Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Gen Physiol ; 156(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38968404

ABSTRACT

We used voltage clamp fluorometry to probe the movement of the S4 helix in the voltage-sensing domain of the sea urchin HCN channel (spHCN) expressed in Xenopus oocytes. We obtained markedly different fluorescence responses with either ALEXA-488 or MTS-TAMRA covalently linked to N-terminal Cys332 of the S4 helix. With hyperpolarizing steps, ALEXA-488 fluorescence increased rapidly, consistent with it reporting the initial inward movement of S4, as previously described. In contrast, MTS-TAMRA fluorescence increased more slowly and its early phase correlated with that of channel opening. Additionally, a slow fluorescence component that tracked the development of the mode shift, or channel hysteresis, could be resolved with both labels. We quantitated this component as an increased deactivation tail current delay with concomitantly longer activation periods and found it to depend strongly on the presence of K+ ions in the pore. Using collisional quenching experiments and structural predictions, we established that ALEXA-488 was more exposed to solvent than MTS-TAMRA. We propose that components of S4 movement during channel activation can be kinetically resolved using different fluorescent probes to reveal distinct biophysical properties. Our findings underscore the need to apply caution when interpreting voltage clamp fluorometry data and demonstrate the potential utility of different labels to interrogate distinct biophysical properties of voltage-gated membrane proteins.


Subject(s)
Fluorescent Dyes , Xenopus laevis , Animals , Fluorescent Dyes/chemistry , Ion Channel Gating/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Oocytes/metabolism , Sea Urchins , Membrane Potentials/physiology
2.
J Chem Inf Model ; 64(12): 4727-4738, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38830626

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are opened in an allosteric manner by membrane hyperpolarization and cyclic nucleotides such as cAMP. Because of conflicting reports from experimental studies on whether cAMP binding to the four available binding sites in the channel tetramer operates cooperatively in gating, we employ here a computational approach as a promising route to examine ligand-induced conformational changes after binding to individual sites. By combining an elastic network model (ENM) with linear response theory (LRT) for modeling the apo-holo transition of the cyclic nucleotide-binding domain (CNBD) in HCN channels, we observe a distinct pattern of cooperativity matching the "positive-negative-positive" cooperativity reported from functional studies. This cooperativity pattern is highly conserved among HCN subtypes (HCN4, HCN1), but only to a lesser extent visible in structurally related channels, which are only gated by voltage (KAT1) or cyclic nucleotides (TAX4). This suggests an inherent cooperativity between subunits in HCN channels as part of a ligand-triggered gating mechanism in these channels.


Subject(s)
Cyclic AMP , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Models, Molecular , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Cyclic AMP/metabolism , Anisotropy , Protein Subunits/metabolism , Protein Subunits/chemistry , Protein Conformation , Humans , Potassium Channels/metabolism , Potassium Channels/chemistry , Binding Sites
3.
Nat Commun ; 15(1): 5216, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890331

ABSTRACT

Hyperpolarization and cyclic nucleotide (HCN) activated ion channels are critical for the automaticity of action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN and related plant ion channels activate upon membrane hyperpolarization. Although functional studies have identified residues in the interface between the voltage-sensing and pore domain as crucial for inverted electromechanical coupling, the structural mechanisms for this unusual voltage-dependence remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 corresponding to Closed, Open, and a putative Intermediate state. Our structures reveal that the downward motion of the gating charges past the charge transfer center is accompanied by concomitant unwinding of the inner end of the S4 and S5 helices, disrupting the tight gating interface observed in the Closed state structure. This helix-coil transition at the intracellular gating interface accompanies a concerted iris-like dilation of the pore helices and underlies the reversed voltage dependence of HCN channels.


Subject(s)
Cryoelectron Microscopy , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Humans , Potassium Channels/chemistry , Potassium Channels/metabolism , Models, Molecular , Membrane Potentials/physiology
4.
Proc Natl Acad Sci U S A ; 121(27): e2402259121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917012

ABSTRACT

HCN1-4 channels are the molecular determinants of the If/Ih current that crucially regulates cardiac and neuronal cell excitability. HCN dysfunctions lead to sinoatrial block (HCN4), epilepsy (HCN1), and chronic pain (HCN2), widespread medical conditions awaiting subtype-specific treatments. Here, we address the problem by solving the cryo-EM structure of HCN4 in complex with ivabradine, to date the only HCN-specific drug on the market. Our data show ivabradine bound inside the open pore at 3 Å resolution. The structure unambiguously proves that Y507 and I511 on S6 are the molecular determinants of ivabradine binding to the inner cavity, while F510, pointing outside the pore, indirectly contributes to the block by controlling Y507. Cysteine 479, unique to the HCN selectivity filter (SF), accelerates the kinetics of block. Molecular dynamics simulations further reveal that ivabradine blocks the permeating ion inside the SF by electrostatic repulsion, a mechanism previously proposed for quaternary ammonium ions.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ivabradine , Molecular Dynamics Simulation , Ivabradine/chemistry , Ivabradine/pharmacology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Humans , Cryoelectron Microscopy , Animals , Potassium Channels/chemistry , Potassium Channels/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism
5.
J Biol Chem ; 300(6): 107288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636662

ABSTRACT

HCN channels are important for regulating heart rhythm and nerve activity and have been studied as potential drug targets for treating depression, arrhythmia, nerve pain, and epilepsy. Despite possessing unique pharmacological properties, HCN channels share common characteristics in that they are activated by hyperpolarization and modulated by cAMP and other membrane lipids. However, the mechanisms of how these ligands bind and modulate HCN channels are unclear. In this study, we solved structures of full-length human HCN3 using cryo-EM and captured two different states, including a state without any ligand bound and a state with cAMP bound. Our structures reveal the novel binding sites for cholesteryl hemisuccinate in apo state and show how cholesteryl hemisuccinate and cAMP binding cause conformational changes in different states. These findings explain how these small modulators are sensed in mammals at the molecular level. The results of our study could help to design more potent and specific compounds to influence HCN channel activity and offer new therapeutic possibilities for diseases that lack effective treatment.


Subject(s)
Cryoelectron Microscopy , Cyclic AMP , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Humans , Binding Sites , Cyclic AMP/metabolism , HEK293 Cells , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Protein Conformation
6.
Elife ; 122024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652113

ABSTRACT

Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.


Subject(s)
Cyclic AMP , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Membrane Proteins , Muscle Proteins , Receptors, Cytoplasmic and Nuclear , Signal Transduction , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Cyclic AMP/metabolism , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Animals , Protein Binding , HEK293 Cells , Potassium Channels/metabolism , Potassium Channels/genetics , Potassium Channels/chemistry , Patch-Clamp Techniques , Fluorescence Resonance Energy Transfer , Protein Isoforms/metabolism , Protein Isoforms/genetics
7.
Nature ; 623(7985): 193-201, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37880360

ABSTRACT

Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions1. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains2-5. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis2,6. SLC9C1 activation is further regulated by cAMP2,7, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH-sAC-cAMP signalling pathway in metazoa8,9, required for sperm motility and fertilization4. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration-the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.


Subject(s)
Cryoelectron Microscopy , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Sea Urchins , Sodium-Hydrogen Exchangers , Animals , Male , Adenylyl Cyclases/metabolism , Cyclic AMP/metabolism , Flagella/chemistry , Flagella/metabolism , Flagella/ultrastructure , Hydrogen-Ion Concentration , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/ultrastructure , Membrane Potentials , Protein Multimerization , Sea Urchins/chemistry , Sea Urchins/metabolism , Sea Urchins/ultrastructure , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism , Sodium-Hydrogen Exchangers/ultrastructure , Sperm Motility , Spermatozoa/chemistry , Spermatozoa/metabolism , Spermatozoa/ultrastructure
8.
Nature ; 623(7985): 202-209, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37880361

ABSTRACT

The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.


Subject(s)
Cyclic AMP , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Sea Urchins , Spermatozoa , Animals , Male , Allosteric Regulation , Cyclic AMP/metabolism , Fertility , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ligands , Protein Domains , Protein Multimerization , Sea Urchins/chemistry , Sea Urchins/metabolism , Spermatozoa/chemistry , Spermatozoa/metabolism , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism
9.
Commun Biol ; 5(1): 430, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534535

ABSTRACT

Hyperpolarization-activated and cyclic nucleotide (HCN) modulated channels are tetrameric cation channels. In each of the four subunits, the intracellular cyclic nucleotide-binding domain (CNBD) is coupled to the transmembrane domain via a helical structure, the C-linker. High-resolution channel structures suggest that the C-linker enables functionally relevant interactions with the opposite subunit, which might be critical for coupling the conformational changes in the CNBD to the channel pore. We combined mutagenesis, patch-clamp technique, confocal patch-clamp fluorometry, and molecular dynamics (MD) simulations to show that residue K464 of the C-linker is relevant for stabilizing the closed state of the mHCN2 channel by forming interactions with the opposite subunit. MD simulations revealed that in the K464E channel, a rotation of the intracellular domain relative to the channel pore is induced, which is similar to the cAMP-induced rotation, weakening the autoinhibitory effect of the unoccupied CL-CNBD region. We suggest that this CL-CNBD rotation is considerably involved in activation-induced affinity increase but only indirectly involved in gate modulation. The adopted poses shown herein are in excellent agreement with previous structural results.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Nucleotides, Cyclic , Cyclic AMP , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ion Channel Gating , Patch-Clamp Techniques
10.
Biophys J ; 121(11): 2206-2218, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35474263

ABSTRACT

Hyperpolarization-activated cyclic-nucleotide gated channels (HCNs) are responsible for the generation of pacemaker currents (If or Ih) in cardiac and neuronal cells. Despite the overall structural similarity to voltage-gated potassium (Kv) channels, HCNs show much lower selectivity for K+ over Na+ ions. This increased permeability to Na+ is critical to their role in membrane depolarization. HCNs can also select between Na+ and Li+ ions. Here, we investigate the unique ion selectivity properties of HCNs using molecular-dynamics simulations. Our simulations suggest that the HCN1 pore is flexible and dilated compared with Kv channels with only one stable ion binding site within the selectivity filter. We also observe that ion coordination and hydration differ within the HCN1 selectivity filter compared with those in Kv and cyclic-nucleotide gated channels. Additionally, the C358T mutation further stabilizes the symmetry of the binding site and provides a more fit space for ion coordination, particularly for Li+.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Potassium Channels , Cyclic Nucleotide-Gated Cation Channels , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Ions/metabolism , Nucleotides/metabolism , Potassium/metabolism , Potassium Channels/metabolism , Sodium/metabolism
11.
Biomolecules ; 12(4)2022 04 12.
Article in English | MEDLINE | ID: mdl-35454159

ABSTRACT

Propofol is a broadly used intravenous anesthetic agent that can cause cardiovascular effects, including bradycardia and asystole. A possible mechanism for these effects is slowing cardiac pacemaker activity due to inhibition of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. However, it remains unclear how propofol affects the allosteric nature of the voltage- and cAMP-dependent gating mechanism in HCN channels. To address this aim, we investigated the effect of propofol on HCN channels (HCN4 and HCN2) in heterologous expression systems using a whole-cell patch clamp technique. The extracellular application of propofol substantially suppressed the maximum current at clinical concentrations. This was accompanied by a hyperpolarizing shift in the voltage dependence of channel opening. These effects were significantly attenuated by intracellular loading of cAMP, even after considering the current modification by cAMP in opposite directions. The differential degree of propofol effects in the presence and absence of cAMP was rationalized by an allosteric gating model for HCN channels, where we assumed that propofol affects allosteric couplings between the pore, voltage-sensor, and cyclic nucleotide-binding domain (CNBD). The model predicted that propofol enhanced autoinhibition of pore opening by unliganded CNBD, which was relieved by the activation of CNBD by cAMP. Taken together, these findings reveal that propofol acts as an allosteric modulator of cAMP-dependent gating in HCN channels, which may help us to better understand the clinical action of this anesthetic drug.


Subject(s)
Anesthetics , Propofol , Anesthetics/pharmacology , Cyclic AMP/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ion Channel Gating/physiology , Potassium Channels/metabolism , Propofol/pharmacology
12.
Biophys J ; 121(7): 1166-1183, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35219649

ABSTRACT

A growing number of nonsynonymous mutations in the human HCN4 channel gene, the major component of the funny channel of the sinoatrial node, are associated with disease but how they impact channel structure and function, and, thus, how they result in disease, is not clear for any of them. Here, we study the S672R mutation, in the cyclic nucleotide-binding domain of the channel, which has been associated with an inherited bradycardia in an Italian family. This may be the best studied of all known mutations, yet the underlying molecular and atomistic mechanisms remain unclear and controversial. We combine measurements of binding by isothermal titration calorimetry to a naturally occurring tetramer of the HCN4 C-terminal region with a mathematical model to show that weaker binding of cAMP to the mutant channel contributes to a lower level of facilitation of channel opening at submicromolar ligand concentrations but that, in general, facilitation occurs over a range that is similar between the mutant and wild-type because of enhanced opening of the mutant channel when liganded. We also show that the binding affinity for cGMP, which produces the same maximum facilitation of HCN4 opening as cAMP, is weaker in the mutant HCN4 channel but that, for both wild-type and mutant, high-affinity binding of cGMP occurs in a range of concentrations below 1 µM. Thus, binding of cGMP to the HCN4 channel may be relevant normally in vivo and reduced binding of cGMP, as well as cAMP, to the mutant channel may contribute to the reduced resting heart rate observed in the affected family.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Sinoatrial Node , Binding Sites/physiology , Bradycardia/genetics , Cyclic GMP/metabolism , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Muscle Proteins/chemistry , Nucleotides, Cyclic/chemistry , Potassium Channels/metabolism
13.
Biochem Soc Trans ; 49(6): 2573-2579, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34812892

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are primarily activated by voltage and further modulated by cAMP. While cAMP binding alone does not open the channel, its presence facilitates the action of voltage, increasing channel open probability. Functional results indicate that the membrane-based voltage sensor domain (VSD) communicates with the cytosolic cyclic nucleotide-binding domain (CNBD), and vice-versa. Yet, a mechanistic explanation on how this could occur in structural terms is still lacking. In this review, we will discuss the recent advancement in understanding the molecular mechanisms connecting the VSD with the CNBD in the tetrameric organization of HCN channels unveiled by the 3D structures of HCN1 and HCN4. Data show that the HCN domain transmits cAMP signal to the VSD by bridging the cytosolic to the membrane domains. Furthermore, a metal ion coordination site connects the C-linker to the S4-S5 linker in HCN4, further facilitating cAMP signal transmission to the VSD in this isoform.


Subject(s)
Cyclic AMP/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Animals , Cell Membrane/metabolism , Cytosol/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Signal Transduction , Structure-Activity Relationship
14.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206649

ABSTRACT

Neurons inevitably rely on a proper repertoire and distribution of membrane-bound ion-conducting channels. Among these proteins, the family of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels possesses unique properties giving rise to the corresponding Ih-current that contributes to various aspects of neural signaling. In mammals, four genes (hcn1-4) encode subunits of HCN channels. These subunits can assemble as hetero- or homotetrameric ion-conducting channels. In order to elaborate on the specific role of the HCN2 subunit in shaping electrical properties of neurons, we applied an Adeno-associated virus (AAV)-mediated, RNAi-based knock-down strategy of hcn2 gene expression both in vitro and in vivo. Electrophysiological measurements showed that HCN2 subunit knock-down resulted in specific yet anticipated changes in Ih-current properties in primary hippocampal neurons and, in addition, corroborated that the HCN2 subunit participates in postsynaptic signal integration. To further address the role of the HCN2 subunit in vivo, we injected recombinant (r)AAVs into the dorsal hippocampus of young adult male mice. Behavioral and biochemical analyses were conducted to assess the contribution of HCN2-containing channels in shaping hippocampal network properties. Surprisingly, knock-down of hcn2 expression resulted in a severe degeneration of the CA1 pyramidal cell layer, which did not occur in mice injected with control rAAV constructs. This finding might pinpoint to a vital and yet unknown contribution of HCN2 channels in establishing or maintaining the proper function of CA1 pyramidal neurons of the dorsal hippocampus.


Subject(s)
Apoptosis/genetics , CA1 Region, Hippocampal/metabolism , Hippocampus/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/deficiency , Potassium Channels/deficiency , Pyramidal Cells/metabolism , Age Factors , Animals , CA1 Region, Hippocampal/pathology , Gene Knockdown Techniques , Hippocampus/pathology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Immunohistochemistry , Mice , Potassium Channels/chemistry , Potassium Channels/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Pyramidal Cells/pathology , RNA Interference
15.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34299159

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are proteins that contain highly conserved functional domains and sequence motifs that are correlated with their unique biophysical activities, to regulate cardiac pacemaker activity and synaptic transmission. These pacemaker proteins have been studied in mammalian species, but little is known now about their heart distribution in lower vertebrates and c-AMP modulation. Here, we characterized the pacemaker system in the heart of the wild Atlantic cod (Gadus morhua), with respect to primary pacemaker molecular markers. Special focus is given to the structural, ultrastructural and molecular characterization of the pacemaker domain, through the expression of HCN channel genes and the immunohistochemistry of HCN isoforms, including the location of intracardiac neurons that are adjacent to the sinoatrial region of the heart. Similarly to zebrafish and mammals, these neurons are immunoreactive to ChAT, VAChT and nNOS. It has been shown that cardiac pacemaking can be modulated by sympathetic and parasympathetic pathways, and the existence of intracardiac neurons projecting back to the central nervous system provide a plausible link between them.


Subject(s)
Gadus morhua/metabolism , Heart/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ion Channel Gating , Myocytes, Cardiac/metabolism , Animals , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/metabolism , Gadus morhua/genetics , Gadus morhua/growth & development , Heart/innervation , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Myocytes, Cardiac/cytology , Protein Isoforms , Synaptic Transmission
16.
SLAS Discov ; 26(7): 896-908, 2021 08.
Article in English | MEDLINE | ID: mdl-34041946

ABSTRACT

The hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) channel underlies the pacemaker currents, called "If," in sinoatrial nodes (SANs), which regulate heart rhythm. Some HCN4 blockers such as ivabradine have been extensively studied for treating various heart diseases. Studies have shown that these blockers have diverse state dependencies and binding sites, suggesting the existence of potential chemical and functional diversity among HCN4 blockers. Here we report approaches for the identification of novel HCN4 blockers through a random screening campaign among 16,000 small-molecule compounds using an automated patch-clamp system. These molecules exhibited various blockade profiles, and their blocking kinetics and associating amino acids were determined by electrophysiological studies and site-directed mutagenesis analysis, respectively. The profiles of these blockers were distinct from those of the previously reported HCN channel blockers ivabradine and ZD7288. Notably, the mutagenesis analysis showed that blockers with potencies that were increased when the channel was open involved a C478 residue, located at the pore cavity region near the cellular surface of the plasma membrane, while those with potencies that were decreased when the channel was open involved residues Y506 and I510, located at the intracellular region of the pore gate. Thus, this study reported for the first time the discovery of novel HCN4 blockers by screening, and their profiling analysis using an automated patch-clamp system provided chemical tools that will be useful to obtain unique molecular insights into the drug-binding modes of HCN4 and may contribute to the expansion of therapeutic options in the future.


Subject(s)
Drug Discovery/methods , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Muscle Proteins/antagonists & inhibitors , Potassium Channel Blockers/chemistry , Data Analysis , Dose-Response Relationship, Drug , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Ion Channel Gating/drug effects , Kinetics , Membrane Potentials/drug effects , Models, Molecular , Molecular Structure , Muscle Proteins/chemistry , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Potassium Channels/chemistry , Structure-Activity Relationship
17.
Nat Commun ; 12(1): 2802, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990563

ABSTRACT

Pacemaker hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels exhibit a reversed voltage-dependent gating, activating by membrane hyperpolarization instead of depolarization. Sea urchin HCN (spHCN) channels also undergo inactivation with hyperpolarization which occurs only in the absence of cyclic nucleotide. Here we applied transition metal ion FRET, patch-clamp fluorometry and Rosetta modeling to measure differences in the structural rearrangements between activation and inactivation of spHCN channels. We found that removing cAMP produced a largely rigid-body rotation of the C-linker relative to the transmembrane domain, bringing the A' helix of the C-linker in close proximity to the voltage-sensing S4 helix. In addition, rotation of the C-linker was elicited by hyperpolarization in the absence but not the presence of cAMP. These results suggest that - in contrast to electromechanical coupling for channel activation - the A' helix serves to couple the S4-helix movement for channel inactivation, which is likely a conserved mechanism for CNBD-family channels.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Animals , Cyclic AMP , Cyclic Nucleotide-Gated Cation Channels/antagonists & inhibitors , Cyclic Nucleotide-Gated Cation Channels/chemistry , Cyclic Nucleotide-Gated Cation Channels/metabolism , Female , Fluorescence Resonance Energy Transfer , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Ion Channel Gating , Male , Mechanotransduction, Cellular , Membrane Potentials , Models, Molecular , Oocytes/metabolism , Patch-Clamp Techniques , Protein Conformation, alpha-Helical , Protein Domains , Sea Urchins/metabolism , Spermatozoa/metabolism , Xenopus/metabolism
18.
Proc Natl Acad Sci U S A ; 117(30): 18079-18090, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32647060

ABSTRACT

Ion channels in excitable cells function in macromolecular complexes in which auxiliary proteins modulate the biophysical properties of the pore-forming subunits. Hyperpolarization-activated, cyclic nucleotide-sensitive HCN4 channels are critical determinants of membrane excitability in cells throughout the body, including thalamocortical neurons and cardiac pacemaker cells. We previously showed that the properties of HCN4 channels differ dramatically in different cell types, possibly due to the endogenous expression of auxiliary proteins. Here, we report the discovery of a family of endoplasmic reticulum (ER) transmembrane proteins that associate with and modulate HCN4. Lymphoid-restricted membrane protein (LRMP, Jaw1) and inositol trisphosphate receptor-associated guanylate kinase substrate (IRAG, Mrvi1, and Jaw1L) are homologous proteins with small ER luminal domains and large cytoplasmic domains. Despite their homology, LRMP and IRAG have distinct effects on HCN4. LRMP is a loss-of-function modulator that inhibits the canonical depolarizing shift in the voltage dependence of HCN4 in response to the binding of cAMP. In contrast, IRAG causes a gain of HCN4 function by depolarizing the basal voltage dependence in the absence of cAMP. The mechanisms of action of LRMP and IRAG are independent of trafficking and cAMP binding, and they are specific to the HCN4 isoform. We also found that IRAG is highly expressed in the mouse sinoatrial node where computer modeling predicts that its presence increases HCN4 current. Our results suggest important roles for LRMP and IRAG in the regulation of cellular excitability, as tools for advancing mechanistic understanding of HCN4 channel function, and as possible scaffolds for coordination of signaling pathways.


Subject(s)
Endoplasmic Reticulum/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Animals , CHO Cells , Cell Line , Cricetulus , Cyclic AMP/metabolism , Gene Expression Regulation , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Male , Membrane Potentials/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Models, Biological , Multigene Family , Myocytes, Cardiac/metabolism , Phosphoproteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Isoforms , Sinoatrial Node/physiology , Sinoatrial Node/physiopathology
19.
Arch Biochem Biophys ; 689: 108436, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32492375

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels belong to the superfamily of voltage-gated potassium (Kv) and cyclic nucleotide-gated (CNG) channels. HCN channels contain the glycine-tyrosine-glycine (GYG) sequence that forms part of the selectivity filter, a similar structure than some potassium channels; however, they permeate both sodium and potassium, giving rise to an inward current. Yet a second amino acid sequence, leucine-cysteine-isoleucine (LCI), next to GYG, is well-preserved in all HCNs but not in the selective potassium channels. In this study we used site-directed mutagenesis and electrophysiology in frog oocytes to determine whether the LCI sequence affects the kinetics of HCN2 currents. Permeability and voltage dependence were evaluated, and we found a role of LCI in the gating mechanism combined with changes in ion permeability. The I residue resulted critical to this function.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Xenopus Proteins/metabolism , Xenopus/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Ion Channel Gating , Membrane Potentials , Mutagenesis, Site-Directed , Oocytes/metabolism , Permeability , Potassium/metabolism , Sodium/metabolism , Xenopus/genetics , Xenopus Proteins/chemistry , Xenopus Proteins/genetics
20.
J Biol Chem ; 295(24): 8164-8173, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32341127

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are major regulators of synaptic plasticity and rhythmic activity in the heart and brain. Opening of HCN channels requires membrane hyperpolarization and is further facilitated by intracellular cyclic nucleotides (cNMPs). In HCN channels, membrane hyperpolarization is sensed by the membrane-spanning voltage sensor domain (VSD), and the cNMP-dependent gating is mediated by the intracellular cyclic nucleotide-binding domain (CNBD) connected to the pore-forming S6 transmembrane segment via the C-linker. Previous functional analysis of HCN channels has suggested a direct or allosteric coupling between the voltage- and cNMP-dependent activation mechanisms. However, the specifics of this coupling remain unclear. The first cryo-EM structure of an HCN1 channel revealed that a novel structural element, dubbed the HCN domain (HCND), forms a direct structural link between the VSD and C-linker-CNBD. In this study, we investigated the functional significance of the HCND. Deletion of the HCND prevented surface expression of HCN2 channels. Based on the HCN1 structure analysis, we identified Arg237 and Gly239 residues on the S2 of the VSD that form direct interactions with Ile135 on the HCND. Disrupting these interactions abolished HCN2 currents. We also identified three residues on the C-linker-CNBD (Glu478, Gln482, and His559) that form direct interactions with residues Arg154 and Ser158 on the HCND. Disrupting these interactions affected both voltage- and cAMP-dependent gating of HCN2 channels. These findings indicate that the HCND is necessary for the cell-surface expression of HCN channels and provides a functional link between voltage- and cAMP-dependent mechanisms of HCN channel gating.


Subject(s)
Cell Membrane/metabolism , Cyclic AMP/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ion Channel Gating , Amino Acid Sequence , Animals , HEK293 Cells , Humans , Mice , Protein Binding , Protein Domains , Sequence Deletion , Structure-Activity Relationship , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...