Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 375
Filter
1.
Front Immunol ; 15: 1372959, 2024.
Article in English | MEDLINE | ID: mdl-38690277

ABSTRACT

Introduction: Hypoxia is a common pathological driver contributing to various forms of pulmonary vascular diseases leading to pulmonary hypertension (PH). Pulmonary interstitial macrophages (IMs) play pivotal roles in immune and vascular dysfunction, leading to inflammation, abnormal remodeling, and fibrosis in PH. However, IMs' response to hypoxia and their role in PH progression remain largely unknown. We utilized a murine model of hypoxia-induced PH to investigate the repertoire and functional profiles of IMs in response to acute and prolonged hypoxia, aiming to elucidate their contributions to PH development. Methods: We conducted single-cell transcriptomic analyses to characterize the repertoire and functional profiles of murine pulmonary IMs following exposure to hypobaric hypoxia for varying durations (0, 1, 3, 7, and 21 days). Hallmark pathways from the mouse Molecular Signatures Database were utilized to characterize the molecular function of the IM subpopulation in response to hypoxia. Results: Our analysis revealed an early acute inflammatory phase during acute hypoxia exposure (Days 1-3), which was resolved by Day 7, followed by a pro-remodeling phase during prolonged hypoxia (Days 7-21). These phases were marked by distinct subpopulations of IMs: MHCIIhiCCR2+EAR2+ cells characterized the acute inflammatory phase, while TLF+VCAM1hi cells dominated the pro-remodeling phase. The acute inflammatory phase exhibited enrichment in interferon-gamma, IL-2, and IL-6 pathways, while the pro-remodeling phase showed dysregulated chemokine production, hemoglobin clearance, and tissue repair profiles, along with activation of distinct complement pathways. Discussion: Our findings demonstrate the existence of distinct populations of pulmonary interstitial macrophages corresponding to acute and prolonged hypoxia exposure, pivotal in regulating the inflammatory and remodeling phases of PH pathogenesis. This understanding offers potential avenues for targeted interventions, tailored to specific populations and distinct phases of the disease. Moreover, further identification of triggers for pro-remodeling IMs holds promise in unveiling novel therapeutic strategies for pulmonary hypertension.


Subject(s)
Gene Expression Profiling , Hypertension, Pulmonary , Hypoxia , Single-Cell Analysis , Transcriptome , Animals , Mice , Hypoxia/metabolism , Hypoxia/immunology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Male , Lung/immunology , Lung/pathology , Lung/metabolism
2.
Front Immunol ; 15: 1372957, 2024.
Article in English | MEDLINE | ID: mdl-38779688

ABSTRACT

Background: Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-ß, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods: Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results: Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion: Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-ß and causes PH.


Subject(s)
Hypertension, Pulmonary , Macrophages , Animals , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/parasitology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/pathology , Mice , Macrophages/immunology , Macrophages/parasitology , Phenotype , Schistosoma mansoni/immunology , Mice, Inbred C57BL , Schistosomiasis/immunology , Schistosomiasis/complications , Schistosomiasis/parasitology , Disease Models, Animal , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/complications , Schistosomiasis mansoni/pathology , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Monocytes/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Female , Schistosoma/immunology , Schistosoma/physiology , Lung/immunology , Lung/parasitology , Lung/pathology
3.
Eur Respir J ; 63(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38485150

ABSTRACT

There is an unmet need for new therapeutic strategies that target alternative pathways to improve the prognosis of patients with pulmonary arterial hypertension (PAH). As immunity has been involved in the development and progression of vascular lesions in PAH, we review the potential contribution of B-cells in its pathogenesis and evaluate the relevance of B-cell-targeted therapies. Circulating B-cell homeostasis is altered in PAH patients, with total B-cell lymphopenia, abnormal subset distribution (expansion of naïve and antibody-secreting cells, reduction of memory B-cells) and chronic activation. B-cells are recruited to the lungs through local chemokine secretion, and activated by several mechanisms: 1) interaction with lung vascular autoantigens through cognate B-cell receptors; 2) costimulatory signals provided by T follicular helper cells (interleukin (IL)-21), type 2 T helper cells and mast cells (IL-4, IL-6 and IL-13); and 3) increased survival signals provided by B-cell activating factor pathways. This activity results in the formation of germinal centres within perivascular tertiary lymphoid organs and in the local production of pathogenic autoantibodies that target the pulmonary vasculature and vascular stabilisation factors (including angiotensin-II/endothelin-1 receptors and bone morphogenetic protein receptors). B-cells also mediate their effects through enhanced production of pro-inflammatory cytokines, reduced anti-inflammatory properties by regulatory B-cells, immunoglobulin (Ig)G-induced complement activation, and IgE-induced mast cell activation. Precision-medicine approaches targeting B-cell immunity are a promising direction for select PAH conditions, as suggested by the efficacy of anti-CD20 therapy in experimental models and a trial of rituximab in systemic sclerosis-associated PAH.


Subject(s)
B-Lymphocytes , Pulmonary Arterial Hypertension , Humans , B-Lymphocytes/immunology , Pulmonary Arterial Hypertension/immunology , Animals , Lung/immunology , Autoantibodies/immunology , Hypertension, Pulmonary/immunology
4.
Autoimmun Rev ; 23(4): 103514, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38181859

ABSTRACT

Pre-capillary pulmonary arterial hypertension (PAH) is hemodynamically characterized by a mean pulmonary arterial pressure (mPAP) ≥ 20 mmHg, pulmonary capillary wedge pressure (PAWP) ≤15 mmHg and pulmonary vascular resistance (PVR) > 2. PAH is classified in six clinical subgroups, including idiopathic PAH (IPAH) and PAH associated to connective tissue diseases (CTD-PAH), that will be the main object of this review. The aim is to compare these two PAH subgroups in terms of epidemiology, histological and pathogenic findings in an attempt to define disease-specific features, including autoimmunity, that may explain the heterogeneity of response to therapy between IPAH and CTD-PAH.


Subject(s)
Autoimmunity , Connective Tissue Diseases , Humans , Connective Tissue Diseases/immunology , Connective Tissue Diseases/complications , Pulmonary Arterial Hypertension/immunology , Pulmonary Arterial Hypertension/etiology , Pulmonary Arterial Hypertension/physiopathology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/immunology
5.
Adv Respir Med ; 92(1): 27-35, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38247549

ABSTRACT

BACKGROUND: Pathogenesis of pulmonary hypertension (PH) is a multifactorial process driven by inflammation and pulmonary vascular remodeling. To target these two aspects of PH, we recently tested a novel treatment: Interleukin-9 (IL9) fused to F8, an antibody that binds to the extra-domain A of fibronectin (EDA+ Fn). As EDA+ Fn is not found in healthy adult tissue but is expressed during PH, IL9 is delivered specifically to the tissue affected by PH. We found that F8IL9 reduced pulmonary vascular remodeling and attenuated PH compared with sham-treated mice. PURPOSE: To evaluate possible F8IL9 effects on PH-associated inflammatory processes, we analysed the expression of genes involved in pulmonary immune responses. METHODS: We applied the monocrotaline (MCT) model of PH in mice (n = 44). Animals were divided into five experimental groups: sham-induced animals without PH (control, n = 4), MCT-induced PH without treatment (PH, n = 8), dual endothelin receptor antagonist treatment (dual ERA, n = 8), F8IL9 treatment (n = 12, 2 formats with n = 6 each), or with KSFIL9 treatment (KSFIL9, n = 12, 2 formats with n = 6 each, KSF: control antibody with irrelevant antigen specificity). After 28 days, a RT-PCR gene expression analysis of inflammatory response (84 genes) was performed in the lung. RESULTS: Compared with the controls, 19 genes exhibited relevant (+2.5-fold) upregulation in the PH group without treatment. Gene expression levels in F8IL9-treated lung tissue were reduced compared to the PH group without treatment. This was the case especially for CCL20, CXCL5, C-reactive protein, pentraxin related (CRPPR), and Kininogen-1 (KNG1). CONCLUSION: In accordance with the hypothesis stated above, F8IL9 treatment diminished the upregulation of some genes associated with inflammation in a PH animal model. Therefore, we hypothesize that IL9-based immunocytokine treatment will likely modulate various inflammatory pathways.


Subject(s)
Hypertension, Pulmonary , Interleukin-9 , Animals , Mice , Antibodies , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/immunology , Immunoconjugates/therapeutic use , Inflammation/drug therapy , Interleukin-9/immunology , Interleukin-9/therapeutic use , Lung , Vascular Remodeling , Disease Models, Animal
6.
Int J Mol Sci ; 24(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37047587

ABSTRACT

Mast cells are responsible for IgE-dependent allergic responses, but they also produce various bioactive mediators and contribute to the pathogenesis of various cardiovascular diseases, including pulmonary hypertension (PH). The importance of lipid mediators in the pathogenesis of PH has become evident in recent years, as exemplified by prostaglandin I2, the most central therapeutic target in pulmonary arterial hypertension. New bioactive lipids other than eicosanoids have also been identified that are associated with the pathogenesis of PH. However, it remains largely unknown how mast cell-derived lipid mediators are involved in pulmonary vascular remodeling. Recently, it has been demonstrated that mast cells produce epoxidized n-3 fatty acid (n-3 epoxides) in a degranulation-independent manner, and that n-3 epoxides produced by mast cells regulate the abnormal activation of pulmonary fibroblasts and suppress the progression of pulmonary vascular remodeling. This review summarizes the role of mast cells and bioactive lipids in the pathogenesis of PH. In addition, we introduce the pathophysiological role and therapeutic potential of n-3 epoxides, a mast cell-derived novel lipid mediator, in the pulmonary vascular remodeling in PH. Further knowledge of mast cells and lipid mediators is expected to lead to the development of innovative therapies targeting pulmonary vascular remodeling.


Subject(s)
Airway Remodeling , Fatty Acids, Unsaturated , Hypertension, Pulmonary , Lysophospholipids , Mast Cells , Pulmonary Artery , Mast Cells/metabolism , Airway Remodeling/immunology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/pathology , Pulmonary Artery/immunology , Pulmonary Artery/pathology , Lysophospholipids/biosynthesis , Fatty Acids, Unsaturated/biosynthesis , Humans , Animals
7.
BMC Pulm Med ; 21(1): 383, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34823498

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PH) secondary to pulmonary fibrosis (PF) is one of the most common complications in PF patients, it causes severe disease and usually have a poor prognosis. Whether the combination of PH and PF is a unique disease phenotype is unclear. We aimed to screen the key modules associated with PH-PF immune infiltration based on WGCNA and identify the hub genes for molecular typing. METHOD: Using the gene expression profile GSE24988 of PF patients with or without PH from the Gene Expression Omnibus (GEO) database, we evaluated immune cell infiltration using Cibersortx and immune cell gene signature files. Different immune cell types were screened using the Wilcoxon test; differentially expressed genes were screened using samr. The molecular pathways implicated in these differential responses were identified using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses. A weighted co-expression network of the differential genes was constructed, relevant co-expression modules were identified, and relationships between modules and differential immune cell infiltration were calculated. The modules most relevant to this disease were identified using weighted correlation network analysis. From these, we constructed a co-expression network; using the STRING database, we integrated the values into the human protein-protein interaction network before constructing a co-expression interaction subnet, screening genes associated with immunity and unsupervised molecular typing, and analyzing the immune cell infiltration and expression of key genes in each disease type. RESULTS: Of the 22 immune cell types from the PF GEO data, 20 different immune cell types were identified. There were 1622 differentially expressed genes (295 upregulated and 1327 downregulated). The resulting weighted co-expression network identified six co-expression modules. These were screened to identify the modules most relevant to the disease phenotype (the green module). By calculating the correlations between modules and the differentially infiltrated immune cells, extracting the green module co-expression network (46 genes), extracting 25 key genes using gene significance and module-membership thresholds, and combining these with the 10 key genes in the human protein-protein interaction network, we identified five immune cell-related marker genes that might be applied as biomarkers. Using these marker genes, we evaluated these disease samples using unsupervised clustering molecular typing. CONCLUSION: Our results demonstrated that all PF combined with PH samples belonged to four categories. Studies on the five key genes are required to validate their diagnostic and prognostic value.


Subject(s)
Hypertension, Pulmonary/genetics , Pulmonary Fibrosis/genetics , Databases, Genetic , Gene Expression Profiling , Genetic Markers , Humans , Hypertension, Pulmonary/immunology , Molecular Typing , Pulmonary Fibrosis/immunology , Transcriptome
8.
Nat Commun ; 12(1): 6819, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819510

ABSTRACT

Impaired proteasome activity due to genetic variants of certain subunits might lead to proteasome-associated autoinflammatory syndromes (PRAAS). Here we report a de novo heterozygous missense variant of the PSMB9 proteasome subunit gene in two unrelated Japanese infants resulting in amino acid substitution of the glycine (G) by aspartic acid (D) at position 156 of the encoded protein ß1i. In addition to PRAAS-like manifestations, these individuals suffer from pulmonary hypertension and immunodeficiency, which are distinct from typical PRAAS symptoms. The missense variant results in impaired immunoproteasome maturation and activity, yet ubiquitin accumulation is hardly detectable in the patients. A mouse model of the heterozygous human genetic variant (Psmb9G156D/+) recapitulates the proteasome defects and the immunodeficiency phenotype of patients. Structurally, PSMB9 G156D interferes with the ß-ring-ßring interaction of the wild type protein that is necessary for 20S proteasome formation. We propose the term, proteasome-associated autoinflammatory syndrome with immunodeficiency (PRAAS-ID), to indicate a separate category of autoinflammatory diseases, similar to, but distinct from PRAAS, that describes the patients in this study.


Subject(s)
Cysteine Endopeptidases/genetics , Hereditary Autoinflammatory Diseases/genetics , Hypertension, Pulmonary/genetics , Primary Immunodeficiency Diseases/genetics , Proteasome Endopeptidase Complex/metabolism , Animals , Cysteine Endopeptidases/metabolism , Disease Models, Animal , Female , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/immunology , Hereditary Autoinflammatory Diseases/pathology , Heterozygote , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/immunology , Infant, Newborn , Male , Mice , Mice, Transgenic , Mutation, Missense , Pedigree , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/pathology , Proteasome Endopeptidase Complex/genetics , Syndrome
9.
Eur Rev Med Pharmacol Sci ; 25(13): 4540-4553, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34286497

ABSTRACT

OBJECTIVE: High-altitude pulmonary hypertension (HAPH) is one of the diseases with higher occurrence among people living in plateau areas. The possible mechanism of angiotensin II receptor 1 inhibitor irbesartan in improving HAPH was explored from the perspective of intestinal bacterial flora in this study. MATERIALS AND METHODS: A HAPH rat model was established under simulated high-altitude hypobaric hypoxia. The levels of oxidative stress and vasoactive substances were detected after irbesartan intervention, and intestinal flora genomics analysis was performed. RESULTS: High-altitude hypobaric hypoxia-induced the increase in pulmonary artery pressure and left ventricular systolic dysfunction in HAPH model rats, but its effects were alleviated by irbesartan. Changes in the levels of oxidative damage in intestinal tissues, such as the increase in superoxide dismutase and glutathione peroxidase in intestinal tissues and the decrease in malondialdehyde content, were also reversed by irbesartan. The serum levels of angiotensin II, endothelin 1, interleukin-6, and C-reactive protein increased substantially whereas the level of nitric oxide decreased in HAPH model rats. The levels of these vasoconstriction and inflammatory indicators were also reversed after irbesartan intervention. The distribution of intestinal florae in rats was changed by the simulated high-altitude hypoxia environment as manifested by the increased Firmicutes-to-Bacteroidetes ratio (F/B), the increased abundance of Lactobacillaceae and Lachnospiraceae, and the decreased abundance of Prevotellaceae and Desulfovibrionaceae at the family level. However, the changes in F/B ratio and the abundance of these florae were reversed by irbesartan. CONCLUSIONS: Irbesartan can alleviate pulmonary artery pressure and left ventricular relaxation in HAPH model rats, reduce the oxidative damage caused by high-altitude hypoxia, and lower the release of vasoconstrictor factors and inflammatory mediators. These effects might be caused by the increased abundance of Lactobacillaceae and Lachnospiraceae and the decreased abundance of Prevotellaceae and Desulfovibrionaceae in the intestines.


Subject(s)
Altitude Sickness/drug therapy , Angiotensin II Type 1 Receptor Blockers/pharmacology , Gastrointestinal Microbiome/drug effects , Hypertension, Pulmonary/drug therapy , Irbesartan/pharmacology , Altitude Sickness/blood , Altitude Sickness/immunology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Animals , Disease Models, Animal , Gastrointestinal Microbiome/immunology , Humans , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/immunology , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Irbesartan/therapeutic use , Male , Oxidative Stress/drug effects , Oxidative Stress/immunology , Rats
10.
Aging (Albany NY) ; 13(12): 16485-16499, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34153003

ABSTRACT

This study aimed to construct an atlas of the cell landscape and comprehensively characterize the cellular repertoire of the pulmonary endarterectomized tissues of patients with chronic thromboembolic pulmonary hypertension (CTEPH). Five pulmonary endarterectomized tissues were collected. 10× Genomics single-cell RNA sequencing was performed, followed by the identification of cluster marker genes and cell types. Gene Ontology (GO) enrichment analysis was conducted. Seventeen cell clusters were characterized, corresponding to 10,518 marker genes, and then classified into eight cell types, including fibroblast/smooth muscle cell, endothelial cell, T cell/NK cell, macrophage, mast cell, cysteine rich secretory protein LCCL domain containing 2 (CRISPLD2)+ cell, cancer stem cell, and undefined. The specific marker genes of fibroblast/smooth muscle cell, endothelial cell, T cell/NK cell, macrophage, mast cell, and cancer stem cell were significantly enriched for multiple functions associated with muscle cell migration, endothelial cell migration, T cell activation, neutrophil activation, erythrocyte homeostasis, and tissue remodeling, respectively. No functions were significantly enriched for the marker gene of CRISPLD2+ cell. Our study, for the first time, provides an atlas of the cell landscape of the pulmonary endarterectomized tissues of CTEPH patients at single-cell resolution, which may serve as a valuable resource for further elucidation of disease pathophysiology.


Subject(s)
Endarterectomy , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/surgery , Sequence Analysis, RNA , Single-Cell Analysis , Thromboembolism/genetics , Cell Aggregation , Chronic Disease , Female , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Hypertension, Pulmonary/immunology , Killer Cells, Natural/immunology , Lung/pathology , Macrophages/immunology , Male , Mast Cells/immunology , Middle Aged , Myocytes, Smooth Muscle/metabolism , T-Lymphocytes/immunology
11.
JCI Insight ; 6(15)2021 08 09.
Article in English | MEDLINE | ID: mdl-34185707

ABSTRACT

We previously reported heightened expression of the human endogenous retroviral protein HERV-K deoxyuridine triphosphate nucleotidohydrolase (dUTPase) in circulating monocytes and pulmonary arterial (PA) adventitial macrophages of patients with PA hypertension (PAH). Furthermore, recombinant HERV-K dUTPase increased IL-6 in PA endothelial cells (PAECs) and caused pulmonary hypertension in rats. Here we show that monocytes overexpressing HERV-K dUTPase, as opposed to GFP, can release HERV-K dUTPase in extracellular vesicles (EVs) that cause pulmonary hypertension in mice in association with endothelial mesenchymal transition (EndMT) related to induction of SNAIL/SLUG and proinflammatory molecules IL-6 as well as VCAM1. In PAECs, HERV-K dUTPase requires TLR4-myeloid differentiation primary response-88 to increase IL-6 and SNAIL/SLUG, and HERV-K dUTPase interaction with melanoma cell adhesion molecule (MCAM) is necessary to upregulate VCAM1. TLR4 engagement induces p-p38 activation of NF-κB in addition to p-pSMAD3 required for SNAIL and pSTAT1 for IL-6. HERV-K dUTPase interaction with MCAM also induces p-p38 activation of NF-κB in addition to pERK1/2-activating transcription factor-2 (ATF2) to increase VCAM1. Thus in PAH, monocytes or macrophages can release HERV-K dUTPase in EVs, and HERV-K dUTPase can engage dual receptors and signaling pathways to subvert PAEC transcriptional machinery to induce EndMT and associated proinflammatory molecules.


Subject(s)
Endogenous Retroviruses , Epithelial-Mesenchymal Transition/immunology , Hypertension, Pulmonary , Macrophages/immunology , Monocytes/immunology , Pulmonary Artery , Pyrophosphatases/metabolism , Animals , CD146 Antigen/metabolism , Endogenous Retroviruses/metabolism , Endogenous Retroviruses/pathogenicity , Endothelial Cells/metabolism , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/virology , Inflammation/metabolism , Inflammation/virology , Mice , Pulmonary Artery/immunology , Pulmonary Artery/pathology , Signal Transduction , Snail Family Transcription Factors/metabolism
12.
Int J Mol Sci ; 22(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801620

ABSTRACT

BACKGROUND AND AIMS: Pulmonary hypertension (PH) is a heterogeneous disorder associated with poor prognosis. For the majority of patients, only limited therapeutic options are available. Thus, there is great interest to develop novel treatment strategies focusing on pulmonary vascular and right ventricular remodeling. Interleukin 9 (IL9) is a pleiotropic cytokine with pro- and anti-inflammatory functions. The aim of this study was to evaluate the therapeutic activity of F8IL9F8 consisting of IL9 fused to the F8 antibody, specific to the alternatively-spliced EDA domain of fibronectin, which is abundantly expressed in pulmonary vasculature and right ventricular myocardium in PH. METHODS: The efficacy of F8IL9F8 in attenuating PH progression in the monocrotaline mouse model was evaluated in comparison to an endothelin receptor antagonist (ERA) or an IL9 based immunocytokine with irrelevant antibody specificity (KSFIL9KSF). Treatment effects were assessed by right heart catheterization, echocardiography as well as histological and immunohistochemical tissue analyses. RESULTS: Compared to controls, systolic right ventricular pressure (RVPsys) was significantly elevated and a variety of right ventricular echocardiographic parameters were significantly impaired in all MCT-induced PH groups except for the F8IL9F8 group. Both, F8IL9F8 and ERA treatments lead to a significant reduction in RVPsys and an improvement of echocardiographic parameters when compared to the MCT group not observable for the KSFIL9KSF group. Only F8IL9F8 significantly reduced lung tissue damage and displayed a significant decrease of leukocyte and macrophage accumulation in the lungs and right ventricles. CONCLUSIONS: Our study provides first pre-clinical evidence for the use of F8IL9F8 as a new therapeutic agent for PH in terms of a disease-modifying concept addressing cardiovascular remodeling.


Subject(s)
Antibodies/chemistry , Hypertension, Pulmonary/therapy , Interleukin-9/therapeutic use , Animals , CHO Cells , Cricetulus , Cytokines/metabolism , Disease Models, Animal , Drug Carriers , Echocardiography , Endothelin Receptor Antagonists/chemistry , Hemodynamics , Hypertension, Pulmonary/immunology , Immunohistochemistry , Inflammation , Interleukin-9/administration & dosage , Leukocytes/metabolism , Lung/metabolism , Macrophages/metabolism , Mice , Protein Binding , Ventricular Function, Right
13.
Stem Cells Dev ; 30(10): 515-525, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33726521

ABSTRACT

Inflammation plays a major role in the pathogenesis of pulmonary hypertension (PH). We sought to investigate the effects of a cell-based immunomodulation in a dysimmune model of PH. PH was induced in athymic nude rats using semaxinib (Su group, n = 6). Tolerogenic macrophages (toM) were generated from monocyte isolation and then injected either the day before semaxinib injection (Prevention group, n = 6) or 3 weeks after (Reversion group, n = 6). Six athymic nude rats were used as controls. In vivo trafficking of toM was investigated with bioluminescence imaging showing that toM were mainly located into the lungs until 48 h after injection. Right ventricular (RV) end-systolic pressure and RV systolic function were assessed at 4 weeks using echocardiography. Morphometric analysis and RNA sequencing of the lungs were realized at 4 weeks. Rats treated with toM (Prevention and Reversion groups) had a significantly lower RV end-systolic pressure at 4 weeks (respectively, 25 ± 8 and 30 ± 6 mmHg vs. 67 ± 9 mmHg, P < 0.001), while RV systolic dysfunction was observed in Su and Reversion groups. Mean medial wall thickness of small arterioles was lower in Prevention and Reversion groups compared with the Su group (respectively, 10.9% ± 0.8% and 16.4% ± 1.3% vs. 28.2% ± 2.1%, P < 0.001). Similarly, cardiomyocyte area was decreased in rats treated with toM (150 ± 18 and 160 ± 86 µm2 vs. 279 ± 50 µm2, P < 0.001). A trend toward upregulation of genes involved in pulmonary arterial hypertension pathobiology was found in Su rats, while KCNK3 was significantly downregulated (fold-change = 9.8, P < 0.001). Injection of toM was associated with a less severe phenotype of PH in rats exposed to angioproliferative stress. Preserved expression of KCNK3 may explain the protective effect of toM.


Subject(s)
Disease Models, Animal , Hypertension, Pulmonary/therapy , Immunomodulation/immunology , Immunotherapy/methods , Macrophages/immunology , Animals , Gene Expression Profiling/methods , Humans , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/physiopathology , Immune Tolerance/immunology , Indoles/pharmacology , Lung/drug effects , Lung/metabolism , Lung/physiopathology , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrroles/pharmacology , Rats, Nude , Rodentia , Stroke Volume/drug effects , Stroke Volume/immunology , Stroke Volume/physiology , Tomography, Emission-Computed, Single-Photon
15.
Cell Mol Immunol ; 18(2): 374-384, 2021 02.
Article in English | MEDLINE | ID: mdl-33420357

ABSTRACT

Myeloid cells, such as neutrophils, are produced in the bone marrow in high quantities and are important in the pathogenesis of vascular diseases such as pulmonary hypertension (PH). Although neutrophil recruitment into sites of inflammation has been well studied, the mechanisms of neutrophil egress from the bone marrow are not well understood. Using computational flow cytometry, we observed increased neutrophils in the lungs of patients and mice with PH. Moreover, we found elevated levels of IL-6 in the blood and lungs of patients and mice with PH. We observed that transgenic mice overexpressing Il-6 in the lungs displayed elevated neutrophil egress from the bone marrow and exaggerated neutrophil recruitment to the lungs, resulting in exacerbated pulmonary vascular remodeling, and dysfunctional hemodynamics. Mechanistically, we found that IL-6-induced neutrophil egress from the bone marrow was dependent on interferon regulatory factor 4 (IRF-4)-mediated CX3CR1 expression in neutrophils. Consequently, Cx3cr1 genetic deficiency in hematopoietic cells in Il-6-transgenic mice significantly reduced neutrophil egress from bone marrow and decreased neutrophil counts in the lungs, thus ameliorating pulmonary remodeling and hemodynamics. In summary, these findings define a novel mechanism of IL-6-induced neutrophil egress from the bone marrow and reveal a new therapeutic target to curtail neutrophil-mediated inflammation in pulmonary vascular disease.


Subject(s)
Bone Marrow Cells/pathology , Hypertension, Pulmonary/pathology , Inflammation/complications , Interleukin-6/metabolism , Lung/pathology , Neutrophil Infiltration , Neutrophils/immunology , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Female , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/metabolism , Inflammation/immunology , Inflammation/pathology , Interleukin-6/genetics , Lung/immunology , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
16.
Medicine (Baltimore) ; 100(2): e24298, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33466218

ABSTRACT

RATIONALE: We present the case of a patient with autoimmune hepatitis who suffered fatal intracardiac and pulmonary arterial thromboembolic complications after ABO-incompatible living donor liver transplantation (ABOi LDLT) with splenectomy. PATIENT CONCERNS: A 46-year-old female (blood type B+) with autoimmune hepatitis and hepatitis B carrier status underwent elective ABOi LDLT. The donor liver was from a 51-year-old male living donor (blood type A+). A splenectomy was performed without bleeding complications. Intraoperatively, the patients hemodynamic condition was acceptable, with no evidence of thromboembolism on transesophageal echocardiography (TEE). DIAGNOSIS: Postoperatively, her platelet count increased from 15.0 to 263.0 (× 109/L) and thromboelastographic parameters indicated hypercoagulable state. She suffered acute circulatory collapse, respiratory distress and, eventually, a decline in mental status. The attending physicians in the intensive care unit (ICU) immediately performed resuscitation. INTERVENTIONS: The patient underwent emergency exploratory surgery. Intraoperatively, hypotension, bradycardia and arrhythmia developed, together with high central venous pressure. Assessment of cardiac structure and function using rescue TEE incidentally identified multiple, huge thromboembolic clots in the cardiac chambers; therefore, the patient underwent cardiac thromboembolectomy, including cardiopulmonary bypass with hypothermia therapy. OUTCOMES: Due to severe cardiac and respiratory distress, the patient required venoarterial extracorporeal membrane oxygenation (VAECMO) in the operating room and ICU. Despite continuous resuscitation in the ICU and maintenance of VAECMO, she suffered severe hypotension and massive bleeding that eventually led to death. LESSONS: In patients with autoimmune hepatitis, risk factors for thromboembolism should be rigorously controlled during the peak period of reactive thrombocytosis after ABOi LDLT with splenectomy.


Subject(s)
Blood Group Incompatibility/complications , Hepatitis, Autoimmune/surgery , Hypertension, Pulmonary/immunology , Liver Transplantation/adverse effects , Postoperative Complications/immunology , Thromboembolism/immunology , ABO Blood-Group System/immunology , Fatal Outcome , Female , Graft Rejection/immunology , Hepatitis, Autoimmune/immunology , Humans , Liver Transplantation/methods , Living Donors , Middle Aged
17.
Pathobiology ; 87(6): 356-366, 2020.
Article in English | MEDLINE | ID: mdl-33099553

ABSTRACT

Several studies have reported the pathophysiologic and molecular mechanisms responsible for pulmonary arterial hypertension (PAH). However, the in situ evidence of collagen V (Col V) and interleukin-17 (IL-17)/interleukin-6 (IL-6) activation in PAH has not been fully elucidated. We analyzed the effects of collagen I (Col I), Col V, IL-6, and IL-17 on vascular remodeling and hemodynamics and its possible mechanisms of action in monocrotaline (MCT)-induced PAH. Twenty male Wistar rats were randomly divided into two groups. In the PAH group, animals received MCT 60 mg/kg intraperitoneally, whereas the control group (CTRL) received saline. On day 21, the pulmonary blood pressure (PAP) and right ventricular systolic pressure (RVSP) were determined. Lung histology (smooth muscle cell proliferation [α-smooth muscle actin; α-SMA] and periadventitial fibrosis), immunofluorescence (Col I, Col V, and α-SMA), immunohistochemistry (IL-6, IL-17, and transforming growth factor-beta [TGF-ß]), and transmission electron microscopy to detect fibronexus were evaluated. The RVSP (40 ± 2 vs. 24 ± 1 mm Hg, respectively; p < 0.0001), right ventricle hypertrophy index (65 ± 9 and 25 ± 5%, respectively; p < 0.0001), vascular periadventitial Col I and Col V, smooth muscle cell α-SMA+, fibronexus, IL-6, IL-17, and TGF-ß were higher in the MCT group than in the CTRL group. In conclusion, our findings indicate in situ evidence of Col V and IL-6/IL-17 activation in vascular remodeling and suggest that increase of Col V may yield potential therapeutic targets for treating patients with PAH.


Subject(s)
Collagen/genetics , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/physiopathology , Interleukin-17/immunology , Interleukin-6/immunology , Vascular Remodeling/immunology , Animals , Collagen/classification , Collagen/metabolism , Disease Models, Animal , Hypertension, Pulmonary/chemically induced , Interleukin-17/genetics , Interleukin-6/genetics , Male , Monocrotaline/administration & dosage , Rats , Rats, Wistar
19.
Int Immunopharmacol ; 88: 106934, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32889242

ABSTRACT

Pulmonary hypertension (PH) is a pathophysiological disorder that can complicate most cardiovascular and respiratory diseases and may involve multiple clinical conditions, but its pathogenesis is poorly understood. Despite recent developments in the management of PH, there is an urgent need for new ways to effectively treat PH and reduce the risk of further complications. Recent studies have shown that dysregulated immunity underlies the development of PH. Myeloid cells, including monocytes and macrophages, participate in immune homeostasis and the adaptive immune response, but the function and production of these cells in PH is not well understood. A prominent pathological feature of pH is the accumulation of macrophages near the arterioles of the lung, indicating that pulmonary inflammation mediated by lung perivascular macrophages is a key driver of pulmonary remodelling, which leads to increased right ventricular systolic pressure. An improved understanding of the roles macrophages play in immune responses associated with PH may lead to new therapeutic targets. In this review, we highlight the relationship between macrophages and PH, the molecular mechanisms involved, and the recent advances in targeting these processes to treat PH.


Subject(s)
Hypertension, Pulmonary/immunology , Macrophages/immunology , Animals , Humans , Lung/immunology
20.
Am J Respir Cell Mol Biol ; 63(5): 665-680, 2020 11.
Article in English | MEDLINE | ID: mdl-32755457

ABSTRACT

Chronic perivascular inflammation is a prominent feature in the lungs of idiopathic pulmonary arterial hypertension. Although the proportions of conventional dendritic cells (cDCs) and plasmacytoid DCs are increased in idiopathic pulmonary arterial hypertension lungs, it remains unknown whether activated cDCs play a pathogenic role. The Tnfaip3 gene encodes the ubiquitin-binding protein A20, which is a negative regulator of NF-κB, critically involved in DC activation. Targeting of Tnfaip3/A20 in cDCs was achieved by Clec9a (DNGR1)-Cre-mediated excision of the Tnfaip3 gene in Tnfaip3DNGR1-KO mice. Mice were evaluated for signs of pulmonary hypertension (PH) using right heart catheterization, echocardiography, and measurement of the Fulton index. Inflammation was assessed by immunohistochemistry and flow cytometry. Pulmonary cDCs and monocyte-derived DCs from 31-week-old Tnfaip3DNGR1-KO mice showed modulated expression of cell surface activation markers compared with Tnfaip3DNGR1-WT mice. Tnfaip3DNGR1-KO mice developed elevated right ventricular systolic pressure and right ventricular hypertrophy. The lungs of these mice displayed increased vascular remodeling and perivascular and peribronchial immune cell infiltration resembling tertiary lymphoid organs. Proportions of activated T cells and expression of IL-1ß, IL-6, and IL-10 were enhanced in the lungs of Tnfaip3DNGR1-KO mice. Autoreactive IgA and IgG1 was detected in BAL and autoreactive IgA recognizing pulmonary endothelial antigens was present in the serum of Tnfaip3DNGR1-KO mice. All signs of PH were ameliorated in Tnfaip3DNGR1-KO mice by anti-IL-6 antibody treatment. These results indicate that activation of the NF-κB pathway in DCs, through deletion of A20/Tnfaip3, leads to experimental PH with accompanied pulmonary inflammation in an IL-6-dependent fashion.


Subject(s)
Dendritic Cells/metabolism , Gene Deletion , Hypertension, Pulmonary/metabolism , Integrases/metabolism , Lectins, C-Type/metabolism , Receptors, Immunologic/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Animals , Autoantibodies/metabolism , B-Lymphocytes/immunology , Cytokines/metabolism , Female , Hypertension, Pulmonary/immunology , Immunoglobulin A/metabolism , Lung/blood supply , Lung/pathology , Lymphocyte Activation/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Phenotype , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...