capacity (TAC), oxidative stress index (OSI), and histopathological changes in the ovaries and kidneys were determined. Data were analyzed using the GraphPad Prism software, and P<0.05 was considered statistically significant. Results: Plasma total testosterone levels increased by nine-fold in DHEA-treated rats compared to controls (P=0.0001). Administration of DHEA increased Cr and BUN levels and caused severe renal tubular cell injury. In addition, plasma and tissue (kidney and ovary) TAC levels decreased significantly, but TOS levels and OSI values were significantly increased (P=0.019). Significant damage to both glomerular and tubular parts of the kidney and ovarian follicular structure was observed in the DHEA group. Conclusion: Hyperandrogenemia caused systemic abnormalities through OS-related mechanisms and damaged renal and ovarian tissues. DHEA treatment in rat models is recommended to study the mechanisms that mediate PCOS-associated renal injury.


Subject(s)
Hyperandrogenism , Kidney Diseases , Polycystic Ovary Syndrome , Humans , Rats , Female , Animals , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Rats, Sprague-Dawley , Hyperandrogenism/complications , Hyperandrogenism/metabolism , Hyperandrogenism/pathology , Oxidative Stress , Kidney , Antioxidants/metabolism , Kidney Diseases/pathology , Testosterone/metabolism , Dehydroepiandrosterone/metabolism
16.
Mymensingh Med J ; 32(1): 3-9, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36594292

ABSTRACT

Polycystic ovary syndrome (PCOS) is a polygenic and multifactorial condition, regarded as the most common endocrine abnormality of women in reproductive period. It is commonly assumed that insulin resistance, hyperandrogenism and obesity significantly influence the pathophysiological process of PCOS. This study was designed to estimate hormonal parameters in different phenotypes of PCOS. The cross sectional descriptive type of observational study was carried out at Mymensingh Medical College Hospital, Mymensingh, Bangladesh from January 2018 to June 2019. Data were collected from purposively selected 107 patients with PCOS by interview, clinical examination and laboratory investigations using a pretested case record form. Data were analyzed by computer software, SPSS-version 22.0. Hormonal parameters in different phenotypes of PCOS were compared with ANOVA test. Phenotype A was found in highest number (59.8%) followed by phenotype B (14.9%), phenotype D (14.0%) and phenotype C (11.2%). Biochemical hyperandrogenism was observed highest in phenotype A (57.8%) followed by phenotype B (36.4%) and phenotype C (6.1%). Biochemical or clinical hyperandrogenism was not observed among patients of phenotype D. Altered LH:FSH ratio was high in phenotype A (14.1%) and Phenotype B (2.8%). Increased serum prolactin level was found highest in phenotype A (10.3%) and increased serum TSH was found highest in phenotype D (4.7%). Statistically significant difference was observed among levels of serum testosterone of different phenotypes (p<0.001). Hormonal derangements among different phenotypes reflect the severity of reproductive dysfunction and metabolic aberrations. Screening for metabolic risks of diverse phenotypes is important to detect and prevent long term health consequences of PCOS.


Subject(s)
Hyperandrogenism , Insulin Resistance , Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/complications , Cross-Sectional Studies , Hyperandrogenism/metabolism , Phenotype
17.
Curr Nutr Rep ; 12(1): 191-202, 2023 03.
Article in English | MEDLINE | ID: mdl-36719550

ABSTRACT

PURPOSE OF REVIEW: Polycystic ovary syndrome (PCOS), which is common in women of reproductive age worldwide, is a syndrome that reduces the lifelong quality of life and poses a significant risk for various diseases. PCOS is a combination of symptoms of hyperandrogenism, oligo-anovulation, and polycystic ovarian morphology (PCOM). In PCOS, which is characterized by chronic low-grade inflammation, some inflammatory cytokines are increased. This review aimed to explain possible mechanisms of inflammation in PCOS and the effects of Mediterranean diet components on reducing this inflammation. RECENT FINDINGS: Although the exact mechanisms of inflammation in PCOS are not yet fully known, it is stated that it is mediated by obesity, insulin resistance, and high androgen concentration. This inflammatory state negatively impacts the risk of future health problems and the quality of life of PCOS. Therefore, strategies to reduce inflammation are thought to be important. Dietary adjustments have important effects in reducing this inflammation and preventing disease. At this point, the Mediterranean diet, which has been proven to have a protective effect against many diseases, draws attention. Among the components of the Mediterranean diet, especially omega-3, antioxidants and dietary fiber may contribute to the reduction of inflammation through different mechanisms. PCOS is characterized by chronic low-grade inflammation, which increases women's risk of health problems, both now and in the future. Reducing inflammation is therefore extremely important, and it can be achieved with adherence to the Mediterranean diet. Inflammation pathways and the effect of the components of the Mediterranean diet in PCOS. AGE, advanced glycation end products; NF-κB, nuclear factor kappa-B. Obesity, insulin resistance, and hyperandrogenism may cause inflammation in PCOS through different mechanisms. Antioxidants, omega-3, and dietary fiber, which are the main components of the Mediterranean diet, may be effective in reducing this inflammation in PCOS. (Created with BioRender.com).


Subject(s)
Diet, Mediterranean , Hyperandrogenism , Insulin Resistance , Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/diagnosis , Polycystic Ovary Syndrome/metabolism , Hyperandrogenism/metabolism , Quality of Life , Inflammation , Obesity , Dietary Fiber
18.
Life Sci ; 313: 121224, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36435224

ABSTRACT

AIMS: Polycystic ovary syndrome (PCOS) is a common endocrine disorder in the women of childbearing age. It is characterized by hyperandrogenism and abnormal follicular growth and ovulation. The polyol pathway is a glucose metabolism bypass pathway initiated by aldose reductase (ADR). Androgen induces the expression of ADR in the male reproductive tract, which has a general physiological significance for male reproductive function. Here we investigate whether hyperandrogenemia in PCOS leads to increased flux of the polyol pathway in ovarian tissue, which in turn affects follicular maturation and ovulation through oxidative stress. MAIN METHODS: We used clinical epidemiological methods to collect serum and granulosa cells from clinical subjects for a clinical case-control study. At the same time, cell biology and molecular biology techniques were used to conduct animal and cell experiments to further explore the mechanism of hyperandrogen-induced ovarian polyol pathway hyperactivity and damage to ovarian function. KEY FINDINGS: Here, we find that hyperandrogenism of PCOS can induce the expression of ovarian aldose reductase, which leads to the increase of the polyol pathway flux, and affects ovarian function through excessive oxidative stress. SIGNIFICANCE: Our research has enriched the pathological mechanism of PCOS and may provide a new clue for the clinical treatment of PCOS.


Subject(s)
Hyperandrogenism , Polycystic Ovary Syndrome , Humans , Animals , Female , Male , Polycystic Ovary Syndrome/metabolism , Hyperandrogenism/metabolism , Aldehyde Reductase/metabolism , Case-Control Studies , Oxidative Stress
19.
BMC Mol Cell Biol ; 23(1): 47, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36368943

ABSTRACT

BACKGROUND: Although hormonal and metabolic dysfunction have been recognized as a possible cause of polycystic ovarian syndrome (PCOS), the associations between hyperandrogenism and aryl hydrocarbon receptor (Ahr) signaling pathway remains controversial. The current study aimed to investigate the effect of hyperandrogenism on oocyte developmental competency via regarding Ahr signaling downstream pathway in granulosa cells. MATERIALS AND METHODS: Granulosa cells were collected from 45 PCOS patients under assisted reproductive technique (ART). Gene expression of Ahr downstream pathway was evaluated based on Reverse Transcription Q-PCR assay. Moreover the correlation was investigated between gene expression and hyperandrogenism, and oocyte developmental competency in PCOS. RESULTS: From the 45 PCOS patients, 26 (64.44%) had a high level of follicular fluid testosterone (FFT). Based on the FFT level, two groups of PCOS: HFT (high level of FFT) and non-HFT, were shown significant differences in oocyte and embryo quality, and fertilization and cleavage rates. Moreover, the mean relative expressions of Ahr and Arnt genes were significantly higher in HFT -PCOS group (p < 0.01 and p < 0.01) respectively. Also, the significant positive correlations were obtained for Ahr, Arnt, Cyp1A1, and Cyp1B1 with incidence of clinical hyperandrogenism and FFT level. Besides, our results showed that Ahr, Cyp1A1, and Cyp1B1 gene expression was correlated significantly with fertilization rate. CONCLUSION: The present study suggested that hyperandrogenism could impair oocyte developmental competency via affecting Ahr signaling downstream pathway.


Subject(s)
Hyperandrogenism , Polycystic Ovary Syndrome , Female , Humans , Follicular Fluid/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Hyperandrogenism/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Testosterone , Oocytes/metabolism
20.
Mol Metab ; 65: 101583, 2022 11.
Article in English | MEDLINE | ID: mdl-36096453

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common endocrine disorder, defined by reproductive and endocrine abnormalities, with metabolic dysregulation including obesity, insulin resistance and hepatic steatosis. Recently, it was found that skeletal muscle insulin sensitivity could be improved in obese, post-menopausal, pre-diabetic women through treatment with nicotinamide mononucleotide (NMN), a precursor to the prominent redox cofactor nicotinamide adenine dinucleotide (NAD+). Given that PCOS patients have a similar endocrine profile to these patients, we hypothesised that declining NAD levels in muscle might play a role in the pathogenesis of the metabolic syndrome associated with PCOS, and that this could be normalized through NMN treatment. Here, we tested the impact of NMN treatment on the metabolic syndrome of the dihydrotestosterone (DHT) induced mouse model of PCOS. We observed lower NAD levels in the muscle of PCOS mice, which was normalized by NMN treatment. PCOS mice were hyperinsulinaemic, resulting in increased adiposity and hepatic lipid deposition. Strikingly, NMN treatment completely normalized these aspects of metabolic dysfunction. We propose that addressing the decline in skeletal muscle NAD levels associated with PCOS can normalize insulin sensitivity, preventing compensatory hyperinsulinaemia, which drives obesity and hepatic lipid deposition, though we cannot discount an impact of NMN on other tissues to mediate these effects. These findings support further investigation into NMN treatment as a new therapy for normalizing the aberrant metabolic features of PCOS.


Subject(s)
Hyperandrogenism , Insulin Resistance , Metabolic Syndrome , Polycystic Ovary Syndrome , Animals , Dihydrotestosterone/metabolism , Female , Humans , Hyperandrogenism/metabolism , Insulin Resistance/physiology , Lipids , Metabolic Syndrome/metabolism , Mice , Muscle, Skeletal/metabolism , NAD/metabolism , Nicotinamide Mononucleotide/metabolism , Obesity/metabolism , Polycystic Ovary Syndrome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...