Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
1.
J Bone Miner Metab ; 42(3): 302-315, 2024 May.
Article in English | MEDLINE | ID: mdl-38753007

ABSTRACT

INTRODUCTION: High + Gz loads, the gravitational forces experienced by the body in hypergravity environments, can lead to bone loss in pilots and astronauts, posing significant health risks. MATERIALS AND METHODS: To explore the effect of treadmill exercise on bone tissue recovery, a study was conducted on 72 male Wistar rats. These rats were subjected to four weeks of varying levels of periodic high + Gz loads (1G, 8G, 20G) experiments, and were subsequently divided into the treadmill group and the control group. The treadmill group underwent a continuous two-week treadmill experiment, while the control group rested during this period. The mechanical properties, microstructure, and molecular markers of their tibial bone tissue were measured using three-point bending, micro-CT, and PCR. RESULTS: The results showed that treadmill exercise improved the elastic modulus, ultimate deflection, and ultimate load of rat bone tissue. It also increased the number, density, and volume fraction of bone trabeculae, and decreased their separation. Moreover, treadmill exercise enhanced osteogenesis and inhibited osteoclastogenesis. CONCLUSION: This study demonstrates that treadmill exercise can promote the recovery of bone tissue in rats subjected to high + Gz loads, providing a potential countermeasure for bone loss in pilots and astronauts.


Subject(s)
Hypergravity , Osteogenesis , Physical Conditioning, Animal , Rats, Wistar , Animals , Male , Physical Conditioning, Animal/physiology , Rats , Osteogenesis/physiology , Hypergravity/adverse effects , Tibia/physiology , Bone and Bones/physiology , X-Ray Microtomography , Bone Density/physiology
2.
Sci Rep ; 14(1): 8749, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627423

ABSTRACT

The fighter pilots exposed to high gravitational (G) acceleration must perform anti-G maneuvers similar to the Valsalva maneuver. However, the effects of high-G acceleration and anti-G maneuvers on cardiac function have rarely been studied. This study aimed to investigate the effects of high-G forces on cardiac function of fighter pilots. Fighter pilots who underwent regular health check-ups and echocardiography were included (n = 29; 100% men, 41 ± 10 years old; mean flight time, 1821 ± 1186 h). Trainees who had not experienced any flights were included in the control group (n = 16; 100% men, 36 ± 17 years old). Echocardiographic data included left ventricular chamber size, systolic and diastolic functions, right ventricular systolic pressure (RVSP), inferior vena cava (IVC) collapsibility, and tricuspid annular plane systolic excursion (TAPSE). No significant differences in left ventricular ejection fraction, RVSP, or IVC collapsibility were observed between two groups. In the multivariate linear regression analysis with total flight time as an independent continuous variable for fighter pilots, TAPSE was positively correlated with total flight time. The experience of fighter pilots who were exposed to high-G acceleration forces and anti-G maneuvers did not cause cardiac structural changes, but the exposure might be associated with right heart function changes.


Subject(s)
Hypergravity , Pilots , Male , Humans , Adult , Middle Aged , Young Adult , Female , Stroke Volume , Ventricular Function, Left , Hypergravity/adverse effects , Acceleration
3.
PLoS One ; 18(9): e0282625, 2023.
Article in English | MEDLINE | ID: mdl-37773950

ABSTRACT

In the age of space exploration, the effect of hypergravity on human physiology is a relatively neglected topic. However, astronauts have several experiences of hypergravity during their missions. The main disturbance of altered gravity can be imputed to cell cytoskeleton alteration and physiologic homeostasis of the body. Testis has proved to be a particularly sensible organ, subject to environmental alteration and physiological disturbance. This makes testis an organ eligible for investigating the alteration following exposure to altered gravity. In our study, mice were exposed to hypergravity (3g for 14 days) in the Large Diameter Centrifuge machine (ESA, Netherland). We have observed a morphological alteration of the regular architecture of the seminiferous tubules of testis as well as an altered expression of factors involved in the junctional complexes of Sertoli cells, responsible for ensuring the morpho-functional integrity of the organ. The expression of key receptors in physiological performance, such as Androgen Receptors and Interstitial Cells Stimulating Hormone receptors, was found lower expressed. All these findings indicate the occurrence of altered physiological organ performance such as the reduction of the spermatozoa number and altered endocrine parameters following hypergravity exposure.


Subject(s)
Gravity, Altered , Hypergravity , Male , Adult , Mice , Animals , Humans , Hypergravity/adverse effects , Testis , Centrifugation , Gravitation , Mammals
4.
Exp Brain Res ; 241(9): 2249-2259, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37542004

ABSTRACT

The effects of hypergravity and the associated increased pressure on the human body have not yet been studied in detail, but are of great importance for the safety of astronauts on space missions and could have a long-term impact on rehabilitation strategies for neurological patients. Considering the plans of international space agencies with the exploration of Mars and Moon, it is important to explore the effects of both extremes, weightlessness and hypergravity. During parabolic flights, a flight manoeuvre that artificially creates weightlessness and hypergravity, electrocortical activity as well as behavioural parameters (error rate and reaction time) and neuronal parameters (event-related potentials P300 and N200) were examined with an electroencephalogram. Thirteen participants solved a neurocognitive task (mental arithmetic task as a primary task and oddball paradigm as a secondary task) within normal as well as hypergravity condition in fifteen consecutive parabolas for 22 s each. No changes between the different gravity levels could be observed for the behavioural parameters and cortical current density. A significantly lower P300 amplitude was observed in 1 G, triggered by the primary task and the target sound of the oddball paradigm. The N200, provoked by the sounds of the oddball paradigm, revealed a higher amplitude in 1.8 G. A model established by Kohn et al. (2018) describing changes in neural communication with decreasing gravity can be used here as an explanatory approach. The fluid shift increases the intracranial pressure, decreases membrane viscosity and influences the open state probability of ion channels. This leads to an increase in the resting membrane potential, and the threshold for triggering an action potential can be reached more easily. The question now arises whether the observed changes are linear or whether they depend on a specific threshold.


Subject(s)
Hypergravity , Space Flight , Weightlessness , Humans , Hypergravity/adverse effects , Electroencephalography , Evoked Potentials , Reaction Time
5.
Aerosp Med Hum Perform ; 94(8): 584-595, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37501292

ABSTRACT

INTRODUCTION: Prior study has indicated that individuals of varied age, medical history, and limited-to-no experience tolerate spaceflight conditions. We sought to expand upon the understanding of layperson response to hypergravity conditions expected in commercial spaceflight by exposing subjects, following minimal training, to centrifuge-simulated, high-fidelity commercial spaceflight profiles. We further explored how these individuals perform in simulated operational activities during and following hypergravity.METHODS: Volunteer subjects participated in up to five centrifuge runs (maximum +4.0 Gz, +4.5 Gx, 6.1 G resultant; onset rate <0.5 Gz · s-1, ≤1 Gx · s-1). Profiles included two winged spacecraft simulations with sequential and combined +Gx/+Gz and two capsule simulations representing nominal +Gx launch and reentry. The final profile simulated a capsule launch abort, with a more dynamic cycling of +Gx exposures and oscillatory multi-axis exposures simulating parachutes and water motion. Touchscreen tablets were used to administer pattern-replication tasks during and after profiles.RESULTS: A total of 46 subjects participated, including 4 diabetics and 9 with cardiac disease. There was increased frequency of motion sickness, subjectively associated with capsule-type profiles, and increased termination of participation compared to prior studies. There was no association between medical history, age, sex, or motion sickness history and tolerance or noncompletion. Tablet test errors were common; accuracy and time to completion were associated with age. There was no association between any time metric or accuracy and sex.DISCUSSION: This study improves understanding of layperson tolerance in commercial spaceflight analog conditions, and the capsular profiles broaden the applicability of the findings. The frequency of task errors highlights the potential for mistakes in operational activities when performed by laypersons.Blue RS, Ong KM, Ray K, Menon A, Mateus J, Auñón-Chancellor S, Shah R, Powers W. Layperson physiological tolerance and operational performance in centrifuge-simulated spaceflight. Aerosp Med Hum Perform. 2023; 94(8):584-595.


Subject(s)
Aerospace Medicine , Hypergravity , Motion Sickness , Space Flight , Humans , Centrifugation , Hypergravity/adverse effects
6.
Aerosp Med Hum Perform ; 94(6): 470-474, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37194177

ABSTRACT

INTRODUCTION: With increasing engagement of commercial spaceflight participants in spaceflight activities, the evaluation of individuals with medical conditions not previously characterized in the spaceflight environment is of particular interest. Factors such as acceleration forces experienced during launch, reentry, and landing of spacecraft could pose an altered risk profile in some individuals due to known disease. Bleeding diatheses present a unique concern in the spaceflight environment given hypergravity exposure and, particularly, the potential for injury resulting from transient or impact acceleration.CASE REPORT: A 26-yr-old Caucasian man with severe hemophilia A and no detectable endogenous Factor VIII (FVIII) volunteered for participation in hypergravity exposures simulating spaceflight. His treatment regimen included 50 IU · kg-1 FVIII-Fc fusion protein intravenous administration every 96 h, with supplemental FVIII administration as needed for injury or bleeding. The subject experienced two profiles at the National Aerospace Training and Research Center (NASTAR), with maximum exposure +4.0 Gz, +4.5 Gx, 6.1 G resultant, and maximum onset rate <0.5 Gz · s-1 and +1 Gx · s-1. The subject reported no abnormal events during the profiles other than brief mild vertigo. No petechial hemorrhage, ecchymosis, or other bleeding was noted during or after profiles. Supplemental FVIII was not required before, during, or after exposure.DISCUSSION: Inherited bleeding disorders present several potential concerns that must be evaluated prior to spaceflight participation. Cautious review and management of medical history, adherence and barriers to treatment, duration of spaceflight and longitudinal management concerns, and a thorough and detailed risk/benefit assessment may provide a future pathway for inclusion of individuals with hematological disorders in commercial spaceflight.Reeves IA, Blue RS, Auñon-Chancellor S, Harrison MF, Shah R, Powers WE. Tolerance of centrifuge-simulated commercial spaceflight in a subject with hemophilia A. Aerosp Med Hum Perform. 2023; 94(6):470-474.


Subject(s)
Aerospace Medicine , Hemophilia A , Hypergravity , Space Flight , Male , Humans , Hemophilia A/complications , Centrifugation , Hypergravity/adverse effects
7.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R21-R30, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37154507

ABSTRACT

The study examined intra- and interlimb variations in cutaneous vessel responsiveness to acute and repeated transmural pressure elevations. In 11 healthy men, red blood cell flux was assessed via laser-Doppler flowmetry on both glabrous and nonglabrous skin regions of an arm (finger and forearm) and leg (toe and lower leg), across a wide range of stepwise increasing distending pressures imposed in the vessels of each limb separately. The pressure-flux cutaneous responses were evaluated before and after 5 wk of intermittent (40 min, 3 sessions per week) exposures to hypergravity (∼2.6-3.3 G; G training). Before and after G training, forearm and lower leg blood flux were relatively stable up to ∼210 and ∼240 mmHg distending pressures, respectively; and then they increased two- to threefold (P < 0.001). Finger blood flux dropped promptly (P < 0.001), regardless of the G training (P = 0.64). At ≤120-mmHg distending pressures, toe blood flux enhanced by ∼40% (P ≤ 0.05); the increase was augmented after the G training (P = 0.01). At high distending pressures, toe blood flux dropped by ∼70% in both trials (P < 0.001). The present results demonstrate that circulatory autoregulation is more pronounced in glabrous skin than in nonglabrous skin, and in nonglabrous sites of the leg than in those of the arm. Repetitive high-sustained gravitoinertial stress does not modify the pressure-flow relationship in the dependent skin vessels of the arm nor in the nonglabrous sites of the lower leg. Yet it may partly inhibit the myogenic responsiveness of the toe's glabrous skin.


Subject(s)
Hypergravity , Male , Humans , Hypergravity/adverse effects , Skin , Forearm , Fingers , Leg , Regional Blood Flow/physiology , Laser-Doppler Flowmetry
8.
J Physiol Sci ; 72(1): 18, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35915429

ABSTRACT

Hypothermia has been observed during hypergravity load in mice and rats. This response is beneficial for maintaining blood glucose level, although food intake decreases. However, saving glucose is not enough to maintain blood glucose level during hypergravity load. In this study, we examined the contribution of humoral factors related to glycolysis in maintaining blood glucose level in a 2 G environment. Increased plasma corticosterone levels were observed in mice with intact peripheral vestibular organs, but not in mice with vestibular lesions. Plasma glucagon levels did not change, and decrease in plasma adrenaline levels was observed in mice with intact peripheral vestibular organs. Accordingly, it is possible that increase in plasma corticosterone level and hypothermia contribute to prevent hypoglycemia in a 2 G environment.


Subject(s)
Hyperglycemia , Hypergravity , Hypothermia , Animals , Blood Glucose , Corticosterone , Hypergravity/adverse effects , Mice , Rats
9.
Aerosp Med Hum Perform ; 93(7): 581-592, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35859306

ABSTRACT

BACKGROUND: Optimal human performance and health is dependent on steady blood supply to the brain. Hypergravity (+Gz) may impair cerebral blood flow (CBF), and several investigators have also reported that microgravity (0 G) may influence cerebral hemodynamics. This has led to concerns for safe performance during acceleration maneuvers in aviation or the impact long-duration spaceflights may have on astronaut health.METHODS: A systematic PEO (Population, Exposure, Outcome) search was done in PubMed and Web of Science, addressing studies on how elevated +Gz forces or absence of such may impact cerebral hemodynamics. All primary research containing anatomical or physiological data on relevant intracranial parameters were included. Quality of the evidence was analyzed using the GRADE tool.RESULTS: The search revealed 92 eligible articles. It is evident that impaired CBF during +Gz acceleration remains an important challenge in aviation, but there are significant variations in individual tolerance. The reports on cerebral hemodynamics during weightlessness are inconsistent, but published data indicate that adaptation to sustained microgravity is also characterized by significant variations among individuals.DISCUSSION: Despite a high number of publications, the quality of evidence is limited due to observational study design, too few included subjects, and methodological challenges. Clinical consequences of high +Gz exposure are well described, but there are significant gaps in knowledge regarding the intracranial pathophysiology and individual hemodynamic tolerance to both hypergravity and microgravity environments.Saehle T. Cerebral hemodynamics during exposure to hypergravity (+Gz) or microgravity (0 G). Aerosp Med Hum Perform. 2022; 93(7):581-592.


Subject(s)
Hypergravity , Weightlessness , Acceleration , Centrifugation , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Humans , Hypergravity/adverse effects , Weightlessness/adverse effects
10.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R597-R608, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35470711

ABSTRACT

Despite decades of experience from high-gravitoinertial (G) exposures in aircraft and centrifuges, information is scarce regarding primary cardiovascular adaptations to +Gz loads in relaxed humans. Thus, effects of G-training are typically evaluated after regimens that are confounded by concomitant use of anti-G straining maneuvers, anti-G suits, and pressure breathing. Accordingly, the aim was to evaluate cardiovascular adaptations to repeated +Gz exposures in the relaxed state. Eleven men underwent 5 wk of centrifuge G training, consisting of 15 × 40 min +Gz exposures at G levels close to their individual relaxed G-level tolerance. Before and after the training regimen, relaxed G-level tolerance was investigated during rapid onset-rate (ROR) and gradual onset-rate (GOR) G exposures, and cardiovascular responses were investigated during orthostatic provocation and vascular pressure-distension tests. The G training resulted in: 1) a 13% increase in relaxed ROR G tolerance (P < 0.001), but no change in GOR G tolerance, 2) increased pressure resistance in the arteries and arterioles of the legs (P < 0.001), but not the arms, and 3) a reduced initial drop in arterial pressure upon ROR high G, but no change in arterial pressure under basal resting conditions or during GOR G loading, or orthostatic provocation. The results suggest +Gz adaptation via enhanced pressure resistance in dependent arteries/arterioles. Presumably, this reflects local adaptations to high transmural pressures, resulting from the +Gz-induced exaggeration of the intravascular hydrostatic pressure gradients.


Subject(s)
Aerospace Medicine , Hypergravity , Acceleration , Adaptation, Physiological/physiology , Centrifugation , Humans , Hypergravity/adverse effects , Male
11.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201720

ABSTRACT

Microgravity acts on cellular systems on several levels. Cells of the immune system especially react rapidly to changes in gravity. In this study, we performed a correlative metabolomics analysis on short-term and long-term microgravity effects on primary human macrophages. We could detect an increased amino acid concentration after five minutes of altered gravity, that was inverted after 11 days of microgravity. The amino acids that reacted the most to changes in gravity were tightly clustered. The observed effects indicated protein degradation processes in microgravity. Further, glucogenic and ketogenic amino acids were further degraded to Glucose and Ketoleucine. The latter is robustly accumulated in short-term and long-term microgravity but not in hypergravity. We detected highly dynamic and also robust adaptative metabolic changes in altered gravity. Metabolomic studies could contribute significantly to the understanding of gravity-induced integrative effects in human cells.


Subject(s)
Hypergravity/adverse effects , Macrophages/metabolism , Metabolome , Space Flight , Weightlessness/adverse effects , Cells, Cultured , Humans
12.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33803957

ABSTRACT

Using rotors to expose animals to different levels of hypergravity is an efficient means of understanding how altered gravity affects physiological functions, interactions between physiological systems and animal development. Furthermore, rotors can be used to prepare space experiments, e.g., conducting hypergravity experiments to demonstrate the feasibility of a study before its implementation and to complement inflight experiments by comparing the effects of micro- and hypergravity. In this paper, we present a new platform called the Gravitational Experimental Platform for Animal Models (GEPAM), which has been part of European Space Agency (ESA)'s portfolio of ground-based facilities since 2020, to study the effects of altered gravity on aquatic animal models (amphibian embryos/tadpoles) and mice. This platform comprises rotors for hypergravity exposure (three aquatic rotors and one rodent rotor) and models to simulate microgravity (cages for mouse hindlimb unloading and a random positioning machine (RPM)). Four species of amphibians can be used at present. All murine strains can be used and are maintained in a specific pathogen-free area. This platform is surrounded by numerous facilities for sample preparation and analysis using state-of-the-art techniques. Finally, we illustrate how GEPAM can contribute to the understanding of molecular and cellular mechanisms and the identification of countermeasures.


Subject(s)
Hypergravity/adverse effects , Rodentia/physiology , Space Flight , Weightlessness/adverse effects , Animals , Humans , Larva/pathogenicity , Larva/radiation effects , Mice , Models, Animal , Xenopus laevis/physiology
13.
J Am Heart Assoc ; 9(24): e016479, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33283577

ABSTRACT

Background Hypergravity may promote human hemostasis thereby increasing thrombotic risk. Future touristic suborbital spaceflight will expose older individuals with chronic medical conditions, who are at much higher thromboembolic risk compared with professional astronauts, to hypergravity. Therefore, we tested the impact of hypergravity on hemostasis in healthy volunteers undergoing centrifugation. Methods and Results We studied 20 healthy seated men before and after 15 minutes under 3 Gz hypergravity on a long-arm centrifuge. We obtained blood samples for hemostasis testing before, immediately after, and 30 minutes after centrifugation. Tests included viscoelastic thromboelastometry, platelet impedance aggregometry, endothelial activation markers, blood rheology testing, microparticle analyses, and clotting factor analysis. Exposure to hypergravity reduced plasma volume by 12.5% (P=0.002) and increased the red blood cell aggregation index (P<0.05). With hypergravity, thrombelastographic clotting time of native blood shortened from 719±117 seconds to 628±89 seconds (P=0.038) and platetet reactivity increased (P=0.045). Hypergravity shortened partial thromboplastin time from 28 (26-29) seconds to 25 (24-28) seconds (P<0.001) and increased the activity of coagulation factors (eg, factor VIII 117 [93-134] versus 151 [133-175] %, P<0.001). Tissue factor concentration was 188±95 pg/mL before and 298±136 pg/mL after hypergravity exposure (P=0.023). Antithrombin (P=0.005), thrombin-antithrombin complex (P<0.001), plasmin-alpha2-antiplasmin complex (0.002), tissue-plasminogen activatior (P<0.001), and plasminogen activator inhibitor-1 (P=0.002) increased with centrifugation. Statistical adjustment for plasma volume attenuated changes in coagulation. Conclusions Hypergravity triggers low-level hemostasis activation through endothelial cell activation, increased viscoelasticity, and augmented platelet reactivity, albeit partly counteracted through endogenous coagulation inhibitors release. Hemoconcentration may contribute to the response.


Subject(s)
Blood Coagulation Tests/methods , Blood Coagulation/physiology , Healthy Volunteers/statistics & numerical data , Hemostasis/physiology , Hypergravity/adverse effects , Adult , Astronauts/statistics & numerical data , Blood Coagulation Tests/statistics & numerical data , Endothelial Cells/physiology , Humans , Male , Rheology/methods , Risk Assessment , Space Flight/statistics & numerical data , Thrombelastography/methods , Thrombosis/blood , Thrombosis/etiology
14.
Article in English | MEDLINE | ID: mdl-33147694

ABSTRACT

Gravity in the head-to-toe direction, known as +Gz (G force), forces blood to pool in the lower body. Fighter pilots experience decreases in blood pressure when exposed to hypergravity in flight. Human centrifuge has been used to examine the G tolerance and anti-G straining maneuver (AGSM) techniques of military pilots. Some factors that may affect G tolerance have been reported but are still debated. The aim of this study was to investigate the physiological responses and anthropometric factors correlated with G tolerance. We retrospectively reviewed the training records of student pilots who underwent high G training. Variables were collected to examine their correlations with the outcome of 7.5G sustained for 15 s (7.5G profile). There were 873 trainees who underwent 7.5G profile training, 44 trainees (5.04%) could not sustain the test for 15 s. The group with a small heart rate (HR) increase (less than 10%) during the first 1-5 s of the 7.5G profile had a nearly ten-fold higher failing chance compared with the large HR increase group (adjusted odds ratio: 9.91; 95% confidence interval: 4.11-23.88). The chances of failure were inversely related to the HR increase percentage (p for trend <0.001). Factors, including body mass index, relaxed and straining G tolerance, and AGSM, were found to be negatively correlated with the outcome.


Subject(s)
Aerospace Medicine , Hypergravity , Military Personnel , Adult , Gravitation , Humans , Hypergravity/adverse effects , Retrospective Studies , Young Adult
15.
J Neurophysiol ; 124(6): 1986-1994, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32997579

ABSTRACT

We compared voluntary oscillatory sway for eight subjects tested in 1.8-g and 1-g gravito-inertial force (GIF) levels of parabolic flight. Subjects performed voluntary forward-backward (FB) and lateral left-right (LR) swaying as the forces and moments under the soles of each foot were measured. We calculated the experimental values of three parameters: two ankle stiffness parameters KSAP and KSML acting in orthogonal FB and LR directions and one parameter KED related to leg pivot shifting. Simulations of the engaged leg model (Bakshi A, DiZio P, Lackner JR. J Neurophysiol 121: 2042-2060, 2019; Bakshi A, DiZio P, Lackner JR. J Neurophysiol 121: 2028-2041, 2019) correctly predicted the experimentally determined stability bounds of upright balance and also the scaling of the postural parameters as a function of GIF magnitude. The effective stiffness, KSAP, at the ankles played the primary role to prevent falling in FB swaying and both model predictions, and experimental data showed KSAP to scale up in proportion to GIF magnitude. For LR swaying, the model predicted a 3:4 scaling of anterior-posterior stiffness to change in GIF magnitude, which was borne out by the experimental data. Simulations predict stability (nonfalling) not to depend on lateral stiffness, KSML, which was experimentally found not to depend on the GIF magnitude. Both model and experiment showed that the geometry-dependent pivot shift parameter KED was invariant to a change in GIF magnitude. Thus the ELM explains voluntary sway and balance in altered GIF magnitude conditions, rotating environments with Coriolis perturbations of sway, as well as normal terrestrial conditions.NEW & NOTEWORTHY A nonparallel leg model of balance, the engaged leg model (ELM), was previously developed to characterize adaptive balance control in a rotating environment. Here we show the ELM also explains sway in hypergravity. It predicts the changes in balance control parameters with changes in gravity. ELM is currently the only balance model applicable to artificial and hypergravity conditions. ELM can also be applied to terrestrial clinical situations for pathologies that generate postural asymmetries.


Subject(s)
Biomechanical Phenomena/physiology , Hypergravity/adverse effects , Postural Balance/physiology , Standing Position , Adult , Aged , Female , Humans , Male , Middle Aged
16.
Sci Rep ; 10(1): 15813, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978417

ABSTRACT

The gravity is necessary for living organisms to operate various biological events including hippocampus-related functions of learning and memory. Until now, it remains inconclusive how altered gravity is associated with hippocampal functions. It is mainly due to the difficulties in generating an animal model experiencing altered gravity. Here, we demonstrate the effects of hypergravity on hippocampus-related functions using an animal behavior and electrophysiology with our hypergravity animal model. The hypergravity (4G, 4 weeks) group showed impaired synaptic efficacy and long-term potentiation in CA1 neurons of the hippocampus along with the poor performance of a novel object recognition task. Our studies suggest that altered gravity affects hippocampus-related cognitive functions, presumably through structural and functional adaptation to various conditions of gravity shift.


Subject(s)
Behavior, Animal , Brain/pathology , Hypergravity/adverse effects , Neuronal Plasticity , Neurons/pathology , Recognition, Psychology , Visual Perception , Animals , Hippocampus/pathology , Long-Term Potentiation , Male , Maze Learning , Memory Disorders/etiology , Memory Disorders/pathology , Neurons/metabolism , Rats , Rats, Sprague-Dawley
17.
Int J Mol Sci ; 21(10)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423045

ABSTRACT

BACKGROUND: we aimed at investigating the influence of weightlessness and hypergravity by means of parabolic flight on the levels of the heart failure biomarkers H-FABP, sST2, IL-33, GDF-15, suPAR and Fetuin-A. METHODS: 14 healthy volunteers (males: eight; mean age: 28.9) undergoing 31 short-term phases of weightlessness and hypergravity were included. At different time points (baseline, 1 h/24 h after parabolic flight), venous blood was drawn and analyzed by the use of ELISA. RESULTS: sST2 evidenced a significant decrease 24 h after parabolic flight (baseline vs. 24, p = 0.009; 1 h vs. 24 h, p = 0.004). A similar finding was observed for GDF-15 (baseline vs. 24 h, p = 0.002; 1 h vs. 24 h, p = 0.025). The suPAR showed a significant decrease 24 h after parabolic flight (baseline vs. 24 h, p = 0.1726; 1 h vs. 24 h, p = 0.009). Fetuin-A showed a significant increase at 1 h and 24 h after parabolic flight (baseline vs. 24 h, p = 0.007; 1 h vs. 24 h, p = 0.04). H-FABP and IL-33 showed no significant differences at all time points. CONCLUSION: Our results suggest a reduction in cardiac stress induced by exposure to gravitational changes. Moreover, our findings indicate an influence of gravitational changes on proliferative processes and calcium homeostasis.


Subject(s)
Biomarkers/blood , Heart Failure/blood , Hypergravity/adverse effects , Weightlessness/adverse effects , Adult , Calcium/metabolism , Fatty Acid Binding Protein 3/blood , Female , Growth Differentiation Factor 15/blood , Heart Failure/physiopathology , Humans , Interleukin-33/blood , Male , Space Flight , alpha-2-HS-Glycoprotein/metabolism
18.
Sci Rep ; 9(1): 16608, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719640

ABSTRACT

The overall objective of this study was to test the hypothesis that +Gz (hypergravity/positive acceleration) and microgravity can both aggravate intervertebral disc degeneration (IVDD). Due to +Gz and microgravity, many pilots develop IVDD. However, the lack of animal models of IVDD under conditions of simulated +Gz and microgravity has hampered research on the onset and prevention of IVDD. Rabbits were randomly allotted to a control group, microgravity group, +Gz group, or mixed (+Gz + microgravity) group. A tail-suspension model was utilized to simulate a microgravity environment and an animal centrifuge to mimic +Gz conditions. After exposure to the above conditions for 4, 8, and 24 weeks, the body weights (BW) of animals in the control group gradually increased over time, while those of animals in the microgravity and mixed groups both decreased (p < 0.001). As compared with the control group, the proteoglycan content of animals in the other three groups was significantly reduced (F = 192.83, p < 0.001). The imageological, histopathological, and immunohistochemical changes to the L6-S1 intervertebral disc samples suggests that the effects of +Gz and microgravity can aggravate IVDD over time. The mixed effects of +Gz and microgravity had the greatest effect on degeneration and +Gz had a particularly greater effect than microgravity.


Subject(s)
Hypergravity/adverse effects , Intervertebral Disc Degeneration/etiology , Weightlessness Simulation/adverse effects , Animals , Disease Models, Animal , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/prevention & control , Male , Rabbits
19.
Aerosp Med Hum Perform ; 90(11): 925-933, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31666153

ABSTRACT

BACKGROUND: UK Royal Air Force fast jet aircrew use three different anti-G systems, however, little objective comparison of the G protection they provide exists. The G-protection afforded by each system and associated hemodynamic responses were investigated.METHODS: Ten subjects performed centrifuge acceleration exposures using Mk-10 (S1) and Mk-4 (S2) five-bladder anti-G trousers (AGT) and full coverage AGT plus pressure breathing for G-protection (PBG; S3). Measurements of relaxed G tolerance (RGT), eye-level blood pressure (BPeye), lower body blood volume (LBV), stroke volume (SV) and total peripheral resistance (TPR) were made during gradual onset runs (GOR) and rapid onset runs (ROR). The subjective effort required to maintain clear vision at +7 and +8 Gz provided an indication of the protection provided by the system.RESULTS: All systems moderated decreases in SV and BPeye and increases in LBV under increased +Gz. S3 provided the greatest mean RGT during GOR (+6.2 Gz) and ROR (+6 Gz), reduced the effort required to maintain clear vision at up to +8 Gz, prevented venous pooling and afforded the greatest rise in TPR. The majority of indices revealed no difference between S1 and S2 although RGT during the ROR was greater with S2 (+0.25 Gz).DISCUSSION: S3 effectively prevented pooling of blood in the lower limbs under +Gz, despite the use of PBG, and offers an advantage over five-bladder AGT. Given the similarities of S1 and S2, it was unsurprising that the majority of indices measured were similar. The objective measurement of hemodynamic parameters provides useful information for comparing the G-protection provided by anti-G systems.Pollock RD, Firth RV, Storey JA, Phillips KE, Connolly DM, Green NDC, Stevenson AT. Hemodynamic responses and G protection afforded by three different anti-G systems. Aerosp Med Hum Perform. 2019; 90(11):925-933.


Subject(s)
Aerospace Medicine/instrumentation , Gravity Suits , Hemodynamics/physiology , Hypergravity/adverse effects , Military Personnel , Acceleration/adverse effects , Adult , Centrifugation/adverse effects , Humans , Male , United Kingdom , Young Adult
20.
Aerosp Med Hum Perform ; 90(11): 959-965, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31666158

ABSTRACT

INTRODUCTION: Exposure to high G force is a known safety hazard in military aviation as well as civilian aerobatic flight. Tolerance to high G forces has been well studied in military pilots, but there is little research directed at civilian pilots who may have medications or medical conditions not permitted in military pilots.METHODS: In this case-control study, we identified 89 fatal high-G aerobatic accidents and 4000 fatal control accidents from 1995 through 2018 from the NTSB accident database and the FAA autopsy database. We retrieved medications and medical conditions from the FAA's pilot medical databases. Logistic regression models were used to explore the associations of drugs, medical conditions, height, and medical waivers with high-G accidents.RESULTS: Seven drugs (alprazolam, clonidine, ethanol, meclizine, phentermine, triamterene, and zolpidem) reached statistical significance in our models, but had such small case counts that we consider these findings to be uncertain, except for ethanol, which was found in seven cases. Of these, only triamterene was known to the FAA. Statistically significant medical predictors included only alcohol abuse (seven cases) and liver disease (only two cases).DISCUSSION: Our analysis found that the drug ethanol and the condition alcohol abuse are significantly associated with high-G accidents. Seven other factors were statistically significant, but should only be considered as hypothesis generating due to very low case counts. Our study does not suggest that restricting pilots with otherwise permissible medications or medical conditions from aerobatics is warranted.Mills WD, Greenhaw RM, Wang JMP. A medical review of fatal high-G U.S. aerobatic accidents. Aerosp Med Hum Perform. 2019; 90(11):959-965.


Subject(s)
Accidents, Aviation/mortality , Aerospace Medicine/statistics & numerical data , Hypergravity/adverse effects , Pilots/statistics & numerical data , Accidents, Aviation/prevention & control , Accidents, Aviation/statistics & numerical data , Alcoholism/complications , Alcoholism/physiopathology , Alprazolam/adverse effects , Case-Control Studies , Clonidine/adverse effects , Databases, Factual/statistics & numerical data , Ethanol/adverse effects , Female , Humans , Liver Diseases/complications , Liver Diseases/physiopathology , Logistic Models , Male , Meclizine/adverse effects , Middle Aged , Phentermine/adverse effects , Triamterene/adverse effects , United States/epidemiology , Zolpidem/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...