Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.976
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 233-237, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836656

ABSTRACT

Nur77 is a member of the NR4A subfamily of orphan nuclear receptors that is expressed and has a function within the immune system. This study aimed to investigate the role of Nur77 in hypoxic pulmonary hypertension. SPF male SD rats were exposed in hypobaric chamber simulating 5000 m high altitude for 0, 3, 7, 14, 21 or 28 days. Rat pulmonary artery smooth muscle cells (RPASMCs) were cultured under normoxic conditions (5% CO2-95% ambient air) or hypoxic conditions (5% O2 for 6 h, 12 h, 24 h, 48 h). Hypoxic rats developed pulmonary arterial remodeling and right ventricular hypertrophy with significantly increased pulmonary arterial pressure. The levels of Nur77, HIF-1α and PNCA were upregulated in pulmonary arterial smooth muscle from hypoxic rats. Silencing of either Nur77 or HIF-1α attenuated hypoxia-induced proliferation. Silencing of HIF-1α down-regulated Nur77 protein level, but Nur77 silence did not reduce HIF-1α. Nur77 was not con-immunoprecipitated with HIF-1α. This study demonstrated that Nur77 acted as a downstream regulator of HIF-1α under hypoxia, and plays a critical role in the hypoxia-induced pulmonary vascular remodeling, which is regulated by HIF-1α. Nur77 maybe a novel target of HPH therapy.


Subject(s)
Hypertension, Pulmonary , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Nuclear Receptor Subfamily 4, Group A, Member 1 , Pulmonary Artery , Rats, Sprague-Dawley , Vascular Remodeling , Animals , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Vascular Remodeling/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Male , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Hypoxia/metabolism , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Rats , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/pathology , Hypertrophy, Right Ventricular/physiopathology , Hypertrophy, Right Ventricular/genetics , Cells, Cultured
2.
Commun Biol ; 7(1): 693, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844781

ABSTRACT

Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.


Subject(s)
Cell Proliferation , Cyclic GMP , Forkhead Box Protein O3 , Natriuretic Peptide, C-Type , Pericytes , Signal Transduction , Humans , Pericytes/metabolism , Pericytes/pathology , Natriuretic Peptide, C-Type/metabolism , Cyclic GMP/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Male , Female , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Middle Aged , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Adult , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Cells, Cultured
3.
Sci Rep ; 14(1): 12716, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830933

ABSTRACT

To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-ß1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-ß1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-ß1-induced myofibroblast activation.


Subject(s)
Carotenoids , Hypertension, Pulmonary , Hypoxia , Matrix Metalloproteinase 2 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Mice , Hypoxia/metabolism , Hypoxia/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Carotenoids/pharmacology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Male , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Disease Models, Animal , Cell Proliferation/drug effects , Mice, Inbred C57BL , Smad3 Protein/metabolism , Cell Movement/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects
4.
Narra J ; 4(1): e579, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798867

ABSTRACT

Research on noncoding RNA, particularly microRNAs (miRNAs), is growing rapidly. Advances in genomic technologies have revealed the complex roles of miRNAs in pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD). It has been demonstrated that the progression of PAH associated with CHD is characterized by particular dysregulation of miRNAs and is related to cardiovascular remodeling, cell death, and right ventricle dysfunction. This review provides a comprehensive overview of the current state of knowledge regarding the involvement of miRNAs in the pathogenesis and progression of PAH associated with CHD. We commence by explaining the process of miRNA synthesis and its mode of action, as well as the role of miRNA in PAH associated with CHD. Moreover, the article delves into current breakthroughs in research, potential clinical implications, and prospects for future investigations. The review provides the insight into novel approaches for diagnosis, prognosis, and therapy of PAH associated with CHD.


Subject(s)
Heart Defects, Congenital , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/complications , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/etiology , Disease Progression , Prognosis
5.
Respir Res ; 25(1): 210, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755610

ABSTRACT

BACKGROUND: Mitogen-activated protein kinase (MAPK)signaling-mediated smoking-associated pulmonary vascular remodeling (PVR) plays an important role in the pathogenesis of group 3 pulmonary hypertension (PH). And G protein pathway suppressor 2 (GPS2) could suppress G-protein signaling such as Ras and MAPK, but its role in cigarette smoking -induced PVR (CS-PVR) is unclear. METHODS: An in vivo model of smoke-exposed rats was constructed to assess the role of GPS2 in smoking-induced PH and PVR. In vitro, the effects of GPS2 overexpression and silencing on the function of human pulmonary arterial smooth cells (HPASMCs) and the underlying mechanisms were explored. RESULTS: GPS2 expression was downregulated in rat pulmonary arteries (PAs) and HPASMCs after CS exposure. More importantly, CS-exposed rats with GPS2 overexpression had lower right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and wall thickness (WT%) than those without. And enhanced proliferation and migration of HPASMCs induced by cigarette smoking extract (CSE) can be evidently inhibited by overexpressed GPS2. Besides, GPS2siRNA significantly enhanced the proliferation, and migration of HPASMCs as well as activated Ras and Raf/ERK signaling, while these effects were inhibited by zoledronic acid (ZOL). In addition, GPS2 promoter methylation level in rat PAs and HPASMCs was increased after CS exposure, and 5-aza-2-deoxycytidine (5-aza) inhibited CSE-induced GPS2 hypermethylation and downregulation in vitro. CONCLUSIONS: GPS2 overexpression could improve the CS-PVR, suggesting that GPS2 might serve as a novel therapeutic target for PH-COPD in the future.


Subject(s)
Cigarette Smoking , MAP Kinase Signaling System , Rats, Sprague-Dawley , Vascular Remodeling , Animals , Vascular Remodeling/drug effects , Vascular Remodeling/physiology , Rats , Male , Humans , Cigarette Smoking/adverse effects , MAP Kinase Signaling System/physiology , MAP Kinase Signaling System/drug effects , Cells, Cultured , ras Proteins/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , raf Kinases/metabolism , raf Kinases/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/chemically induced , Extracellular Signal-Regulated MAP Kinases/metabolism
6.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791441

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in pulmonary artery endothelial cells (PAECs) activated AKT and suppressed the expression of DLL4. Consistent with these in vitro findings, increased AKT activation and reduced DLL4 expression was found in the small pulmonary arteries of patients with PAH. Increased NOTCH1 activation through exogenous DLL4 blocked AKT activation, decreased proliferation and reversed EndoMT. Exogenous and overexpression of DLL4 induced BMPR2 and PPRE promoter activity, and BMPR2 and PPARG mRNA in idiopathic PAH (IPAH) ECs. PPARγ, a nuclear receptor associated with EC homeostasis, suppressed by BMPR2 loss was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH ECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Directly blocking AKT or restoring DLL4/NOTCH1/PPARγ signaling may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II , Endothelial Cells , PPAR gamma , Proto-Oncogene Proteins c-akt , Pulmonary Artery , Receptor, Notch1 , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Endothelial Cells/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Male , Cell Proliferation , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Female , Cells, Cultured
7.
Respir Res ; 25(1): 221, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807129

ABSTRACT

Pulmonary hypertension (PH) is regarded as cardiovascular disease with an extremely poor prognosis, primarily due to irreversible vascular remodeling. Despite decades of research progress, the absence of definitive curative therapies remains a critical challenge, leading to high mortality rates. Recent studies have shown that serious metabolic disorders generally exist in PH animal models and patients of PH, which may be the cause or results of the disease. It is imperative for future research to identify critical biomarkers of metabolic dysfunction in PH pathophysiology and to uncover metabolic targets that could enhance diagnostic and therapeutic strategies. Metabolomics offers a powerful tool for the comprehensive qualitative and quantitative analysis of metabolites within specific organisms or cells. On the basis of the findings of the metabolomics research on PH, this review summarizes the latest research progress on metabolic pathways involved in processes such as amino acid metabolism, carbohydrate metabolism, lipid metabolism, and nucleotide metabolism in the context of PH.


Subject(s)
Hypertension, Pulmonary , Metabolomics , Humans , Metabolomics/methods , Metabolomics/trends , Hypertension, Pulmonary/metabolism , Animals , Lipid Metabolism/physiology
8.
Aging (Albany NY) ; 16(9): 8142-8154, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38728253

ABSTRACT

The specific mechanism of 4-hydroxysesamin (4-HS), a modification of Sesamin, on right ventricular failure due to pulmonary hypertension (PH) is ominous. By creating a rat model of PH in vivo and a model of pulmonary artery smooth muscle cell (PASMC) hypoxia and inflammation in vitro, the current work aimed to investigate in depth the molecular mechanism of the protective effect of 4-HS. In an in vitro model of hypoxia PASMC, changes in cell proliferation and inflammatory factors were detected after treatment with 4-HS, followed by changes in the JNK/p38 MAPK signaling pathway as detected by Western blot signaling pathway. The findings demonstrated that 4-HS was able to minimize PASMC cell death, block the JNK/p38 MAPK signaling pathway, and resist the promoting effect of hypoxia on PASMC cell proliferation. Following that, we found that 4-HS could both mitigate the right ventricular damage brought on by MCT and had a protective impact on rats Monocrotaline (MCT)-induced PH in in vivo investigations. The key finding of this study is that 4-HS may protect against PH by inhibiting the JNK/p38 MAPK signaling pathway.


Subject(s)
Cell Proliferation , Hypertension, Pulmonary , MAP Kinase Signaling System , p38 Mitogen-Activated Protein Kinases , Animals , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/drug therapy , Rats , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Male , Cell Proliferation/drug effects , Ventricular Dysfunction, Right/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Lignans/pharmacology , Lignans/therapeutic use , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Heart Failure/metabolism , Rats, Sprague-Dawley , Monocrotaline , Disease Models, Animal
9.
Respir Res ; 25(1): 192, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702687

ABSTRACT

This review examines how single-cell omics technologies, particularly single-cell RNA sequencing (scRNAseq), enhance our understanding of pulmonary arterial hypertension (PAH). PAH is a multifaceted disorder marked by pulmonary vascular remodeling, leading to high morbidity and mortality. The cellular pathobiology of this heterogeneous disease, involving various vascular and non-vascular cell types, is not fully understood. Traditional PAH studies have struggled to resolve the complexity of pathogenic cell populations. scRNAseq offers a refined perspective by detailing cellular diversity within PAH, identifying unique cell subsets, gene networks, and molecular pathways that drive the disease. We discuss significant findings from recent literature, summarizing how scRNAseq has shifted our understanding of PAH in human, rat, and mouse models. This review highlights the insights gained into cellular phenotypes, gene expression patterns, and novel molecular targets, and contemplates the challenges and prospective paths for research. We propose ways in which single-cell omics could inform future research and translational efforts to combat PAH.


Subject(s)
Single-Cell Analysis , Humans , Animals , Single-Cell Analysis/methods , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Arterial Hypertension/pathology , Sequence Analysis, RNA/methods , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology
10.
Cell Metab ; 36(6): 1335-1350.e8, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38701775

ABSTRACT

Perivascular collagen deposition by activated fibroblasts promotes vascular stiffening and drives cardiovascular diseases such as pulmonary hypertension (PH). Whether and how vascular fibroblasts rewire their metabolism to sustain collagen biosynthesis remains unknown. Here, we found that inflammation, hypoxia, and mechanical stress converge on activating the transcriptional coactivators YAP and TAZ (WWTR1) in pulmonary arterial adventitial fibroblasts (PAAFs). Consequently, YAP and TAZ drive glutamine and serine catabolism to sustain proline and glycine anabolism and promote collagen biosynthesis. Pharmacologic or dietary intervention on proline and glycine anabolic demand decreases vascular stiffening and improves cardiovascular function in PH rodent models. By identifying the limiting metabolic pathways for vascular collagen biosynthesis, our findings provide guidance for incorporating metabolic and dietary interventions for treating cardiopulmonary vascular disease.


Subject(s)
Glutamine , Serine , Vascular Stiffness , Animals , Glutamine/metabolism , Serine/metabolism , Male , Mice , Mice, Inbred C57BL , Fibroblasts/metabolism , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Humans , Collagen/metabolism , Rats
11.
J Am Heart Assoc ; 13(11): e032201, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780193

ABSTRACT

BACKGROUND: Pulmonary hypertension and right ventricular (RV) dysfunction are major prognostic determinants in patients with heart failure with preserved ejection fraction (HFpEF). The underlying pathomechanisms remain unknown. In this context, we sought to study the pathogenesis of pulmonary hypertension and RV dysfunction in a rat model of obesity-associated HFpEF. METHODS AND RESULTS: HFpEF was induced in obesity-prone rats fed a high-fat diet (n=13) and compared with obesity-resistant rats fed with standard chow (n=9). After 12 months, the animals underwent echocardiographic and hemodynamic evaluation followed by tissue sampling for pathobiological assessment. HFpEF rats presented mild RV pressure overload (with increased RV systolic pressure and pulmonary vascular resistance). No changes in pulmonary artery medial thickness and ex vivo vasoreactivity (to acetylcholine and endothelin-1) were observed and RNA sequencing analysis failed to identify gene clustering in HFpEF lungs. However, released nitric oxide levels were decreased in HFpEF pulmonary artery, while lung expression of preproendothelin-1 was increased. In HFpEF rats, RV structure and function were altered, with RV enlargement, decreased RV fractional area change and free wall longitudinal fractional shortening, together with altered right ventricle-pulmonary artery coupling (estimated by tricuspid annular plane systolic excursion/systolic pulmonary artery pressure). Hypertrophy and apoptosis (evaluated by transferase biotin- dUTP nick-end labeling staining) were increased in right and left ventricles of HFpEF rats. There was an inverse correlation between tricuspid annular plane systolic excursion/systolic pulmonary artery pressure and RV apoptotic rate. Plasma levels of soluble suppression of tumorigenicity-2, interleukin-1ß, -6 and -17A were increased in HFpEF rats. CONCLUSIONS: Obesity-associated HFpEF in rats spontaneously evolves to pulmonary hypertension-HFpEF associated with impaired right ventricle-pulmonary artery coupling that appears disproportionate to a slight increase in RV afterload.


Subject(s)
Disease Models, Animal , Heart Failure , Pulmonary Artery , Stroke Volume , Ventricular Dysfunction, Right , Ventricular Function, Right , Animals , Heart Failure/physiopathology , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/genetics , Pulmonary Artery/physiopathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Stroke Volume/physiology , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/metabolism , Ventricular Dysfunction, Right/genetics , Male , Ventricular Function, Right/physiology , Rats , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Heart Ventricles/physiopathology , Heart Ventricles/diagnostic imaging , Heart Ventricles/metabolism , Heart Ventricles/pathology , Obesity/physiopathology , Obesity/complications , Obesity/metabolism , Diet, High-Fat
12.
Clin Respir J ; 18(5): e13771, 2024 May.
Article in English | MEDLINE | ID: mdl-38747117

ABSTRACT

BACKGROUND: Hypertension is a main contributing factor of cardiovascular diseases; deregulated circular RNAs are involved in the pathogenesis of pulmonary arterial hypertension (PAH). Herein, we evaluated the function and mechanism of circST6GAL1 in PAH process. METHODS: Human pulmonary artery smooth muscle cells (HPASMCs) were cultured in hypoxic environment for functional analysis. The cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and flow cytometry assays were used to investigate cell proliferation, migration, and apoptosis. qRT-PCR and Western blotting analyses were used for level measurement of genes and proteins. The binding between miR-509-5p and circST6GAL1 or multiple C2 and transmembrane domain containing 2 (MCTP2) was analyzed by dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays. The monocrotaline (MCT)-induced PAH mouse models were established for in vivo assay. RESULTS: CircST6GAL1 was highly expressed in PAH patients and hypoxia-induced HPASMCs. Functionally, circST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs. Mechanistically, circST6GAL1 directly targeted miR-509-5p, and MCTP2 was a target of miR-509-5p. Rescue assays showed that the regulatory effects of circST6GAL1 deficiency on hypoxia-induced HPASMCs were abolished. Moreover, forced expression of miR-509-5p suppressed HPASMC proliferation and migration and induced cell apoptosis under hypoxia stimulation, while these effects were abolished by MCTP2 overexpression. Moreover, circST6GAL1 silencing improved MCT-induced pulmonary vascular remodeling and PAH. CONCLUSION: CircST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs, and alleviated pulmonary vascular remodeling in MCT-induced PAH mouse models through the miR-509-5p/MCTP2 axis, indicating a potential therapeutic target for PAH.


Subject(s)
Apoptosis , Cell Proliferation , MicroRNAs , Pulmonary Arterial Hypertension , RNA, Circular , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Disease Models, Animal , Myocytes, Smooth Muscle/metabolism , Male , Cell Movement/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Cells, Cultured , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology
13.
Cell Mol Biol Lett ; 29(1): 69, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741032

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a progressive disease characterized by pulmonary vascular remodeling. Increasing evidence indicates that endothelial-to-mesenchymal transition (EndMT) in pulmonary artery endothelial cells (PAECs) is a pivotal trigger initiating this remodeling. However, the regulatory mechanisms underlying EndMT in PH are still not fully understood. METHODS: Cytokine-induced hPAECs were assessed using RNA methylation quantification, qRT-PCR, and western blotting to determine the involvement of N6-methyladenosine (m6A) methylation in EndMT. Lentivirus-mediated silencing, overexpression, tube formation, and wound healing assays were utilized to investigate the function of METTL3 in EndMT. Endothelial-specific gene knockout, hemodynamic measurement, and immunostaining were performed to explore the roles of METTL3 in pulmonary vascular remodeling and PH. RNA-seq, RNA Immunoprecipitation-based qPCR, mRNA stability assay, m6A mutation, and dual-luciferase assays were employed to elucidate the mechanisms of RNA methylation in EndMT. RESULTS: The global levels of m6A and METTL3 expression were found to decrease in TNF-α- and TGF-ß1-induced EndMT in human PAECs (hPAECs). METTL3 inhibition led to reduced endothelial markers (CD31 and VE-cadherin) and increased mesenchymal markers (SM22 and N-cadherin) as well as EndMT-related transcription factors (Snail, Zeb1, Zeb2, and Slug). The endothelial-specific knockout of Mettl3 promoted EndMT and exacerbated pulmonary vascular remodeling and hypoxia-induced PH (HPH) in mice. Mechanistically, METTL3-mediated m6A modification of kruppel-like factor 2 (KLF2) plays a crucial role in the EndMT process. KLF2 overexpression increased CD31 and VE-cadherin levels while decreasing SM22, N-cadherin, and EndMT-related transcription factors, thereby mitigating EndMT in PH. Mutations in the m6A site of KLF2 mRNA compromise KLF2 expression, subsequently diminishing its protective effect against EndMT. Furthermore, KLF2 modulates SM22 expression through direct binding to its promoter. CONCLUSIONS: Our findings unveil a novel METTL3/KLF2 pathway critical for protecting hPAECs against EndMT, highlighting a promising avenue for therapeutic investigation in PH.


Subject(s)
Adenosine , Endothelial Cells , Epithelial-Mesenchymal Transition , Hypertension, Pulmonary , Kruppel-Like Transcription Factors , Methyltransferases , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Humans , Methyltransferases/metabolism , Methyltransferases/genetics , Mice , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Methylation , Mice, Inbred C57BL , Cadherins/metabolism , Cadherins/genetics , Male , Vascular Remodeling/genetics , Cells, Cultured
14.
Front Immunol ; 15: 1371706, 2024.
Article in English | MEDLINE | ID: mdl-38650935

ABSTRACT

Pulmonary hypertension (PH) pathogenesis is driven by inflammatory and metabolic derangements as well as glycolytic reprogramming. Induction of both interleukin 6 (IL6) and transglutaminase 2 (TG2) expression participates in human and experimental cardiovascular diseases. However, little is known about the role of TG2 in these pathologic processes. The current study aimed to investigate the molecular interactions between TG2 and IL6 in mediation of tissue remodeling in PH. A lung-specific IL6 over-expressing transgenic mouse strain showed elevated right ventricular (RV) systolic pressure as well as increased wet and dry tissue weights and tissue fibrosis in both lungs and RVs compared to age-matched wild-type littermates. In addition, IL6 over-expression induced the glycolytic and fibrogenic markers, hypoxia-inducible factor 1α, pyruvate kinase M2 (PKM2), and TG2. Consistent with these findings, IL6 induced the expression of both glycolytic and pro-fibrogenic markers in cultured lung fibroblasts. IL6 also induced TG2 activation and the accumulation of TG2 in the extracellular matrix. Pharmacologic inhibition of the glycolytic enzyme, PKM2 significantly attenuated IL6-induced TG2 activity and fibrogenesis. Thus, we conclude that IL6-induced TG2 activity and cardiopulmonary remodeling associated with tissue fibrosis are under regulatory control of the glycolytic enzyme, PKM2.


Subject(s)
Fibroblasts , GTP-Binding Proteins , Hypertension, Pulmonary , Interleukin-6 , Lung , Mice, Transgenic , Protein Glutamine gamma Glutamyltransferase 2 , Pyruvate Kinase , Transglutaminases , Animals , Humans , Mice , Disease Models, Animal , Fibroblasts/metabolism , Fibrosis , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/etiology , Interleukin-6/metabolism , Lung/pathology , Lung/immunology , Lung/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Transglutaminases/metabolism , Transglutaminases/genetics
15.
Biomed Pharmacother ; 174: 116505, 2024 May.
Article in English | MEDLINE | ID: mdl-38574614

ABSTRACT

Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.


Subject(s)
Canagliflozin , Cell Proliferation , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension , Vascular Remodeling , Animals , Rats , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Canagliflozin/pharmacology , Cell Proliferation/drug effects , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Monocrotaline/adverse effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sodium-Glucose Transporter 1/drug effects , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vascular Remodeling/drug effects
16.
Free Radic Biol Med ; 219: 141-152, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636714

ABSTRACT

Pulmonary hypertension (PH) is a devastating disease that lacks effective treatment options and is characterized by severe pulmonary vascular remodeling. Pulmonary arterial endothelial cell (PAEC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension. Canonical transient receptor potential (TRPC) channels, a family of Ca2+-permeable channels, play an important role in various diseases. However, the effect and mechanism of TRPCs on PH development have not been fully elucidated. Among the TRPC family members, TRPC4 expression was markedly upregulated in PAECs from hypoxia combined with SU5416 (HySu)-induced PH mice and monocrotaline (MCT)-treated PH rats, as well as in hypoxia-exposed PAECs, suggesting that TRPC4 in PAECs may participate in the occurrence and development of PH. In this study, we aimed to investigate whether TRPC4 in PAECs has an aggravating effect on PH and elucidate the molecular mechanisms. We observed that hypoxia treatment promoted PAEC apoptosis through a caspase-12/endoplasmic reticulum stress (ERS)-dependent pathway. Knockdown of TRPC4 attenuated hypoxia-induced apoptosis and caspase-3/caspase-12 activity in PAECs. Accordingly, adeno-associated virus (AAV) serotype 6-mediated pulmonary endothelial TRPC4 silencing (AAV6-Tie-shRNA-TRPC4) or TRPC4 antagonist suppressed PH progression as evidenced by reduced right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, PAEC apoptosis and reactive oxygen species (ROS) production. Mechanistically, unbiased RNA sequencing (RNA-seq) suggested that TRPC4 deficiency suppressed the expression of the proapoptotic protein sushi domain containing 2 (Susd2) in hypoxia-exposed mouse PAECs. Moreover, TRPC4 activated hypoxia-induced PAEC apoptosis by promoting Susd2 expression. Therefore, inhibiting TRPC4 ameliorated PAEC apoptosis and hypoxic PH in animals by repressing Susd2 signaling, which may serve as a therapeutic target for the management of PH.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Endothelial Cells , Hypertension, Pulmonary , Hypoxia , TRPC Cation Channels , Animals , TRPC Cation Channels/metabolism , TRPC Cation Channels/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/genetics , Rats , Hypoxia/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Male , Monocrotaline/toxicity , Vascular Remodeling/genetics , Disease Models, Animal , Humans , Signal Transduction , Mice, Inbred C57BL , Rats, Sprague-Dawley , Cells, Cultured , Indoles , Pyrroles
18.
Physiol Rep ; 12(7): e15999, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38610069

ABSTRACT

Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.


Subject(s)
Hypertension, Pulmonary , I-kappa B Kinase , Pulmonary Arterial Hypertension , Vascular Remodeling , Animals , Humans , Rats , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , I-kappa B Kinase/metabolism , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
19.
Biomed Pharmacother ; 174: 116552, 2024 May.
Article in English | MEDLINE | ID: mdl-38599061

ABSTRACT

AIMS: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS: NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS: Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.


Subject(s)
Connexin 43 , Myocytes, Smooth Muscle , Nerve Growth Factor , Pulmonary Artery , Animals , Humans , Male , Rats , Cells, Cultured , Connexin 43/metabolism , Gap Junctions/metabolism , Gap Junctions/drug effects , Hypertension, Pulmonary/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Nerve Growth Factor/metabolism , Phosphorylation , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Rats, Wistar , Receptor, trkA/metabolism
20.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38614383

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Subject(s)
Cell Movement , Cell Proliferation , Macrophages , Myocytes, Smooth Muscle , STAT3 Transcription Factor , Signal Transduction , Triterpenes , Triterpenes/pharmacology , Triterpenes/therapeutic use , Animals , Signal Transduction/drug effects , Humans , STAT3 Transcription Factor/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Rats , Macrophages/drug effects , Macrophages/metabolism , Male , Cell Movement/drug effects , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Platelet-Derived Growth Factor/metabolism , Cell Survival/drug effects , Monocrotaline , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Becaplermin/pharmacology , Vascular Remodeling/drug effects , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...