Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Primatol ; 48(3): 161-165, 2019 06.
Article in English | MEDLINE | ID: mdl-30724368

ABSTRACT

BACKGROUND: Nonketotic hyperglycinemia (NKH) is a rare metabolic disorder that is characterized by high levels of glycine in plasma and cerebrospinal fluid in humans. In this study, total congenital cataract captive-bred Vervet monkeys (Chlorocebus aethiops) that are hyperglycinemic were screened to identify mutations in Bola type 3 (BOLA3), glutaredoxin 5 (GLRX5), and lipoate synthase (LIAS) genes. METHODS: Twenty-four Vervet monkeys (12 hyperglycinemic and 12 healthy controls) were selected for mutation analysis using polymerase chain reaction (PCR), Sanger sequencing, and reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: Novel sequence variants were identified in BOLA3 (R23H and Q38R) and LIAS (R369I and A371A), and gene expression in the control group was significantly lower compared to the hyperglycinemic group (P < 0.05). CONCLUSION: The data obtained from this study will contribute to generation of new knowledge regarding the involvement of these genes in NKH development.


Subject(s)
Cataract/congenital , Chlorocebus aethiops , Genetic Diseases, X-Linked/veterinary , Hyperglycinemia, Nonketotic/veterinary , Microphthalmos/veterinary , Monkey Diseases/genetics , Animals , Animals, Zoo , Cataract/genetics , Cataract/veterinary , Genetic Diseases, X-Linked/genetics , Hyperglycinemia, Nonketotic/genetics , Microphthalmos/genetics
2.
J Med Primatol ; 45(4): 189-94, 2016 08.
Article in English | MEDLINE | ID: mdl-27325422

ABSTRACT

BACKGROUND: Non-ketotic hyperglycinaemia (NKH) is an autosomal recessive inborn error of glycine metabolism characterized by accumulation of glycine in body fluids and various neurological symptoms. METHODS: This study describes the first screening of NKH in cataract captive-bred vervet monkeys (Chlorocebus aethiops). Glycine dehydrogenase (GLDC), aminomethyltransferase (AMT) and glycine cleavage system H protein (GCSH) were prioritized. RESULTS: Mutation analysis of the complete coding sequence of GLDC and AMT revealed six novel single-base substitutions, of which three were non-synonymous missense and three were silent nucleotide changes. CONCLUSION: Although deleterious effects of the three amino acid substitutions were not evaluated, one substitution of GLDC gene (S44R) could be disease-causing because of its drastic amino acid change, affecting amino acids conserved in different primate species. This study confirms the diagnosis of NKH for the first time in vervet monkeys with cataracts.


Subject(s)
Aminomethyltransferase/genetics , Cataract/veterinary , Chlorocebus aethiops , Glycine Decarboxylase Complex H-Protein/genetics , Glycine Dehydrogenase/genetics , Hyperglycinemia, Nonketotic/veterinary , Monkey Diseases/genetics , Point Mutation , Amino Acid Sequence , Aminomethyltransferase/chemistry , Aminomethyltransferase/metabolism , Animals , Cataract/genetics , Glycine Decarboxylase Complex H-Protein/chemistry , Glycine Decarboxylase Complex H-Protein/metabolism , Glycine Dehydrogenase/chemistry , Glycine Dehydrogenase/metabolism , Hyperglycinemia, Nonketotic/genetics , Mutation, Missense
SELECTION OF CITATIONS
SEARCH DETAIL
...