Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.639
Filter
1.
ScientificWorldJournal ; 2024: 8128813, 2024.
Article in English | MEDLINE | ID: mdl-38827814

ABSTRACT

The genus Hypericum comprises a large number of species. The flower, leaf, stem, and root of the Hypericum species are widely used in traditional medicine in different cultures. Many Hypericum species have been well investigated phytochemically and pharmacologically. However, only a few reports are available on the H. cordifolium native to Nepal. The present study aims to evaluate the phytochemical composition of different extracts, qualitative analysis of methanol extract of the flower and leaf using thin-layer chromatography (TLC), and the antioxidant properties of components by the TLC-DPPH. assay. The phenolic and flavonoid contents were estimated in different extracts of the leaf and stem, and their antioxidant and antibacterial activities were evaluated. In the phytochemical screening, phenolics and flavonoids were present in ethyl acetate, methanol, and 50% aq methanol extracts of both the leaf and stem. In TLC analysis, the methanol extract of flowers showed the presence of 11 compounds and the leaf extract showed the presence of 8 compounds. Both extracts contained chlorogenic acid and mangiferin. Hyperoside and quercetin were present only in the flower extract. In the TLC-DPPH. assay, almost all of the flower extracts and 5 compounds of the leaf extract showed radical scavenging potential. Estimation of phenolics and flavonoids showed that all the leaf extracts showed higher amounts of phenolics and flavonoids than stem extracts. Among leaf extracts, greater amounts of phenolics were detected in 50% aqueous methanol extract (261.25 ± 1.66 GAE/g extract) and greater amounts of flavonoids were detected in methanol extract (232.60 ± 10.52 CE/g extract). Among stem extracts, greater amounts of flavonoids were detected in the methanol extract (155.12 ± 4.30 CE/g extract). In the DPPH radical scavenging assay, the methanol extract of the leaf showed IC50 60.85 ± 2.67 µg/ml and 50% aq. methanol extract of the leaf showed IC50 63.09 ± 2.98 µg/ml. The methanol extract of the stem showed IC50 89.39 ± 3.23 µg/ml, whereas ethyl acetate and 50% aq. methanol extract showed IC50 > 100 µg/ml. In the antibacterial assay, the methanol extract of the leaf showed the inhibition zone of 12-13 mm and the stem extract showed the inhibition zone of 7-11 mm against S. aureus, E. coli, and S. sonnei, whereas both extracts were inactive against S. typhi. The findings of this study support the traditional use of this plant in Nepal for the treatment of diseases associated with bacterial infections. The present study revealed that the underutilized anatomical parts of H. cordifolium could be the source of various bioactive phytochemicals like other Hypericum species.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Flavonoids , Hypericum , Phytochemicals , Plant Extracts , Hypericum/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Flavonoids/analysis , Flavonoids/chemistry , Plant Leaves/chemistry , Phenols/analysis , Phenols/chemistry , Microbial Sensitivity Tests , Chromatography, Thin Layer , Plant Stems/chemistry
2.
BMC Genomics ; 25(1): 555, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831295

ABSTRACT

BACKGROUND: The search for new bioactive natural compounds with anticancer activity is still of great importance. Even though their potential for diagnostics and treatment of cancer has already been proved, the availability is still limited. Hypericin, a naphthodianthrone isolated essentially from plant source Hypericum perforatum L. along with other related anthraquinones and bisanthraquinones belongs to this group of compounds. Although it has been proven that hypericin is synthesized by the polyketide pathway in plants, none of the candidate genes coding for key enzymes has been experimentally validated yet. Despite the rare occurrence of anthraquinones in plants, their presence in microorganisms, including endophytic fungi, is quite common. Unlike plants, several biosynthetic genes grouped into clusters (BGCs) in fungal endophytes have already been characterized. RESULTS: The aim of this work was to predict, identify and characterize the anthraquinone BGCs in de novo assembled and functionally annotated genomes of selected endophytic fungal isolates (Fusarium oxysporum, Plectosphaerella cucumerina, Scedosporium apiospermum, Diaporthe eres, Canariomyces subthermophilus) obtained from different tissues of Hypericum spp. The number of predicted type I polyketide synthase (PKS) BGCs in the studied genomes varied. The non-reducing type I PKS lacking thioesterase domain and adjacent discrete gene encoding protein with product release function were identified only in the genomes of C. subthermophilus and D. eres. A candidate bisanthraquinone BGC was predicted in C. subthermophilus genome and comprised genes coding the enzymes that catalyze formation of the basic anthraquinone skeleton (PKS, metallo-beta-lactamase, decarboxylase, anthrone oxygenase), putative dimerization enzyme (cytochrome P450 monooxygenase), other tailoring enzymes (oxidoreductase, dehydrogenase/reductase), and non-catalytic proteins (fungal transcription factor, transporter protein). CONCLUSIONS: The results provide an insight into genetic background of anthraquinone biosynthesis in Hypericum-borne endophytes. The predicted bisanthraquinone gene cluster represents a basis for functional validation of the candidate biosynthetic genes in a simple eukaryotic system as a prospective biotechnological alternative for production of hypericin and related bioactive anthraquinones.


Subject(s)
Anthraquinones , Endophytes , Hypericum , Multigene Family , Polyketides , Hypericum/microbiology , Hypericum/genetics , Hypericum/metabolism , Polyketides/metabolism , Endophytes/genetics , Endophytes/metabolism , Anthraquinones/metabolism , Fungi/genetics , Genome, Fungal , Computer Simulation , Polyketide Synthases/genetics , Perylene/analogs & derivatives , Perylene/metabolism , Anthracenes/metabolism , Genomics , Phylogeny
3.
AAPS PharmSciTech ; 25(5): 99, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714608

ABSTRACT

Hypericum perforatum (HP) contains valuable and beneficial bioactive compounds that have been used to treat or prevent several illnesses. Encapsulation technology offers protection of the active compounds and facilitates to expose of the biologically active compounds in a controlled mechanism. Microcapsulation of the hydroalcoholic gum arabic and maltodextrin have hot been used as wall materials in the encapsulation of HP extract. Therefore, the optimum microencapsulation parameters of Hypericum perforatum (HP) hydroalcoholic extract were determined using response surface methodology (RSM) for the evaluation of HP extract. Three levels of three independent variables were screened using the one-way ANOVA. Five responses were monitored, including total phenolic content (TPC), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), carr index (CI), hausner ratio (HR), and solubility. Optimum drying conditions for Hypericum perforatum microcapsules (HPMs) were determined: 180 °C for inlet air temperature, 1.04/1 for ratio of maltodextrin to gum arabic (w/w), and 1.98/1 for coating to core material ratio (w/w). TPC, antioxidant activity, CI, HR, and solubility values were specified as 316.531 (mg/g GAE), 81.912%, 6.074, 1.066, and 35.017%, respectively, under the optimized conditions. The major compounds of Hypericum perforatum (hypericin and pseudohypericin) extract were determined as 4.19 µg/g microcapsule and 15.09 µg/g microcapsule, respectively. Scanning electron microscope (SEM) analysis revealed that the mean particle diameter of the HPMs was 20.36 µm. Based on these results, microencapsulation of HPMs by spray drying is a viable technique which protects the bioactive compounds of HP leaves, facilitating its application in the pharmaceutical, cosmetic, and food industries.


Subject(s)
Antioxidants , Capsules , Drug Compounding , Gum Arabic , Hypericum , Plant Extracts , Polysaccharides , Solubility , Hypericum/chemistry , Plant Extracts/chemistry , Drug Compounding/methods , Gum Arabic/chemistry , Polysaccharides/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Capsules/chemistry , Spray Drying , Phenols/chemistry , Desiccation/methods
4.
Nat Commun ; 15(1): 4525, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806518

ABSTRACT

Medicinal compounds from plants include bicyclo[3.3.1]nonane derivatives, the majority of which are polycyclic polyprenylated acylphloroglucinols (PPAPs). Prototype molecules are hyperforin, the antidepressant constituent of St. John's wort, and garcinol, a potential anticancer compound. Their complex structures have inspired innovative chemical syntheses, however, their biosynthesis in plants is still enigmatic. PPAPs are divided into two subclasses, named type A and B. Here we identify both types in Hypericum sampsonii plants and isolate two enzymes that regiodivergently convert a common precursor to pivotal type A and B products. Molecular modelling and substrate docking studies reveal inverted substrate binding modes in the two active site cavities. We identify amino acids that stabilize these alternative binding scenarios and use reciprocal mutagenesis to interconvert the enzymatic activities. Our studies elucidate the unique biochemistry that yields type A and B bicyclo[3.3.1]nonane cores in plants, thereby providing key building blocks for biotechnological efforts to sustainably produce these complex compounds for preclinical development.


Subject(s)
Hypericum , Hypericum/metabolism , Hypericum/genetics , Hypericum/chemistry , Bridged Bicyclo Compounds/metabolism , Bridged Bicyclo Compounds/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Molecular Docking Simulation , Phloroglucinol/metabolism , Phloroglucinol/analogs & derivatives , Phloroglucinol/chemistry , Alkanes/metabolism , Alkanes/chemistry , Catalytic Domain , Terpenes/metabolism , Terpenes/chemistry , Models, Molecular
5.
Clin Transl Sci ; 17(5): e13804, 2024 May.
Article in English | MEDLINE | ID: mdl-38700454

ABSTRACT

St. John's wort (SJW) extract, a herbal medicine with antidepressant effects, is a potent inducer of intestinal and/or hepatic cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), which can cause clinically relevant drug interactions. It is currently not known whether SJW can also induce P-gp activity at the human blood-brain barrier (BBB), which may potentially lead to decreased brain exposure and efficacy of certain central nervous system (CNS)-targeted P-gp substrate drugs. In this study, we used a combination of positron emission tomography (PET) imaging and cocktail phenotyping to gain a comprehensive picture on the effect of SJW on central and peripheral P-gp and CYP activities. Before and after treatment of healthy volunteers (n = 10) with SJW extract with a high hyperforin content (3-6%) for 12-19 days (1800 mg/day), the activity of P-gp at the BBB was assessed by means of PET imaging with the P-gp substrate [11C]metoclopramide and the activity of peripheral P-gp and CYPs was assessed by administering a low-dose phenotyping cocktail (caffeine, omeprazole, dextromethorphan, and midazolam or fexofenadine). SJW significantly increased peripheral P-gp, CYP3A, and CYP2C19 activity. Conversely, no significant changes in the peripheral metabolism, brain distribution, and P-gp-mediated efflux of [11C]metoclopramide across the BBB were observed following the treatment with SJW extract. Our data suggest that SJW does not lead to significant P-gp induction at the human BBB despite its ability to induce peripheral P-gp and CYPs. Simultaneous intake of SJW with CNS-targeted P-gp substrate drugs is not expected to lead to P-gp-mediated drug interactions at the BBB.


Subject(s)
Blood-Brain Barrier , Hypericum , Phloroglucinol , Phloroglucinol/analogs & derivatives , Plant Extracts , Positron-Emission Tomography , Terfenadine/analogs & derivatives , Terpenes , Humans , Hypericum/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Phloroglucinol/pharmacokinetics , Phloroglucinol/pharmacology , Phloroglucinol/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Male , Adult , Positron-Emission Tomography/methods , Terpenes/pharmacology , Terpenes/pharmacokinetics , Terpenes/metabolism , Female , Young Adult , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/administration & dosage , Terfenadine/pharmacokinetics , Terfenadine/administration & dosage , Terfenadine/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Healthy Volunteers
6.
Int J Biol Macromol ; 269(Pt 2): 132133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719004

ABSTRACT

In this study, sodium pentaborate pentahydrate (NaB) and Hypericum perforatum (HP) oil were incorporated into polyvinyl alcohol (PVA) and chitosan (CH) polymer blend to obtain membranes by solution casting method. In order to see the synergistic effects of NaB and HP oil on the biological and physical properties of the membranes NaB and HP oil were incorporated into membrane matrix in different ratios. Fourier-transform infrared spectroscopy (FTIR) results showed that no significant bond formation between the bioactive components and the PVA:CH matrix. According to mechanical test results, Young's Modulus and elongation at break decreased from 426 MPa to 346 MPa and 52.23 % to 15.11 % for neat PVA:CH membranes and NaB and HP oil incorporated PVA:CH (PVA:CH@35NaB:HP) membranes, respectively. Antimicrobial activity tests have shown the membranes were over 99 % effective against Escherichia coli, Staphylococcus aureus, and Candida albicans, underlining their potential for infection control. Cytocompatibility assay performed with Human Dermal Fibroblast (HDFa) cells highlight the biocompatibility of the membranes, revealing 74.84 % cell viability after 72 h. The properties of NaB and HP oil doped PVA:CH based membranes obtained from these experiments reveal the promise of a versatile membrane for applications in wound healing, tissue engineering and other biomedical fields.


Subject(s)
Chitosan , Hypericum , Membranes, Artificial , Polyvinyl Alcohol , Chitosan/chemistry , Chitosan/pharmacology , Hypericum/chemistry , Polyvinyl Alcohol/chemistry , Humans , Borates/chemistry , Borates/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Cell Survival/drug effects , Candida albicans/drug effects , Microbial Sensitivity Tests , Escherichia coli/drug effects , Fibroblasts/drug effects
7.
J Org Chem ; 89(11): 8076-8083, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38767586

ABSTRACT

Patumantanes A-D (1-4), four new seco-polycyclic polyprenylated acylphloroglucinols (PPAPs) were isolated from Hypericum patulum. Patumantane A (1) was an unprecedented 1,2-seco-homoadamantane-type PPAP bearing a new 3,7-dioxatetracyclo[7.7.0.01,6.111,15]heptadecane architecture based on a 6/7/5/6 ring system. Patumantane B (2) was a unique 1,9-seco-adamantane-type PPAP with a tricyclo[4.4.4.0.02,12]tridecane core formed by a 6/6/6 carbon skeleton, and the further breakage between C-5 and C-9 decorated patumantane C (3) with the 9-nor-adamantane skeleton. More importantly, compounds 2 and 3 exhibited moderate immunosuppressive activity on Con A-induced T-lymphocyte proliferation in vitro, with IC50 values of 5.6 ± 1.2 and 11.2 ± 1.2 µM, respectively.


Subject(s)
Hypericum , Phloroglucinol , Hypericum/chemistry , Phloroglucinol/chemistry , Phloroglucinol/pharmacology , Phloroglucinol/analogs & derivatives , Phloroglucinol/isolation & purification , Humans , Molecular Structure , Carbon/chemistry , Cell Proliferation/drug effects
8.
J Agric Food Chem ; 72(20): 11452-11464, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38736181

ABSTRACT

In this work, a new rapid and targeted method for screening α-glucosidase inhibitors from Hypericum beanii was developed and verified. Ten new polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperlagarol A-J (1-10), and nine known PPAPs (11-19) were obtained from H. beanii. Their structures were identified by using comprehensive analyses involving mass spectrometry, ultraviolet spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and electron capture dissociation calculations. 1 and 2 are two new rare 2,3-seco-spirocyclic PPAPs, 3 and 4 are two novel 12,13-seco-spirocyclic PPAPs, 5 and 6 are two novel spirocyclic PPAPs, 7 and 8 are two new unusual spirocyclic PPAPs with complex bridged ring systems, and 9 and 10 are two novel nonspirocyclic PPAPs. α-GC inhibitory activities of all isolated compounds were tested. Most of them displayed inhibitory activities against α-glucosidase, with the IC50 values ranging from 6.85 ± 0.65 to 112.5 ± 9.03 µM. Moreover, the inhibitory type and mechanism of the active compounds were further analyzed using kinetic studies and molecular docking.


Subject(s)
Glycoside Hydrolase Inhibitors , Hypericum , Molecular Docking Simulation , Plant Extracts , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Hypericum/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Molecular Structure , Ligands , Structure-Activity Relationship , Kinetics
9.
Zhongguo Zhong Yao Za Zhi ; 49(4): 951-960, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621902

ABSTRACT

The chemical constituents of ethyl acetate from Hypericum himalaicum were isolated by silica gel column chromatography, gel column chromatography, and high-performance liquid chromatography. The structure of the isolated compounds was identified by modern spectral techniques(NMR, MS, IR, and UV), and the potential anti-inflammatory targets and action pathways were analyzed and predicted by network pharmacology and molecular docking methods.Ten compounds were isolated from H. himalaicum and identified as 5,9,11-trihydroxy-3,3-dimethyl-3H,8H-benzo[6,7][1,4]dioxepino[2,3-f]chromen-8-one(1), betulinic acid(2), demethyltorosaflavone C(3), kaempferol(4), quercetin(5), hyperwightin B(6), toxyloxanthone B(7), 1,7-dihydroxy-xanthone(8), emodin(9), and 1,7-dihydroxy-4-methoxy-xanthone(10). Among them, compound 1 was a new compound, and compounds 2-10 were isolated from H. himalaicum for the first time. Network pharmacology screened 60 key anti-inflammatory targets. By acting on TNF, AKT1, CASP3, and other key targets, involving PI3K-AKT signaling pathway, IL-17 signaling pathway, VEGF signaling pathway, MAPK signaling pathway, and other signaling pathways, and phosphorylation, cell migration and movement, protein tyrosine kinase, and other biological processes were regulated to achieve anti-inflammatory effects. The results of molecular docking show that the above components have good binding properties with the core targets.


Subject(s)
Drugs, Chinese Herbal , Hypericum , Xanthones , Network Pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Anti-Inflammatory Agents/pharmacology , Proto-Oncogene Proteins c-akt
10.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675576

ABSTRACT

Hyperforatums A-D (1-4), four new polyprenylated acylphloroglucinols, together with 13 known compounds were isolated and identified from the aerial parts of Hypericum perforatum L. (St. John's wort). Their structures were confirmed with a comprehensive analysis comprising spectroscopic methods, including 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) calculations. Hyperforatum A featured an unusual chromene-1,4-dione bicyclic system, and hyperforatums B and C were two rare monocyclic PPAPs with five-membered furanone cores. Compound 1 exhibited a moderate inhibition effect on NO production in BV-2 microglial cells stimulated by LPS.


Subject(s)
Hypericum , Phloroglucinol , Hypericum/chemistry , Phloroglucinol/chemistry , Phloroglucinol/pharmacology , Phloroglucinol/isolation & purification , Phloroglucinol/analogs & derivatives , Molecular Structure , Mice , Microglia/drug effects , Microglia/metabolism , Animals , Nitric Oxide/metabolism , Nitric Oxide/biosynthesis , Cell Line , Magnetic Resonance Spectroscopy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Lipopolysaccharides/pharmacology
11.
Sci Rep ; 14(1): 9878, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38684848

ABSTRACT

Chronic stress is associated with major depressive disorder (MDD). Increased glucocorticoid levels caused by uncontrolled release through the hypothalamic‒pituitary‒adrenal (HPA) axis can cause changes in the lipid content of the cellular plasma membrane. These changes are suspected to be involved in the development of depressive disorders. St. John's wort extract (SJW) Ze 117 has long been used as an alternative to synthetic antidepressants. Part of its effect may be due to an effect on the cellular lipid composition and thus on the properties of plasma membranes and receptor systems embedded therein. In this study, we investigated the effect of Ze 117 on that of dexamethasone and simvastatin. Dexamethasone increases the fluidity of C6 cell plasma membranes. This effect is counteracted by administration of Ze 117. Here we demonstrate that this is not due to a change in C16:1/16:0 and C18:1/18:0 ratios in C6 cell fatty acids. On the other hand, Ze 117 increased the cellular cholesterol content by 42.5%, whereas dexamethasone reduced cholesterol levels similarly to simvastatin. Lowering cholesterol levels by dexamethasone or simvastatin resulted in decreased ß-arrestin 2 recruitment to the 5-HT1a receptor. This effect was counterbalanced by Ze 117, whereas the SJW extract had little effect on ß-arrestin 2 recruitment in non-stressed cells. Taken together, in C6 cells, Ze 117 induces changes in membrane fluidity through its effect on cellular cholesterol metabolism rather than by affecting fatty acid saturation. This effect is reflected in an altered signal transduction of the 5-HT1a receptor under Ze 117 administration. The current in vitro results support the hypothesis that Ze 117 addresses relevant parts of the cellular lipid metabolism, possibly explaining some of the antidepressant actions of Ze 117.


Subject(s)
Cholesterol , Dexamethasone , Hypericum , Membrane Fluidity , Plant Extracts , Simvastatin , Hypericum/chemistry , Plant Extracts/pharmacology , Cholesterol/metabolism , Membrane Fluidity/drug effects , Dexamethasone/pharmacology , Cell Line, Tumor , Simvastatin/pharmacology , Glioma/metabolism , Glioma/drug therapy , Glioma/pathology , Animals , Rats , Cell Membrane/metabolism , Cell Membrane/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Fatty Acids/metabolism
12.
Bioorg Chem ; 147: 107354, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599054

ABSTRACT

Pregnane X receptor (PXR) has been considered as a promising therapeutic target for cholestasis due to its crucial regulation in bile acid biosynthesis and metabolism. To search promising natural PXR agonists, the PXR agonistic activities of five traditional Chinese medicines (TCMs) with hepatoprotective efficacy were assayed, and Hypericum japonicum as the most active one was selected for subsequent phytochemical investigation, which led to the isolation of eight nonaromatic acylphloroglucinol-terpenoid adducts including seven new compounds (1 - 4, 5a, 5b and 6). Their structures including absolute configurations were determined by comprehensive spectroscopic, computational and X-ray diffraction analysis. Meanwhile, the PXR agonistic activities of aplenty compounds were evaluated via dual-luciferase reporter assay, RT-qPCR and immunofluorescence. Among them, compounds 1 - 4 showed more potent activity than the positive drug rifampicin. Furthermore, the molecular docking revealed that 1 - 4 were docked well on the PXR ligand binding domain and formed hydrogen bonds with amino acid residues Gln285, Ser247 and His409. This investigation revealed that H. japonicum may serve as a rich source of natural PXR agonists.


Subject(s)
Hypericum , Molecular Docking Simulation , Phloroglucinol , Pregnane X Receptor , Hypericum/chemistry , Pregnane X Receptor/agonists , Pregnane X Receptor/metabolism , Humans , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Phloroglucinol/analogs & derivatives , Structure-Activity Relationship , Molecular Structure , Terpenes/pharmacology , Terpenes/chemistry , Terpenes/isolation & purification , Dose-Response Relationship, Drug , Drug Discovery , Hep G2 Cells
13.
J Ethnopharmacol ; 329: 118163, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588986

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Plants in the genus Hypericum (Hypericaceae), include more than 500 species worldwide, and many are valued for their medicinal properties, and are used as traditional herbal medicines. However, only H. perforatum is officially recognized as herbal drug in several pharmacopoeias, and used as an antidepressant clinically. Hypericum perforatum had been used as an herbal medicine since the Han Dynasty (206 B.C. -220 A.D.) in China. It taxonomically belongs to the section Hypericum in the genus Hypericum. There are about 42 species in the section Hypericum, with six species occurring in China. All six are recorded as traditional herbal medicines for treating aliments, including hepatitis, malaria, traumatic hemorrhage, irregular menstruation, wounds, and bruises. AIM OF THE STUDY: The study aimed to characterize the chemical profiles of five phylogenetically related Hypericum species, and compare their metabolites with three H. perforatum products. Informed by ethnobotanical use, the extracts prepared from the five species were further investigated into anticancer, anti-inflammatory and antiplasmodial activity. This study tested the hypothesis that systematic metabolomic and bioactivity characterization of species in section Hypericum will help to validate their phytotherapeutic use and reveal potential drug lead compounds. MATERIALS AND METHODS: Targeted and non-targeted metabolic analyses coupled with chemometrics were conducted on H. perforatum and four medicinal species, H. attenuatum, H. enshiense, H. erectum, and H. faberi, native to China from section Hypericum. UPLC-QTOF-MS/MS and UPLC-TQD-MS/MS were used for non-targeted and targeted metabolic analyses, respectively. Cytotoxicity bioassays on four cancer cell lines, anti-inflammation tests and anti-plasmodial activity on Plasmodium falciparum 3D7, selected based on traditional medicinal use, were evaluated on extracts from Hypericum species. Progenesis QI and EZinfo were used for chemometrics analysis to link the chemical profile and bioassay activity to aid in the identification of bioactive compounds. RESULTS: In total, 58 compounds were identified from the five species, including compounds with well-characterized bioactivity. Hypericum attenuatum, H. erectum, and H. perforatum, displayed the highest cytotoxicity, and contain the cytotoxic compounds petiolin A, prolificin A, and hypercohin G, respectively. Hypericum faberi and H. perforatum showed the highest anti-inflammatory activity, with pseudohypericin, quercetin and chlorogenic acid being observed at higher concentrations. Hypericum perforatum and H. erectum showed anti-plasmodial activity, with higher hyperforin and xanthones in these species that may account for the anti-plasmodial activity. CONCLUSIONS: This study characterized the chemical differences among five Hypericum species using metabolomics. These ethnomedically important species were tested for their biological activities in three distinct in vitro assays. The ethnobotanical data were useful for identifying bioactive Hypericum species. Hypericum attenuatum, H. erectum and H. faberi are promising phytotherapeutic species, although they are much less studied than H. perforatum, St. John's wort. Combining ethnobotanical surveys with chemometric analyses and bioactivity screening can greatly enhance the discovery of promising active constituents.


Subject(s)
Hypericum , Metabolomics , Plant Extracts , Hypericum/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Antimalarials/pharmacology , Antimalarials/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Plasmodium falciparum/drug effects , Animals
14.
Chin J Nat Med ; 22(3): 273-279, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38553194

ABSTRACT

Hyparillums A (1) and B (2), two previously unidentified polycyclic polyprenylated acylphloroglucinols (PPAPs) with intricate architectures, were isolated from Hypericum patulum Thunb. Hyparillum A was the first PPAP with eight-carbon rings based on an unprecedented 6/6/5/6/6/5/6/4 octocyclic system featuring a rare heptacyclo[10.8.1.11,10.03,8.08,21.012,19.014,17]docosane core. In contrast, hyparillum B featured a novel heptacyclic architecture (6/6/5/6/6/5/5) based on a hexacyclo[9.6.1.11,9.03,7.07,18.011,16]nonadecane motif. Furthermore, hyparillums A and B demonstrated promising inhibitory effects on the proliferation of murine splenocytes stimulated by anti-CD3/anti-CD28 monoclonal antibodies and lipopolysaccharide, exhibiting half-maximal inhibitory concentration (IC50) values ranging from 6.13 ± 0.86 to 12.69 ± 1.31 µmol·L-1.


Subject(s)
Hypericum , Mice , Animals , Molecular Structure , Phloroglucinol/pharmacology
15.
Phytochemistry ; 221: 114047, 2024 May.
Article in English | MEDLINE | ID: mdl-38462213

ABSTRACT

Hyperatins A-D (1-4), four previously undescribed polycyclic polyprenylated acylphloroglucinols, were isolated from Hypericum perforatum L. (St. John's wort). Compound 1 possessed a unique octahydroindeno[1,7a-b]oxirene ring system with a rare 2,7-dioxabicyclo[2.2.1]heptane fragment. Compounds 2-4 had an uncommon decahydrospiro[furan-3,7'-indeno[7,1-bc]furan] ring system. Their structures were established by spectroscopic analyses and X-ray crystallography. Plausible biosynthetic pathways of 1-4 were also proposed. Compounds 1 and 2 exerted promising hypoglycemic activity by inhibiting glycogen synthase kinase 3 expression in liver cells.


Subject(s)
Antineoplastic Agents , Hypericum , Hypericum/chemistry , Crystallography, X-Ray , Liver , Furans , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Molecular Structure
16.
Chemosphere ; 356: 141789, 2024 May.
Article in English | MEDLINE | ID: mdl-38554871

ABSTRACT

Since nanoparticles (NPs) released into the environment from household or industrial wastes and applied directly on plants as agrochemicals can accumulate in the rhizosphere, it is imperative to understand how these NPs affect plant secondary metabolism upon their contact with the roots of intact plants. Here, the effects of Pd, Au, ZnO and Fe2O3 NPs on secondary metabolism were comprehensively investigated in Hypericum perforatum L float seedlings by analyzing 41 major secondary metabolites using ultra-performance liquid chromatography coupled with photodiode array, fluorescence detector and high-resolution mass spectrometry (UPLC-PDA-FLR-HRMS). The results showed that exposure of H. perforatum roots to Pd, Au, ZnO and Fe2O3 NPs rapidly led to fluctuations in the levels of secondary metabolites. Although these fluctuations did not correlate with NP type, concentration and duration of treatment, a total of 22 compounds were significantly altered by the NPs tested. In particular, 1 ppm Au increased the content of quercetin 3-(2″-acetylgalactoside), cadensin G and leutoskyrin by 5.02-, 2.12- and 2.58-fold, respectively after 24 h; 25 ppm Pd NPs led to a 2.1-fold increase in miquelianin content after 6 h; 50 ppm Fe2O3 NPs increased the level of furohyperforin by 3.09-fold and decreased the content of miquelianin 5.22-fold after 24 h and 50 ppm ZnO led to a 2.13-fold increase in hypericin after 48 h. These results emphasise the need to understand the intricate interplay between NPs and plant secondary metabolism in order to enable safer and efficient applications of NPs in agriculture.


Subject(s)
Hypericum , Plant Roots , Secondary Metabolism , Seedlings , Hypericum/metabolism , Plant Roots/metabolism , Seedlings/metabolism , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Chromatography, High Pressure Liquid
17.
Fitoterapia ; 174: 105852, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325587

ABSTRACT

Phytochemical studies on the leaves and twigs of Hypericum ascyron Linn. led to the isolation of two previously undescribed rearranged polycyclic polyprenylated acylphloroglucinols (PPAP) with a 4,5-seco-3(2H)-furanone skeleton, named hyperascone A and B (1-2). Additionally, a known PPAP tomoeone A (3) and two known xanthones 1,3,5 -trihydroxy-6-O-prenylxanthone (4) and 3,7-dihydroxy-1,6-dimethoxyxanthone (5) were also isolated. The structures of the compounds were determined by the analysis of their spectroscopic data including HRMS, NMR and ECD. All of the five isolated compounds exhibited neuroprotective effects against MPP+ and microglia activation induced damage of SH-SY5Y cells.


Subject(s)
Hypericum , Neuroblastoma , Neuroprotective Agents , Propylamines , Humans , Hypericum/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Molecular Structure , Phloroglucinol/pharmacology , Phloroglucinol/chemistry
18.
APMIS ; 132(5): 358-370, 2024 May.
Article in English | MEDLINE | ID: mdl-38344892

ABSTRACT

Galleria mellonella is used as a model organism to study the innate immune response of insects. In this study, the humoral immune response was assessed by examining phenoloxidase activity, fungal burden, and the expression of phenoloxidase and antimicrobial peptide genes at different time point following separate and combined injections of Hypericum perforatum extract and a nonlethal dose of Candida albicans. The administration of a plant extract at low doses increased phenoloxidase activity, while higher doses had no effect. Similarly, co-injection of a low dose of the extract with the pathogen allowed half of the yeast cells to survive after 24 h. Co-injection of plant extract with the pathogen decreased the phenoloxidase activity at the end of 4 h compared to C. albicans mono-injection. The phenoloxidase gene expressions was reduced in all experimental conditions with respect to the control. When plant extracts and the pathogen were administered together, gallerimycin and hemolin gene expressions were considerably higher compared to mono-injections of plant extracts and the pathogen. The results of this study reveal that gene activation and regulatory mechanisms may change for each immune gene, and that recognition and signaling pathways may differ depending on the involved immunoregulator.


Subject(s)
Hypericum , Moths , Humans , Animals , Candida albicans , Larva , Immunity, Humoral , Monophenol Monooxygenase/pharmacology , Plant Extracts/pharmacology
19.
Phytochemistry ; 220: 114016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364882

ABSTRACT

Formohyperins A-F, previously undescribed meroterpenes, and grandone, a prenylated benzoylphloroglucinol being considered to be one of their biogenetic precursors, were isolated from the flowers of a Hypericaceous plant, Hypericum formosanum Maxim. Detailed spectroscopic analyses showed that formohyperins A-D were meroterpenes with an enolized 3-phenylpropane-1,3-dione moiety. Formohyperins E and F were elucidated as meroterpenes having a 4-benzoyl-5-hydroxycyclopent-4-ene-1,3-dione moiety. Formohyperins A-C and E were optically active, and their absolute configurations were deduced by comparison of the experimental and TDDFT calculated ECD spectra. In contrast, formohyperin D was concluded to be a racemate. Formohyperins A-F and grandone were found to show inhibitory activities against LPS-stimulated IL-1ß production from murine microglial cells with EC50 values of 13.2, 6.6, 8.5, 24.3, 4.1, 10.9, and 3.0 µM, respectively.


Subject(s)
Hypericum , Phloroglucinol , Mice , Animals , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Hypericum/chemistry , Flowers , Microglia , Prenylation , Molecular Structure
20.
Clin Pharmacol Drug Dev ; 13(3): 297-306, 2024 03.
Article in English | MEDLINE | ID: mdl-38176912

ABSTRACT

Tacrolimus is metabolized by cytochrome P450 3A (CYP3A) and is susceptible to interactions with the CYP3A and P-glycoprotein inducer St. John's Wort (SJW). CYP3A isozymes are predominantly expressed in the small intestine and liver. Prolonged-release tacrolimus (PR-Tac) is largely absorbed in distal intestinal segments and is less susceptible to CYP3A inhibition. The effect of induction by SJW is unknown. In this randomized, crossover trial, 18 healthy volunteers received single oral tacrolimus doses (immediate-release [IR]-Tac or PR-Tac, 5 mg each) alone and during induction by SJW. Concentrations were quantified using ultra-high performance liquid chromatography coupled with tandem mass spectrometry and non-compartmental pharmacokinetics were evaluated. SJW decreased IR-Tac exposure (area under the concentration-time curve) to 73% (95% confidence interval 60%-88%) and maximum concentration (Cmax ) to 61% (52%-73%), and PR-Tac exposure to 67% (55%-81%) and Cmax to 69% (58%-82%), with no statistical difference between the 2 formulations. The extent of interaction appeared to be less pronounced in volunteers with higher baseline CYP3A4 activity and in CYP3A5 expressors. In contrast to CYP3A inhibition, CYP3A induction by SJW showed a similar extent of interaction with both tacrolimus formulations. A higher metabolic baseline capacity appeared to attenuate the extent of induction by SJW.


Subject(s)
Hypericum , Tacrolimus , Humans , Cytochrome P-450 CYP3A/metabolism , Drug Interactions , Hypericum/chemistry , Hypericum/metabolism , Plant Extracts , Tacrolimus/pharmacokinetics , Cross-Over Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...