Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 618
Filter
1.
Life Sci ; 351: 122819, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38857651

ABSTRACT

AIMS: Our aim was to evaluate whether the hydrogen sulfide (H2S) donor, 4-carboxyphenyl-isothiocyanate (4-CPI), exerts cardioprotective effect in the two kidney- one clip (2K-1C) rats through oxidative stress and MMP-2 activity attenuation and compare it with the classical H2S donor, Sodium Hydrosulfide (NaHS). MATERIALS AND METHODS: Renovascular hypertension (two kidneys-one clip; 2K-1C) was surgically induced in male Wistar rats. After two weeks, normotensive (2K) and hypertensive rats were intraperitoneally treated with vehicle (0.6 % dimethyl sulfoxide), NaHS (0.24 mg/Kg/day) or with 4-CPI (0.24 mg/Kg/day), for more 4 weeks. Systolic blood pressure (SBP) was evaluated weekly by tail-cuff plethysmography. Heart function was assessed by using the Millar catheter. Cardiac hypertrophy and fibrosis were evaluated by hematoxylin and eosin, and Picrosirius Red staining, respectively. The H2S was analyzed using WSP-1 fluorimetry and the cardiac oxidative stress was measured by lucigenin chemiluminescence and Amplex Red. MMP-2 activity was measured by in-gel gelatin or in situ zymography assays. Nox1, gp91phox, MMP-2 and the phospho-p65 subunit (Serine 279) nuclear factor kappa B (NF-κB) levels were evaluated by Western blotting. KEY FINDINGS: 4-CPI reduced blood pressure in hypertensive rats, decreased cardiac remodeling and promoted cardioprotection through the enhancement of cardiac H2S levels. An attenuation of oxidative stress, with inactivation of the p65-NF-κB/MMP-2 axis was similarly observed after NaHS or 4-CPI treatment in 2K-1C hypertension. SIGNIFICANCE: H2S is a mediator that promotes cardioprotective effects and decreases blood pressure, and 4-CPI seems to be a good candidate to reverse the maladaptive remodeling and cardiac dysfunction in renovascular hypertension.


Subject(s)
Blood Pressure , Hydrogen Sulfide , Matrix Metalloproteinase 2 , NF-kappa B , Oxidative Stress , Animals , Male , Rats , Blood Pressure/drug effects , Cardiotonic Agents/pharmacology , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Hypertension, Renovascular/drug therapy , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/physiopathology , Isothiocyanates/pharmacology , Matrix Metalloproteinase 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Sulfides/pharmacology
2.
J Cell Mol Med ; 28(10): e18376, 2024 May.
Article in English | MEDLINE | ID: mdl-38780511

ABSTRACT

Taking into account homeostatic disorders resulting from arterial hypertension and the key importance of CacyBP/SIP, ß-catenin and endocannabinoids in the functioning of many organs, it was decided to assess the presence and distribution of CacyBP/SIP, ß-catenin, CB1 and CB2 in the adrenal glands of hypertensive rats of various aetiology. The study was conducted on the adrenal glands of rats with spontaneous and renovascular hypertension. The expression of CacyBP/SIP, ß-catenin, CB1 and CB2 was detected by immunohistochemistry and real-time PCR method. The results of the present study revealed both lower gene expression and immunoreactivity of CacyBP/SIP in the adrenal glands of all hypertensive groups compared to the normotensive rats. This study demonstrated a reduction in the immunoreactivity and expression of the ß-catenin, CB1 and CB2 genes in the adrenals of 2K1C rats. While in SHR, the reaction showing ß-catenin and CB1 was very weak or negative, and the expression of CB2 in the adrenal glands of these rats increased. The results of this study show, for the first time, marked differences in the expression of CacyBP/SIP, ß-catenin and CB1 and CB2 cannabinoid receptors in the adrenal glands of rats with primary (SHR) and secondary hypertension (2K1C).


Subject(s)
Adrenal Glands , Hypertension , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , beta Catenin , Animals , beta Catenin/metabolism , beta Catenin/genetics , Male , Hypertension/metabolism , Hypertension/genetics , Adrenal Glands/metabolism , Adrenal Glands/pathology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Rats , Rats, Inbred SHR , Rats, Wistar , Immunohistochemistry , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/genetics , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/genetics , Hypertension, Renovascular/pathology
3.
Am J Physiol Cell Physiol ; 326(6): C1683-C1696, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38646785

ABSTRACT

Renovascular hypertension (RVHT) is characterized by renal artery stenosis and overactivated renin-angiotensin system (RAS). Apelin, known for its negative modulation of RAS, has protective effects against cardiovascular diseases. The role and mechanisms of the primary active form of apelin, apelin-13, in RVHT are unclear. In this study, male Sprague-Dawley rats were divided into control, two-kidney one-clip (2K1C) model, and 2K1C with apelin-13 treatment groups. Renin expression was analyzed using immunohistochemistry and molecular techniques. Full-length (pro)renin receptor (fPRR) and soluble PRR (sPRR) levels were assessed via Western blotting, and cAMP levels were measured using ELISA. Plasma renin content, plasma renin activity (PRA), angiotensin II (ANG II), and sPRR levels were determined by ELISA. Human Calu-6 and mouse As4.1 cells were used to investigate renin production mechanisms. The 2K1C model exhibited increased systolic blood pressure, plasma renin content, PRA, sPRR, and ANG II levels, while apelin-13 treatment reduced these elevations. Apelin-13 inhibited cAMP production, renin mRNA expression, protein synthesis, and PRR/sPRR protein expression in renal tissue. In Calu-6 cells, cAMP-induced fPRR and site-1 protease (S1P)-derived sPRR expression, which was blocked by cAMP-responsive element-binding protein (CREB) inhibition. Apelin-13 suppressed cAMP elevation, CREB phosphorylation, fPRR/sPRR protein expression, and renin production. Recombinant sPRR (sPRR-His) stimulated renin production, which was inhibited by the PRR decoy peptide PRO20 and S1P inhibitor PF429242. These findings suggest that apelin-13 inhibits plasma renin expression through the cAMP/PKA/sPRR pathway, providing a potential therapeutic approach for RVHT. Understanding the regulation of renin production is crucial for developing effective treatments.NEW & NOTEWORTHY Our research elucidated that apelin-13 inhibits renin production through the cAMP/PKA/soluble (pro)renin receptor pathway, presenting a promising therapeutic approach for renovascular hypertension (RVHT) by targeting renin expression mechanisms. These findings underscore the potential of apelin-13 as a novel strategy to address RVHT.


Subject(s)
Hypertension, Renovascular , Intercellular Signaling Peptides and Proteins , Rats, Sprague-Dawley , Renin , Animals , Renin/metabolism , Renin/genetics , Male , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Rats , Humans , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/drug therapy , Hypertension, Renovascular/genetics , Mice , Renin-Angiotensin System/drug effects , Kidney/metabolism , Prorenin Receptor , Angiotensin II/metabolism , Cyclic AMP/metabolism , Blood Pressure/drug effects , Signal Transduction , Cell Line , Disease Models, Animal , Cyclic AMP Response Element-Binding Protein/metabolism
4.
Curr Hypertens Rev ; 20(1): 23-35, 2024.
Article in English | MEDLINE | ID: mdl-38192137

ABSTRACT

BACKGROUND: Declined kidney function associated with hypertension is a danger for cognitive deficits, dementia, and brain injury. Cognitive decline and vascular dementia (VaD) are serious public health concerns, which highlights the urgent need for study on the risk factors for cognitive decline. Cysteinyl leukotriene (CysLT1) receptors are concerned with regulating cognition, motivation, inflammatory processes, and neurogenesis. OBJECTIVE: This research aims to examine the consequence of montelukast (specific CysLT1 antagonist) in renovascular hypertension 2-kidney-1-clip-2K1C model-triggered VaD in experimental animals. METHODS: 2K1C tactics were made to prompt renovascular hypertension in mature male rats. Morris water maze was employed to measure cognition. Mean arterial pressure (MAP), serum nitrite levels, aortic superoxide content, vascular endothelial activity, brain's oxidative stress (diminished glutathione, raised lipid peroxides), inflammatory markers (IL-10, IL-6, TNF-α), cholinergic activity (raised acetylcholinesterase), and cerebral injury (staining of 2, 3, 5- triphenylterazolium chloride) were also examined. RESULTS: Montelukast in doses of 5.0 and 10.0 mg kg-1 was used intraperitoneally as the treatment drug. Along with cognitive deficits, 2K1C-operated rats showed elevated MAP, endothelial dysfunction, brain oxidative stress, inflammation, and cerebral damage with diminished serum nitrite/nitrate. Montelukast therapy significantly and dose-dependently mitigated the 2K1Chypertension- provoked impaired behaviors, biochemistry, endothelial functions, and cerebral infarction. CONCLUSION: The 2K1C tactic caused renovascular hypertension and associated VaD, which was mitigated via targeted regulation of CysLT1 receptors by montelukast administration. Therefore, montelukast may be taken into consideration for the evaluation of its complete potential in renovascular-hypertension-induced VaD.


Subject(s)
Acetates , Cyclopropanes , Dementia, Vascular , Disease Models, Animal , Endothelium, Vascular , Hypertension, Renovascular , Leukotriene Antagonists , Oxidative Stress , Quinolines , Receptors, Leukotriene , Sulfides , Animals , Acetates/pharmacology , Quinolines/pharmacology , Male , Dementia, Vascular/physiopathology , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Dementia, Vascular/psychology , Leukotriene Antagonists/pharmacology , Oxidative Stress/drug effects , Hypertension, Renovascular/physiopathology , Hypertension, Renovascular/drug therapy , Hypertension, Renovascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Receptors, Leukotriene/metabolism , Inflammation Mediators/metabolism , Cognition/drug effects , Rats, Wistar , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Rats , Maze Learning/drug effects
5.
Can J Physiol Pharmacol ; 101(12): 661-671, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37746936

ABSTRACT

Renovascular hypertension (RHV) is the cause of high blood pressure due to left renal ischemia, and obesity and hypertension cause an inflammatory response. This work analyzed the inflammatory and tissue repair profile in renal, hepatic, and cardiac tissues in an animal model of RVH associated with a high-fat diet and caloric restriction. The expressions of RORγ-t, IL-17, T-bet, and TNF-α decreased and IFN-γ increased in the right kidney. In relation to the left kidney, caloric restriction decreased the expression of IFN-γ. In the liver, caloric restriction decreased RORγ-t, IL-17, and T-bet. Hypertension associated with obesity decreased the expression of IFN-γ, while caloric restriction increased. In the right kidney, hypertension and obesity, associated or not with caloric restriction, increased the area of collagen fibers. In the heart and liver, caloric restriction reduced the area of collagen fibers. Caloric restriction increased vascular endothelial growth factor, reduced levels of growth transformation factor-ß1 (TGF-ß), and increased collagen I in the left kidney. Hypertension/obesity, submitted or not having caloric restriction, increased TGF-ß in liver. The results suggest that caloric restriction has beneficial effects in lowering blood pressure and regulating tissue proinflammatory cytokines. However, there was no change in the structure and composition of tissue repair markers.


Subject(s)
Hypertension, Renovascular , Rats , Animals , Hypertension, Renovascular/metabolism , Rats, Wistar , Interleukin-17 , Caloric Restriction , Vascular Endothelial Growth Factor A , Obesity/complications , Transforming Growth Factor beta , Inflammation , Collagen/metabolism
6.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 939-949, 2023 05.
Article in English | MEDLINE | ID: mdl-36527481

ABSTRACT

Oxidative stress and MMP activity are found in the hearts and arteries in hypertension and contribute to the resulting hypertrophy and dysfunction. Quercetin is a flavonoid that reduces MMP-2 activity and ameliorates hypertrophic vascular remodeling of hypertension. The hypothesis is that treatment of hypertensive rats with quercetin ameliorates coronary maladaptive remodeling and decreases hypertrophic cardiac dysfunction by decreasing oxidative stress and MMP activity. Male Sprague-Dawley two-kidney, one-clip (2K1C) and Sham rats were treated with quercetin (10 mg/kg/day) or its vehicle for 8 weeks by gavage. Rats were analyzed at 10 weeks of hypertension. Systolic blood pressure (SBP) was examined by tail-cuff plethysmography. Cardiac left ventricles were used to determine MMP activity by in situ zymography and oxidative stress by dihydroethidium. Immunofluorescence was performed to detect transforming growth factor (TGF)-ß and nuclear factor kappa B (NFkB). Morphological analyses of heart and coronary arteries were done by H&E and picrosirius red, and cardiac function was measured by Langendorff. SBP was increased in 2K1C rats, and quercetin did not reduce it. However, quercetin decreased both oxidative stress and TGF-ß in the left ventricles of 2K1C rats. Quercetin also decreased the accentuated MMP activity in left ventricles and coronary arteries of 2K1C rats. Quercetin ameliorated hypertension-induced coronary arterial hypertrophic remodeling, although it did not reduce cardiac hypertrophic remodeling and dysfunction. Quercetin decreases cardiac oxidative stress and TGF-ß and MMP activity in addition to improving coronary remodeling, yet does not ameliorate cardiac dysfunction in 2K1C rats.


Subject(s)
Hypertension, Renovascular , Hypertension , Kidney Diseases , Rats , Male , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Hypertension, Renovascular/metabolism , Coronary Vessels/metabolism , Rats, Wistar , Rats, Sprague-Dawley , Hypertension/drug therapy , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Blood Pressure , Transforming Growth Factor beta/metabolism
7.
Saudi J Kidney Dis Transpl ; 34(Suppl 1): S86-S95, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38995276

ABSTRACT

Recently, the effect of an aqueous extract of asafetida on acute angiotensin II hypertensive rats was evaluated. The present study evaluated the antihypertensive and antioxidant effects of asafetida on a rat model of renovascular hypertension (RVH) using four groups. RVH was induced by clipping the renal artery; the sham group underwent surgery but without clipping. The RVH rats received losartan (Los, an AT1 receptor antagonist) or asafetida by gavage for 4 weeks. On the 28th day, the femoral artery was cannulated, and the systolic blood pressure (SBP), mean arterial pressure (MAP), and heart rate (HR) were recorded. Finally, the levels of superoxide dismutase (SOD) activity, malondialdehyde (MDA), and total thiol content in the kidney and heart tissues were measured. In RVH rats, SBP and MAP significantly increased compared with the control. Los and the extract significantly reduced the changes in SBP, MAP, and HR that were induced in the RVH rats (P <0.05-0.001). In RVH rats, levels of MDA significantly increased and the content of total thiol and SOD decreased in both the heart and kidney tissues. Los plus the extract significantly decreased MDA and increased total thiol and SOD in the heart and kidney tissues. We concluded that an aqueous extract of asafetida gum has antihypertensive and antioxidant effects in the RVH rat model. The effect of the extract is similar to that of Los, which suggests that this effect of asafetida is mediated via an effect on the angiotensin Type I receptor.


Subject(s)
Antihypertensive Agents , Antioxidants , Disease Models, Animal , Hypertension, Renovascular , Kidney , Losartan , Plant Extracts , Superoxide Dismutase , Animals , Hypertension, Renovascular/drug therapy , Hypertension, Renovascular/physiopathology , Hypertension, Renovascular/metabolism , Plant Extracts/pharmacology , Antioxidants/pharmacology , Antihypertensive Agents/pharmacology , Male , Losartan/pharmacology , Kidney/drug effects , Kidney/metabolism , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Blood Pressure/drug effects , Rats , Sulfhydryl Compounds/metabolism , Oxidative Stress/drug effects , Heart Rate/drug effects , Rats, Sprague-Dawley , Myocardium/metabolism , Arterial Pressure/drug effects
8.
Front Immunol ; 13: 940093, 2022.
Article in English | MEDLINE | ID: mdl-36203611

ABSTRACT

Extracellular vesicles (EVs) obtain properties of immunomodulation and tissue repair from their parental mesenchymal stem cells (MSCs), and upon delivery may be associated with fewer adverse events. EVs derived from adipose-tissue MSCs restored kidney function by attenuating kidney inflammation in a swine model of metabolic syndrome (MetS) and renal artery stenosis via anti-inflammatory pathways. EVs also ameliorated myocardial injury in renovascular hypertension (RVH) secondary to inflammation in cardiorenal disease, but the mechanisms regulating this effect are unknown. We hypothesize that the anti-inflammatory cytokine interleukin (IL)-10 mediates the reparative effects of EVs on cardiovascular complications in a preclinical swine model with coexisting MetS and RVH. Twenty-three pigs established as Lean controls or RVH models were observed for 16 weeks. At 12 weeks RVH subgroups received an intrarenal delivery of 1011 either wildtype (WT) EVs or EVs after IL-10 knockdown (KD) (RVH+WT-EVs or RVH+IL-10-KD-EVs, respectively). Cardiac and renal function were studied in-vivo and myocardial tissue injury in-vitro 4 weeks later. RVH pigs showed myocardial inflammation, fibrosis, and left ventricular diastolic dysfunction. WT-EVs attenuated these impairments, increased capillary density, and decreased myocardial inflammation in-vivo. In-vitro, co-incubation with IL-10-containing WT-EVs decreased activated T-cells proliferation and endothelial cells inflammation and promoted their migration. Contrarily, these cardioprotective effects were largely blunted using IL-10-KD-EVs. Thus, the anti-inflammatory and pro-angiogenic effects of EVs in RVH may be partly attributed to their cargo of anti-inflammatory IL-10. Early intervention of IL-10-containing EVs may be helpful to prevent cardiovascular complications of MetS concurrent with RVH.


Subject(s)
Extracellular Vesicles , Heart Diseases , Hypertension, Renovascular , Metabolic Syndrome , Animals , Anti-Inflammatory Agents/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Heart Diseases/metabolism , Hypertension, Renovascular/complications , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/therapy , Inflammation/metabolism , Interleukin-10/metabolism , Metabolic Syndrome/metabolism , Metabolic Syndrome/therapy , Swine
9.
J Steroid Biochem Mol Biol ; 224: 106176, 2022 11.
Article in English | MEDLINE | ID: mdl-36087695

ABSTRACT

Previous studies have shown that 17ß-estradiol plays a cardioprotective role in the central nervous system (CNS) of male rats. The aim of the present study was to determine the influence of 17ß-estradiol on sympathetic vasomotor activity and blood pressure in a renovascular hypertensive Goldblatt two-kidney one-clip (2K-1C) male rat model. We also determined the influence of angiotensin II AT1 receptor on the expression of estrogen receptors (ERα, ERß, and G protein-coupled ER (GPER)) in the rostral ventrolateral medulla (RVLM) of Goldblatt rats. Experiments were performed in Goldblatt and age-matched control rats six weeks after clipping of renal artery to induce hypertension. Microinjection of 17ß-estradiol into the RVLM led to a greater reduction in mean arterial pressure and renal sympathetic nerve activity in controls than in 2K-1C rats. Microinjection of the GPER agonist G-1 into the RVLM led to a significantly greater increase in mean arterial pressure and renal sympathetic nerve activity in 2K-1C rats. Expression levels of estrogen receptors GPER and ERα, but not ERß, were significantly higher in the RVLM of 2K-1C rats than in that of the control rats. Chronic treatment with losartan significantly reduced the expression levels of estrogen receptors in the RVLM of 2K-1C rats. Taken altogether, the data suggest that the imbalance of actions between ERα and GPER, particularly with the predominance of GPER in the RVLM, contributes to sympathetic overactivation in male rats with Goldblatt hypertension. AT1-Angiotensin II receptor in the RVLM upregulated estrogen receptor expression in male Goldblatt rats.


Subject(s)
Hypertension, Renovascular , Hypertension , Rats , Male , Animals , Hypertension, Renovascular/metabolism , Receptors, Estrogen , Estrogen Receptor alpha , Blood Pressure , Estradiol/pharmacology
10.
Sci Rep ; 12(1): 9289, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35662276

ABSTRACT

This study investigated the effects of nobiletin on cardiorenal changes and the underlying mechanisms involved in two-kidney, one-clip (2K-1C) hypertension. 2K-1C rats were treated with nobiletin (15 or 30 mg/kg/day) or losartan (10 mg/kg/day) for 4 weeks (n = 8/group). Nobiletin (30 mg/kg) reduced high levels of blood pressure and circulating angiotensin II and angiotensin-converting enzyme activity in 2K-1C rats. Left ventricular (LV) dysfunction and remodelling in 2K-1C rats were alleviated in the nobiletin-treated group (P < 0.05). Nobiletin reduced the upregulation of Ang II type I receptor (AT1R)/JAK (Janus kinase)/STAT (signal transducer and activator of transcription) protein expression in cardiac tissue of 2K-1C rats (P < 0.05). The reduction in kidney function, and accumulation of renal fibrosis in 2K-1C rats were alleviated by nobiletin (P < 0.05). Overexpression of AT1R and NADPH oxidase 4 (Nox4) protein in nonclipped kidney tissue was suppressed in the nobiletin-treated group (P < 0.05). The elevations in oxidative stress parameters and the reductions in antioxidant enzymes were attenuated in 2K-1C rats treated with nobiletin (P < 0.05). In summary, nobiletin had renin-angiotensin system inhibitory and antioxidant effects and attenuated LV dysfunction and remodelling via restoration of the AT1R/JAK/STAT pathway. Nobiletin also resolved renal damage that was related to modulation of the AT1R/Nox4 cascade in 2K-1C hypertension.


Subject(s)
Hypertension, Renovascular , Hypertension , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Blood Pressure/physiology , Flavones , Hypertension, Renovascular/metabolism , Janus Kinases/metabolism , Kidney/metabolism , Rats , STAT Transcription Factors/metabolism , Signal Transduction
11.
Biomed Pharmacother ; 146: 112601, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35062067

ABSTRACT

Genistein is a bioflavonoid mainly found in soybean. This study evaluated the effect of genistein on vascular dysfunction and kidney damage in two-kidney, one-clipped (2K1C) hypertensive rats. Male Sprague-Dawley-2K1C hypertensive rats were treated with genistein (40 or 80 mg/kg) or losartan 10 mg/kg (n = 8/group). Genistein reduced blood pressure, attenuated the increase in sympathetic nerve-mediated contractile response and endothelial dysfunction in the mesenteric vascular beds and aorta of 2K1C rats. Increases in the intensity of tyrosine hydroxylase (TH) in the mesentery and plasma norepinephrine (NE) were alleviated in the genistein-treated group. Genistein also improved renal dysfunction, hypertrophy of the non-clipped kidney (NCK) and atrophy of the clipped kidney (CK) in 2K1C rats. Upregulation of angiotensin II receptor type I (AT1R), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit 4 (Nox4) and Bcl2-associated X protein (BAX) and downregulation of B-cell lymphoma 2 (Bcl2) protein found in CK were restored by genistein. It also suppressed the overexpression of AT1R, transforming growth factor beta I (TGF-ß1), smad2/3 and p-smad3 in NCK. Genistein reduced serum angiotensin converting enzyme (ACE) activity and plasma angiotensin II (Ang II) in 2K1C rats. Low levels of catalase activity as well as high levels of superoxide generation and malondialdehyde (MDA) in 2K1C rats were restored by genistein treatment. In conclusion, genistein suppressed renin-angiotensin system-mediated sympathetic activation and oxidative stress in 2K1C rats. It alleviated renal atrophy in CK via modulation of AT1R/NADPH oxidase/Bcl-2/BAX pathways and hypertrophy in NCK via AT1R/TGF-ß1/smad-dependent signalling pathways.


Subject(s)
Genistein/pharmacology , Hypertension, Renovascular/metabolism , Kidney/drug effects , Renin-Angiotensin System/drug effects , Animals , Blood Pressure/drug effects , Disease Models, Animal , Humans , Kidney/pathology , Male , Rats , Rats, Sprague-Dawley
12.
Br J Pharmacol ; 179(11): 2490-2504, 2022 06.
Article in English | MEDLINE | ID: mdl-33963547

ABSTRACT

BACKGROUND AND PURPOSE: Reduced renal blood flow triggers activation of the renin-angiotensin-aldosterone system (RAAS) leading to renovascular hypertension. Renal vascular smooth muscle expression of the NO receptor, soluble GC (sGC), modulates the vasodilator response needed to control renal vascular tone and blood flow. Here, we tested if angiotensin II (Ang II) affects sGC expression via an AT1 receptor-forkhead box subclass O (FoxO) transcription factor dependent mechanism. EXPERIMENTAL APPROACH: Using a murine two-kidney-one-clip (2K1C) renovascular hypertension model, we measured renal artery vasodilatory function and sGC expression. Additionally, we conducted cell culture studies using rat renal pre-glomerular smooth muscle cells (RPGSMCs) to test the in vitro mechanistic effects of Ang II treatment on sGC expression and downstream function. KEY RESULTS: Contralateral, unclipped renal arteries in 2K1C mice showed increased NO-dependent vasorelaxation compared to sham control mice. Immunofluorescence studies revealed increased sGC protein expression in 2K1C contralateral renal arteries over sham controls. RPGSMCs treated with Ang II caused a significant up-regulation of sGC mRNA and protein expression as well as downstream sGC-dependent signalling. Ang II signalling effects on sGC expression occurred through an AT1 receptor and FoxO transcription factor-dependent mechanism at both the mRNA and protein expression levels. CONCLUSION AND IMPLICATIONS: Renal artery smooth muscle, in vivo and in vitro, up-regulates expression of sGC following RAAS activity. In both cases, up-regulation of sGC leads to increased downstream cGMP signalling, suggesting a previously unrecognized protective mechanism to improve renal blood flow in the uninjured contralateral renal artery. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Subject(s)
Angiotensin II , Hypertension, Renovascular , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Female , Forkhead Transcription Factors/metabolism , Humans , Hypertension, Renovascular/metabolism , Kidney , Male , Mice , Muscle, Smooth, Vascular , RNA, Messenger/metabolism , Rats
13.
Biomed J ; 45(4): 629-641, 2022 08.
Article in English | MEDLINE | ID: mdl-34333108

ABSTRACT

BACKGROUND: Progressive renal fibrosis is an underlying pathological process of chronic kidney disease (CKD) evolution. This study aimed to evaluate the roles of bone-marrow-derived mesenchymal stem cells (MSC) in the remodeling of fibrotic kidney parenchyma in the two kidneys-one clip (2K1C) CKD animal model. METHODS: Wistar rats were allocated into three groups: Sham, 2K1C, and 2K1C þ MSC. MSCs (106) were transplanted into the renal subcapsular region two weeks after clipping the left renal artery. Six weeks after clipping, left kidney samples were analyzed using histological and western blotting techniques. ANOVA tests were performed and differences between groups were considered statistically significant if p < 0.05. RESULTS: Clipped kidneys of 2K1C rats displayed renal fibrosis, with excessive collagen deposition, glomerulosclerosis and renal basement membrane disruption. Clipped kidneys of 2K1C þ MSC rats showed preserved Bowman's capsule and tubular basement membranes, medullary tubules morphological reconstitution and reduced collagen deposits. Expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were elevated, whereas tissue inhibitor of MMPs (TIMP)-1 and TIMP-2 levels were decreased in clipped kidneys of 2K1C rats. MSCs transplantation restored these expression levels. Moreover, MSCs suppressed macrophages and myofibroblasts accumulation, as well as TNF-a expression in clipped kidneys of 2K1C animals. MSCs transplantation significantly increased IL-10 expression. CONCLUSIONS: Transplanted MSCs orchestrate anti-fibrotic and anti-inflammatory events, which reverse renal fibrosis and promote renal morphological restoration. This study supports the notion that only one MSCs delivery into the renal subcapsular region represents a possible therapeutic strategy against renal fibrosis for CKD treatment.


Subject(s)
Hypertension, Renovascular , Mesenchymal Stem Cells , Renal Insufficiency, Chronic , Animals , Bone Marrow , Collagen/metabolism , Fibrosis , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/pathology , Interleukin-10/metabolism , Kidney/metabolism , Matrix Metalloproteinase 9/metabolism , Mesenchymal Stem Cells/metabolism , Rats , Rats, Wistar , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/therapy , Tissue Inhibitor of Metalloproteinase-2/metabolism
14.
J Mol Med (Berl) ; 99(12): 1727-1740, 2021 12.
Article in English | MEDLINE | ID: mdl-34528115

ABSTRACT

In malignant hypertension, far more severe kidney injury occurs than in the "benign" form of the disease. The role of high blood pressure and the renin-angiotensin-aldosterone system is well recognized, but the pathogenesis of the renal injury of malignant hypertension (MH) remains incompletely understood. Using the rat model of two-kidney, one-clip renovascular hypertension in which some but not all animals develop MH, we performed a transcriptomic analysis of gene expression by RNA sequencing to identify transcriptional changes in the kidney cortex specific for MH. Differential gene expression was assessed in three groups: MH, non-malignant hypertension (NMH), and normotensive, sham-operated controls. To distinguish MH from NMH, we considered two factors: weight loss and typical renovascular lesions. Mean blood pressure measured intraarterially was elevated in MH (220 ± 6.5 mmHg) as well as in NMH (192 ± 6.4 mmHg), compared to controls (119 ± 1.7 mmHg, p < 0.05). Eight hundred eighty-six genes were exclusively regulated in MH only. Principal component analysis revealed a separated clustering of the three groups. The data pointed to an upregulation of many inflammatory mechanisms in MH including pathways which previously attracted relatively little attention in the setting of hypertensive kidney injury: Transcripts from all three complement activation pathways were upregulated in MH compared to NMH but not in NMH compared with controls; immunohistochemistry confirmed complement deposition in MH exclusively. The expression of chemokines attracting neutrophil granulocytes (CXCL6) and infiltration of myeloperoxidase-positive cells were increased only in MH rats. The data suggest that these pathways, especially complement deposition, may contribute to kidney injury under MH. KEY MESSAGES: The most severe hypertension-induced kidney injury occurs in malignant hypertension. In a rat model of malignant hypertension, we assessed transcriptional responses in the kidney exposed to high blood pressure. A broad stimulation of inflammatory mechanisms was observed, but a few specific pathways were activated only in the malignant form of the disease, notably activation of the complement cascades. Complement inhibitors may alleviate the thrombotic microangiopathy of malignant hypertension even in the absence of primary complement abnormalities.


Subject(s)
Hypertension, Malignant/genetics , Hypertension, Renovascular/genetics , Animals , Complement System Proteins/metabolism , Hypertension, Malignant/metabolism , Hypertension, Renovascular/metabolism , Kidney/metabolism , Male , Rats, Sprague-Dawley , Sequence Analysis, RNA
16.
J Cardiovasc Pharmacol ; 77(5): 673-684, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33661593

ABSTRACT

ABSTRACT: This study aimed to determine if açai seed extract (ASE) could reverse pre-existing cardiovascular and renal injury in an experimental model of renovascular hypertension (2 kidney, 1 clip, 2K1C). Young male rats (Wistar) were used to obtain 2K1C and sham groups. Animals received the vehicle, ASE (200 mg/kg/d), or enalapril (30 mg/kg/d) in drinking water from the third to sixth week after surgery. We evaluated systolic blood pressure by tail plethysmography, vascular reactivity in the rat isolated mesenteric arterial bed (MAB), serum and urinary parameters, plasma inflammatory cytokines by ELISA, MAB expression of endothelial nitric oxide synthase and its active form peNOS by Western blot, plasma and MAB oxidative damage and antioxidant activity by spectrophotometry, and vascular and cardiac structural changes by histological analysis. ASE and enalapril reduced the systolic blood pressure, restored the endothelial and renal functions, and decreased the inflammatory cytokines and the oxidative stress in 2K1C rats. Furthermore, both treatments reduced vascular and cardiac remodeling. ASE substantially reduced cardiovascular remodeling and recovered endothelial dysfunction in 2K1C rats probably through its antihypertensive, antioxidant, and anti-inflammatory actions, supplying a natural resource for the treatment of renovascular hypertension.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Enalapril/pharmacology , Euterpe , Hypertension, Renovascular/drug therapy , Plant Extracts/pharmacology , Vascular Remodeling/drug effects , Ventricular Remodeling/drug effects , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antihypertensive Agents/isolation & purification , Antioxidants/isolation & purification , Antioxidants/pharmacology , Biomarkers/blood , Biomarkers/urine , Disease Models, Animal , Euterpe/chemistry , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/physiopathology , Inflammation Mediators/blood , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Rats, Wistar
17.
Cardiovasc Toxicol ; 21(6): 472-489, 2021 06.
Article in English | MEDLINE | ID: mdl-33582931

ABSTRACT

Oxidative stress in the hypothalamic paraventricular nucleus (PVN) contributes greatly to the development of hypertension. The recombinant nuclear respiratory factor 1 (Nrf1) regulates the transcription of several genes related to mitochondrial respiratory chain function or antioxidant expression, and thus may be involved in the pathogenesis of hypertension. Here we show that in the two-kidney, one-clip (2K1C) hypertensive rats the transcription level of Nrf1 was elevated comparing to the normotensive controls. Knocking down of Nrf1 in the PVN of 2K1C rats can significantly reduce their blood pressure and level of plasma norepinephrine (NE). Analysis revealed significant reduction of superoxide production level in both whole cell and mitochondria, along with up-regulation of superoxide dismutase 1 (Cu/Zn-SOD), NAD(P)H: quinone oxidoreductase 1 (NQO1), thioredoxin-dependent peroxiredoxin 3 (Prdx3), cytochrome c (Cyt-c) and glutathione synthesis rate-limiting enzyme (glutamyl-cysteine ligase catalytic subunit (Gclc) and modifier subunit (Gclm)), and down-regulation of cytochrome c oxidase subunit VI c (Cox6c) transcription after Nrf1 knock-down. In addition, the reduced ATP production and elevated mitochondrial membrane potential in the PVN of 2K1C rats were reinstated with Nrf1 knock-down, together with restored expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitochondrial transcription factor A (Tfam), coiled-coil myosin-like BCL2-interacting protein (Beclin1), and Mitofusin 1 (Mfn1), which are related to the mitochondrial biogenesis, fusion, and autophagy. Together, the results indicate that the PVN Nrf1 is associated with the development of 2K1C-induced hypertension, and Nrf1 knock-down in the PVN can alleviate hypertension through intervention of mitochondrial function and restorement of the production-removal balance of superoxide.


Subject(s)
Blood Pressure , Hypertension, Renovascular/metabolism , Mitochondria/metabolism , Nuclear Respiratory Factor 1/metabolism , Oxidative Stress , Paraventricular Hypothalamic Nucleus/metabolism , Superoxides/metabolism , Animals , Disease Models, Animal , Gene Knockdown Techniques , Hypertension, Renovascular/genetics , Hypertension, Renovascular/physiopathology , Hypertension, Renovascular/prevention & control , Male , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nuclear Respiratory Factor 1/genetics , Paraventricular Hypothalamic Nucleus/physiopathology , RNA Interference , Rats, Sprague-Dawley
18.
Arq Bras Cardiol ; 116(1): 4-11, 2021 01.
Article in English, Portuguese | MEDLINE | ID: mdl-33566958

ABSTRACT

BACKGROUND: Strength training has beneficial effects on kidney disease, in addition to helping improve antioxidant defenses in healthy animals. OBJECTIVE: To verify if strength training reduces oxidative damage to the heart and contralateral kidney caused by the renovascular hypertension induction surgery, as well as to evaluate alterations in the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) endogenous antioxidant enzymes. METHODS: Eighteen male rats were divided into three groups (n=6/group): sham, hypertensive, and trained hypertensive. The animals were induced to renovascular hypertension through left renal artery ligation. Strength training was initiated four weeks after the induction of renovascular hypertension, continued for a 12-weeks period, and was performed at 70% of 1RM. After the training period, the animals were euthanized and the right kidney and heart were removed for quantitation of hydroperoxides, malondialdehyde and sulfhydryl groups, which are markers of oxidative damage. In addition, the activity of SOD, CAT, and GPx antioxidant enzymes was also measured. The adopted significance level was 5% (p < 0.05). RESULTS: After strength training, a reduction in oxidative damage to lipids and proteins was observed, as could be seen by reducing hydroperoxides and total sulfhydryl levels, respectively. Furthermore, an increased activity of superoxide dismutase, catalase, and glutathione peroxidase antioxidant enzymes was observed. CONCLUSION: Strength training is able to potentially reduce oxidative damage by increasing the activity of antioxidant enzymes. (Arq Bras Cardiol. 2021; 116(1):4-11).


FUNDAMENTO: O treino de força tem efeitos benéficos em doenças renais, além de ajudar a melhorar a defesa antioxidante em animais saudáveis. OBJETIVO: Verificar se o treino de força reduz o dano oxidativo ao coração e rim contralateral para cirurgia de indução de hipertensão renovascular, bem como avaliar as alterações na atividade das enzimas antioxidantes endógenas superóxido dismutase (SOD), catalase (CAT) e glutationa peroxidase (GPx). MÉTODOS: Dezoito ratos machos foram divididos em três grupos (n=6/grupo): placebo, hipertenso e hipertenso treinado. Os animais foram induzidos a hipertensão renovascular através da ligação da artéria renal esquerda. O treino de força foi iniciado quatro semanas após a indução da hipertensão renovascular, teve 12 semanas de duração e foi realizada a 70% de 1RM. Depois do período de treino, os animais foram submetidos a eutanásia e o rim esquerdo e o coração foram retirados para realizar a quantificação de peróxidos de hidrogênio, malondialdeído e grupos sulfidrílicos, que são marcadores de danos oxidativos. Além disso, foram medidas as atividades das enzimas antioxidantes superóxido dismutase, catalase e glutationa peroxidase. O nível de significância adotado foi de 5% (p < 0,05). RESULTADOS: Depois do treino de força, houve redução de danos oxidativos a lipídios e proteínas, como pode-se observar pela redução de peróxidos de hidrogênio e níveis sulfidrílicos totais, respectivamente. Além disso, houve um aumento nas atividades das enzimas antioxidantes superóxido dismutase, catalase e glutationa peroxidase. CONCLUSÃO: O treino de força tem o potencial de reduzir danos oxidativos, aumentando a atividades de enzimas antioxidantes. (Arq Bras Cardiol. 2021; 116(1):4-11).


Subject(s)
Hypertension, Renovascular , Resistance Training , Animals , Antioxidants/metabolism , Catalase/metabolism , Humans , Hypertension, Renovascular/metabolism , Kidney , Male , Oxidative Stress , Rats , Rats, Wistar
19.
Arq. bras. cardiol ; 116(1): 4-11, Jan. 2021. tab, graf
Article in Portuguese | LILACS | ID: biblio-1152983

ABSTRACT

Resumo Fundamento O treino de força tem efeitos benéficos em doenças renais, além de ajudar a melhorar a defesa antioxidante em animais saudáveis. Objetivo Verificar se o treino de força reduz o dano oxidativo ao coração e rim contralateral para cirurgia de indução de hipertensão renovascular, bem como avaliar as alterações na atividade das enzimas antioxidantes endógenas superóxido dismutase (SOD), catalase (CAT) e glutationa peroxidase (GPx). Métodos Dezoito ratos machos foram divididos em três grupos (n=6/grupo): placebo, hipertenso e hipertenso treinado. Os animais foram induzidos a hipertensão renovascular através da ligação da artéria renal esquerda. O treino de força foi iniciado quatro semanas após a indução da hipertensão renovascular, teve 12 semanas de duração e foi realizada a 70% de 1RM. Depois do período de treino, os animais foram submetidos a eutanásia e o rim esquerdo e o coração foram retirados para realizar a quantificação de peróxidos de hidrogênio, malondialdeído e grupos sulfidrílicos, que são marcadores de danos oxidativos. Além disso, foram medidas as atividades das enzimas antioxidantes superóxido dismutase, catalase e glutationa peroxidase. O nível de significância adotado foi de 5% (p < 0,05). Resultados Depois do treino de força, houve redução de danos oxidativos a lipídios e proteínas, como pode-se observar pela redução de peróxidos de hidrogênio e níveis sulfidrílicos totais, respectivamente. Além disso, houve um aumento nas atividades das enzimas antioxidantes superóxido dismutase, catalase e glutationa peroxidase. Conclusão O treino de força tem o potencial de reduzir danos oxidativos, aumentando a atividades de enzimas antioxidantes. (Arq Bras Cardiol. 2021; 116(1):4-11)


Abstract Background Strength training has beneficial effects on kidney disease, in addition to helping improve antioxidant defenses in healthy animals. Objective To verify if strength training reduces oxidative damage to the heart and contralateral kidney caused by the renovascular hypertension induction surgery, as well as to evaluate alterations in the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) endogenous antioxidant enzymes. Methods Eighteen male rats were divided into three groups (n=6/group): sham, hypertensive, and trained hypertensive. The animals were induced to renovascular hypertension through left renal artery ligation. Strength training was initiated four weeks after the induction of renovascular hypertension, continued for a 12-weeks period, and was performed at 70% of 1RM. After the training period, the animals were euthanized and the right kidney and heart were removed for quantitation of hydroperoxides, malondialdehyde and sulfhydryl groups, which are markers of oxidative damage. In addition, the activity of SOD, CAT, and GPx antioxidant enzymes was also measured. The adopted significance level was 5% (p < 0.05). Results After strength training, a reduction in oxidative damage to lipids and proteins was observed, as could be seen by reducing hydroperoxides and total sulfhydryl levels, respectively. Furthermore, an increased activity of superoxide dismutase, catalase, and glutathione peroxidase antioxidant enzymes was observed. Conclusion Strength training is able to potentially reduce oxidative damage by increasing the activity of antioxidant enzymes. (Arq Bras Cardiol. 2021; 116(1):4-11)


Subject(s)
Humans , Animals , Male , Rats , Hypertension, Renovascular/metabolism , Catalase/metabolism , Rats, Wistar , Oxidative Stress , Resistance Training , Kidney , Antioxidants/metabolism
20.
Kidney Blood Press Res ; 46(1): 41-52, 2021.
Article in English | MEDLINE | ID: mdl-33326967

ABSTRACT

BACKGROUND/AIMS: Arterial stenosis activates the renin-angiotensin-aldosterone system subsequently resulting in renovascular hypertension (RVHT) and renal oxidative injury. We explored the effect of sodium thiosulfate (STS, Na2S2O3), a developed antioxidant in clinical trial, on RVHT-induced hypertension and renal oxidative injury in rats. METHODS: We induced RVHT in male Wistar rats with bilaterally partial ligation of renal arteries in the 2-kidney 2-clip model. We evaluated the STS effect on RVHT-induced oxidative injury and apoptosis by a chemiluminescence amplification method, Western blot, and immunohistochemistry. RESULTS: We found STS displayed a dose-dependent antioxidant H2O2 activity and adapted the maximal scavenging H2O2 activity of STS at the dosage of 0.1 g/kg intraperitoneally 3 times/week for 4 weeks in RVHT rats. RVHT induced a significant elevation of arterial blood pressure, blood reactive oxygen species amount, neutrophil infiltration, 4-HNE and NADPH oxidase gp91 expression, Bax/Bcl-2/poly(ADP-ribose) polymerase (PARP)-mediated apoptosis formation, blue Masson-stained fibrosis, and urinary protein level. STS treatment significantly reduced hypertension, oxidative stress, neutrophil infiltration, fibrosis, and Bax/Bcl-2/PARP-mediated apoptosis formation and depressed the urinary protein level in the RVHT models. CONCLUSION: Our results suggest that STS treatment could ameliorate RVHT hypertension and renal oxidative injury through antioxidant, antifibrotic, and antiapoptotic mechanisms.


Subject(s)
Antioxidants/therapeutic use , Hypertension, Renovascular/drug therapy , Kidney/drug effects , Thiosulfates/therapeutic use , Animals , Antioxidants/pharmacology , Blood Pressure/drug effects , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/physiopathology , Kidney/metabolism , Kidney/physiopathology , Male , Oxidative Stress/drug effects , Rats, Wistar , Reactive Oxygen Species/metabolism , Thiosulfates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...