Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.030
Filter
1.
Lipids Health Dis ; 23(1): 185, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867215

ABSTRACT

BACKGROUND: The atherogenic index of plasma (AIP) is a simple and reliable marker of insulin resistance and is closely associated with various cardiovascular diseases (CVDs). However, the relationships between AIP and left ventricular (LV) geometric indicators have not been adequately assessed. This study was carried out to investigate the association between AIP and LV geometric abnormalities in obstructive sleep apnea (OSA) patients. METHODS: This retrospective cross-sectional study included a total of 618 OSA patients (57.3 ± 12.4 years, 73.1% males, BMI 28.1 ± 4.2 kg/m2) who underwent echocardiography. Patients with OSA were diagnosed with clinical symptoms and an apnea-hypopnea index ≥ 5.0. LV hypertrophy (LVH) was defined as left ventricular mass index (LVMIh2.7) ≥ 50.0 g/m2.7 for men and 47.0 g/m2.7 for women. AIP was calculated as log10 (TG/HDL-C). RESULTS: Compared with the non-LVH group, AIP was significantly higher in the LVH group (0.19 ± 0.29 vs 0.24 ± 0.28, P = 0.024) and the concentric LVH group (0.18 ± 0.29, 0.19 ± 0.30, 0.20 ± 0.26 and 0.29 ± 0.29 in the control, concentric remodeling, eccentric hypertrophy and concentric hypertrophy groups, respectively, P = 0.021). Meanwhile, in the group of patients with the highest AIP tertile, the levels of LVMIh2.7 (42.8 ± 10.5, 43.2 ± 9.3 and 46.1 ± 12.1 in the T1, T2 and T3 groups, respectively, P = 0.003), and the prevalence of LVH (25.2%, 24.0% and 34.6% in the T1, T2 and T3 groups, respectively, P = 0.032) and concentric LVH (10.7%, 9.8% and 20.2% in the T1, T2 and T3 groups, respectively, P = 0.053) were higher compared with those in the other groups. Positive correlations between AIP and LV geometric indicators including the LVMIh2.7, LVMIBSA, LV mass (LVM), diastolic left ventricular inner diameter (LVIDd), diastolic left ventricular posterior wall thickness (PWTd) and diastolic interventricular septal thickness (IVSTd), were revealed according to correlation analysis (P < 0.05). Furthermore, AIP was independently associated with LVMIh2.7 according to multivariate linear regression model (ß = 0.125, P = 0.001). Notably, AIP remained independently associated with an elevated risk of LVH [odds ratio (OR) = 1.317 per 1 standard deviation (SD) increment, 95% confidence interval (CI): 1.058 - 1.639, P = 0.014) and concentric LVH (OR = 1.545 per 1 SD increment, 95% CI: 1.173 - 2.035, P = 0.002) after fully adjusting for all confounding risk factors by multivariate logistic regression analyses. CONCLUSIONS: AIP was independently associated with an increased risk of LVH and concentric LVH in OSA patients. Therefore, AIP, as a practical and cost-effective test, might be useful in monitoring hypertrophic remodeling of the heart and improving CVDs risk stratification in clinical management of OSA.


Subject(s)
Echocardiography , Hypertrophy, Left Ventricular , Sleep Apnea, Obstructive , Humans , Male , Sleep Apnea, Obstructive/blood , Sleep Apnea, Obstructive/complications , Female , Middle Aged , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/blood , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/etiology , Cross-Sectional Studies , Retrospective Studies , Aged , Atherosclerosis/blood , Triglycerides/blood , Adult , Cholesterol, HDL/blood , Insulin Resistance , Risk Factors
2.
Eur J Obstet Gynecol Reprod Biol ; 298: 108-115, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749071

ABSTRACT

OBJECTIVES: Hypertensive disorders of pregnancy (HDP) are among the leading causes of maternal morbidity and mortality. The primary objective of this study was to ascertain whether maternal cardiac remodeling is more prevalent in HDP than normotensive pregnancy and if significant change in aortic root size is involved. The secondary objective was to determine the types of cardiac remodeling often associated with HDP. METHODS: A systematic search was conducted across four electronic databases, including Medline, PubMed, Cochrane and EMBASE. The reference lists of selected articles were also searched to ensure no relevant studies were missed. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed in this systematic review. RESULTS: Out of 5,278 articles identified by the search terms, 9 were eligible for inclusion in the meta-analysis. The investigation unveiled a greater prevalence of maternal cardiac remodeling in HDP than normotensive pregnancies. The commonest type of maternal cardiac remodeling in both HDP and normotensive pregnancies was eccentric left ventricular hypertrophy, followed by concentric left ventricular remodeling which was more specific to HDP. Notably, left atrial diameter was significantly increased in HDP than normotensive pregnancies, suggesting higher prevalence of diastolic dysfunction. Additionally, the aortic root dimension was significantly increased in HDP than normotensive pregnancies. CONCLUSION: This study underscores the importance of monitoring cardiac health in pregnancy, particularly in those with hypertensive disorders, in order to mitigate potential complications and improve maternal outcomes. Finally, the risk of aortic dissection that may occur as a long-term effect of aortic root enlargement in women with history of HDP ought to be investigated in future studies.


Subject(s)
Hypertension, Pregnancy-Induced , Ventricular Remodeling , Humans , Female , Pregnancy , Ventricular Remodeling/physiology , Hypertension, Pregnancy-Induced/physiopathology , Hypertension, Pregnancy-Induced/epidemiology , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/epidemiology
3.
Kardiologiia ; 64(4): 45-53, 2024 Apr 30.
Article in Russian, English | MEDLINE | ID: mdl-38742515

ABSTRACT

AIM: To compare the changes in serum concentrations of matrix metalloproteinases (MMPs) and their tissue inhibitor (TIMP) to the dynamics of blood pressure (BP) and parameters of left ventricular hypertrophy (LVH) 6 months after renal denervation (RD) in patients with resistant arterial hypertension (RAH) and complicated coronary atherosclerosis. MATERIAL AND METHODS: In 22 RAH patients with complicated coronary atherosclerosis (revascularization and/or history of myocardial infarction (MI)), 24-hour BP monitoring, echocardiography, and measurement of blood MMPs and TIMP were performed at baseline and six months after RD. The comparison group consisted of 48 RAH patients without a history of coronary revascularization or MI. RESULTS: In 6 months after RD, BP was decreased comparably in both groups. In the group of complicated atherosclerosis, there were no significant changes in profibrotic markers or LVH parameters. Thus, at baseline and after 6 months, the values of the studied indicators were the following: left ventricular myocardial mass (LVMM) 233.1±48.1 and 243.0±52.0 g, LVMM index 60.6±14.5 and 62.8±10 .9 g/m2.7, proMMP-1 4.9 [2.1; 7.7] and 3.6 [2.0; 9.4]  ng/ml, MMP-2 290.4 [233.1; 352.5] and 352.2 [277.4; 402.9] ng/ml, MMP-9 220.6 [126.9; 476.7] and 263.5 [82.9; 726.2] ng/ml, TIMP-1 395.7 [124.7; 591.4] and 424.2 [118.2; 572.0] ng/ml, respectively. In the comparison group, on the contrary, there was a significant decrease in LVMM from 273.6±83.3 g to 254.1±70.4 g, LVMM index from 67.1±12.3 to 64.0±14.4 g/m2.7, proMMP-1 from 7.2 [3.6; 11.7] to 5.9 [3.5; 10.9] ng/ml, MMP-2 from 328.9 [257.1; 378.1] to 272.8 [230.2; 343.2] ng/ml, MMP-9 from 277.9 [137.0; 524.0] to 85.5 [34.2; 225.9] ng/ml, and the MMP-9/TIMP-1 ratio from 0.80 [0.31; 1.30] to 0.24 [0.07; 0.76]. The BP dynamics in this group was inversely correlated with MMP-2 at 6 months (r=-0.38), and the MMP-9/TIMP-1 ratio was correlated with LVMM and the LVMM index at baseline (r=0.39 and r=0.39) and at 6 months (r=0.37 and r=0.32). The change in TIMP-1 from 543.9 [277.5; 674.1] to 469.8 [289.7; 643.6] ng/ml was not significant (p=0.060). CONCLUSION: In RAH patients with complicated coronary atherosclerosis, the dynamics of profibrotic biomarkers and LVH parameters after RD was absent despite the pronounced antihypertensive effect, probably due to the low reversibility of cardiovascular remodeling processes or more complex regulatory mechanisms of the MMP system.


Subject(s)
Biomarkers , Hypertension , Hypertrophy, Left Ventricular , Humans , Male , Female , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/etiology , Middle Aged , Hypertension/physiopathology , Hypertension/surgery , Hypertension/complications , Biomarkers/blood , Coronary Artery Disease/surgery , Coronary Artery Disease/complications , Echocardiography/methods , Aged , Kidney/innervation , Blood Pressure/physiology , Matrix Metalloproteinases/blood , Sympathectomy/methods
5.
PLoS One ; 19(5): e0302849, 2024.
Article in English | MEDLINE | ID: mdl-38722953

ABSTRACT

Left ventricular hypertrophy (LVH) and left ventricular diastolic dysfunction (LVDD) are highly prevalent predictors of cardiovascular disease in individuals with chronic kidney disease (CKD). Vitamin D, particularly 25-hydroxyvitamin D [25(OH)D], deficiency has been reported to be associated with cardiac structure and function in CKD patients. In the current study, we investigated the association between 1,25-dihydroxyvitamin D [1,25(OH)2D], the active form of 25(OH)D, and LVH/LVDD in CKD patients. We enrolled 513 non-dialysis CKD patients. The presence of LVH and LVDD was determined using transthoracic echocardiography. In multivariable analysis, serum 1,25(OH)2D levels, but not serum 25(OH)D, were independently associated with LVH [odds ratio (OR): 0.90, 95% confidential interval (CI): 0.88-0.93, P < 0.001]. Additionally, age, systolic blood pressure, and intact parathyroid hormone levels were independently associated with LVH. Similarly, multivariable analysis demonstrated that serum 1,25(OH)2D levels, but not 25(OH)D levels, were independently associated with LVDD (OR: 0.88, 95% CI: 0.86-0.91, P < 0.001) with systolic blood pressure showing independent association with LVDD. The optimal cut-off values for serum 1,25(OH)2D levels for identifying LVH and LVDD were determined as ≤ 12.7 pg/dl and ≤ 18.1 pg/dl, respectively. Our findings suggest that serum 1,25(OH)2D levels have independent association with LVH and LVDD in CKD patients, underscoring their potential as biomarkers for these conditions in this patient population.


Subject(s)
Hypertrophy, Left Ventricular , Renal Insufficiency, Chronic , Ventricular Dysfunction, Left , Vitamin D , Humans , Hypertrophy, Left Ventricular/blood , Hypertrophy, Left Ventricular/physiopathology , Male , Female , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/physiopathology , Middle Aged , Vitamin D/analogs & derivatives , Vitamin D/blood , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/physiopathology , Aged , Echocardiography , Diastole
6.
Cardiovasc Toxicol ; 24(6): 527-538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720122

ABSTRACT

Adolescents commonly co-abuse many drugs including anabolic androgenic steroids either they are athletes or non-athletes. Stanozolol is the major anabolic used in recent years and was reported grouped with cannabis. The current study aimed at evaluating the biochemical and histopathological changes related to the hypertrophic effects of stanozolol and/or cannabis whether in condition of exercise practice or sedentary conditions. Adult male Wistar albino rats received either stanozolol (5 mg/kg, s.c), cannabis (10 mg/kg, i.p.), and a combination of both once daily for two months. Swimming exercise protocol was applied as a training model. Relative heart weight, oxidative stress biomarkers, cardiac tissue fibrotic markers were evaluated. Left ventricular morphometric analysis and collagen quantification was done. The combined treatment exhibited serious detrimental effects on the heart tissues. It increased heart tissue fibrotic markers (Masson's trichrome stain (p < 0.001), cardiac COL3 (p < 0.0001), and VEGF-A (p < 0.05)), lowered heart glutathione levels (p < 0.05) and dramatically elevated oxidative stress (increased malondialdehyde (p < 0.0001) and 8-OHDG (p < 0.0001)). Training was not ameliorating for the observed effects. Misuse of cannabis and stanozolol resulted in more hypertrophic consequences of the heart than either drug alone, which were at least largely assigned to oxidative stress, heart tissue fibrotic indicators, histological alterations, and morphometric changes.


Subject(s)
Anabolic Agents , Cardiomegaly, Exercise-Induced , Fibrosis , Oxidative Stress , Rats, Wistar , Stanozolol , Animals , Stanozolol/toxicity , Male , Oxidative Stress/drug effects , Anabolic Agents/toxicity , Cardiomegaly, Exercise-Induced/drug effects , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/prevention & control , Ventricular Remodeling/drug effects , Myocardium/pathology , Myocardium/metabolism , Doping in Sports , Biomarkers/metabolism , Swimming , Physical Conditioning, Animal/physiology , Rats , Disease Models, Animal
7.
J Am Heart Assoc ; 13(10): e028006, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38726894

ABSTRACT

BACKGROUND: S100a8/9 (S100 calcium binding protein a8/9) belongs to the S100 family and has gained a lot of interest as a critical regulator of inflammatory response. Our previous study found that S100a8/9 homolog promoted aortic valve sclerosis in mice with chronic kidney disease. However, the role of S100a8/9 in pressure overload-induced cardiac hypertrophy remains unclear. The present study was to explore the role of S100a8/9 in cardiac hypertrophy. METHODS AND RESULTS: Cardiomyocyte-specific S100a9 loss or gain of function was achieved using an adeno-associated virus system, and the model of cardiac hypertrophy was established by aortic banding-induced pressure overload. The results indicate that S100a8/9 expression was increased in response to pressure overload. S100a9 deficiency alleviated pressure overload-induced hypertrophic response, whereas S100a9 overexpression accelerated cardiac hypertrophy. S100a9-overexpressed mice showed increased FGF23 (fibroblast growth factor 23) expression in the hearts after exposure to pressure overload, which activated calcineurin/NFAT (nuclear factor of activated T cells) signaling in cardiac myocytes and thus promoted hypertrophic response. A specific antibody that blocks FGFR4 (FGF receptor 4) largely abolished the prohypertrophic response of S100a9 in mice. CONCLUSIONS: In conclusion, S100a8/9 promoted the development of cardiac hypertrophy in mice. Targeting S100a8/9 may be a promising therapeutic approach to treat cardiac hypertrophy.


Subject(s)
Calgranulin A , Calgranulin B , Disease Models, Animal , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Myocytes, Cardiac , NFATC Transcription Factors , Up-Regulation , Animals , Calgranulin A/metabolism , Calgranulin A/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Calgranulin B/metabolism , Calgranulin B/genetics , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Fibroblast Growth Factor-23/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction , Cardiomegaly/metabolism , Cardiomegaly/pathology , Mice, Inbred C57BL , Male , Mice, Knockout , Calcineurin/metabolism , Mice , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Ventricular Remodeling
8.
J Mol Cell Cardiol ; 191: 40-49, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604403

ABSTRACT

The heart has the ability to detect and respond to changes in mechanical load through a process called mechanotransduction. In this study, we focused on investigating the role of the cardiac-specific N2B element within the spring region of titin, which has been proposed to function as a mechanosensor. To assess its significance, we conducted experiments using N2B knockout (KO) mice and wildtype (WT) mice, subjecting them to three different conditions: 1) cardiac pressure overload induced by transverse aortic constriction (TAC), 2) volume overload caused by aortocaval fistula (ACF), and 3) exercise-induced hypertrophy through swimming. Under conditions of pressure overload (TAC), both genotypes exhibited similar hypertrophic responses. In contrast, WT mice displayed robust left ventricular hypertrophy after one week of volume overload (ACF), while the KO mice failed to undergo hypertrophy and experienced a high mortality rate. Similarly, swim exercise-induced hypertrophy was significantly reduced in the KO mice. RNA-Seq analysis revealed an abnormal ß-adrenergic response to volume overload in the KO mice, as well as a diminished response to isoproterenol-induced hypertrophy. Because it is known that the N2B element interacts with the four-and-a-half LIM domains 1 and 2 (FHL1 and FHL2) proteins, both of which have been associated with mechanotransduction, we evaluated these proteins. Interestingly, while volume-overload resulted in FHL1 protein expression levels that were comparable between KO and WT mice, FHL2 protein levels were reduced by over 90% in the KO mice compared to WT. This suggests that in response to volume overload, FHL2 might act as a signaling mediator between the N2B element and downstream signaling pathways. Overall, our study highlights the importance of the N2B element in mechanosensing during volume overload, both in physiological and pathological settings.


Subject(s)
Connectin , Mechanotransduction, Cellular , Mice, Knockout , Animals , Mice , Connectin/metabolism , Connectin/genetics , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/genetics , Myocardium/metabolism , Myocardium/pathology , Male , Physical Conditioning, Animal , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Disease Models, Animal , Muscle Proteins/metabolism , Muscle Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Protein Kinases , Intracellular Signaling Peptides and Proteins
9.
Heart ; 110(12): 846-853, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38688703

ABSTRACT

BACKGROUND: Left ventricular hypertrophy (LVH) is the principal cardiac manifestation of Fabry disease (FD). This study aimed to determine the incidence and predictors of LVH development in a contemporary cohort of patients with FD and no LVH at baseline evaluation. METHODS: Consecutively referred adult (aged ≥16 years) patients with FD were enrolled into an observational cohort study. Patients were prospectively followed in a specialist cardiomyopathy centre and the primary endpoint was the first detection of LVH (left ventricular mass index (LVMi) ≥115 g/m2 in men and ≥95 g/m2 in women). RESULTS: From a cohort of 393 patients, 214 (aged 35.8±13.8 years; 61 (29%) males) had no LVH at first evaluation. During a median follow-up of 9.4 years (IQR 4.7-12.7), 55 patients (24.6%) developed LVH. The estimated incidence of LVH was 11.3% (95% CI 6.5% to 16.1%) at 5 years, 29.1% (95% CI 21.5% to 36.7%) at 10 years and 45.0% (95% CI 33.8% to 62.4%) at 15 years of follow-up. On multivariable analysis, independent predictors for LVH development were age (HR 1.04 (95% CI 1.02 to 1.06) per 1-year increase, p<0.001), male sex (HR 2.90 (95% CI 1.66 to 5.09), p<0.001) and an abnormal ECG (HR 3.10 (95% CI 1.72 to 5.57), p<0.001). The annual rate of change in LVMi was +2.77 (IQR 1.45-4.62) g/m2/year in males and +1.38 (IQR 0.09-2.85) g/m2/year in females (p<0.001). CONCLUSIONS: Approximately one-quarter of patients with FD developed LVH during follow-up. Age, male sex and ECG abnormalities were associated with a higher risk of developing LVH in patients with FD.


Subject(s)
Fabry Disease , Hypertrophy, Left Ventricular , Humans , Fabry Disease/complications , Fabry Disease/epidemiology , Fabry Disease/physiopathology , Hypertrophy, Left Ventricular/epidemiology , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/diagnosis , Hypertrophy, Left Ventricular/physiopathology , Male , Female , Adult , Incidence , Risk Factors , Middle Aged , Prospective Studies , Young Adult , Sex Factors , Time Factors
10.
Methods Mol Biol ; 2803: 205-217, 2024.
Article in English | MEDLINE | ID: mdl-38676895

ABSTRACT

Diastolic dysfunction arising from alterations in myocardial structure and/or function is a central component of several cardiovascular disorders, including heart failure with preserved ejection fraction (HFpEF). Basic research aimed at understanding underlying mechanisms contributing to the development of diastolic dysfunction has generally centered upon models of left ventricular (LV) hypertrophy arising from persistent and severe elevations in myocardial afterload (e.g., aortic banding). Mechanisms of hypertrophy-independent diastolic dysfunction, on the other hand, have received less attention, even though overt anatomic LV hypertrophy is absent in many HFpEF patients. Here, we describe the development of a novel porcine model of repetitive pressure overload (RPO) in which chronic, intermittent exposure to transient episodes of hypertension produces an increase in LV stiffness, interstitial fibrosis, cardiomyocyte hypertrophy, and capillary rarefaction without significant changes in LV mass. This model offers important insight into how diastolic dysfunction and HFpEF may develop in the absence of comorbidities, sustained hypertension, or LV hypertrophy, while also providing a useful translational research tool for investigation of novel therapeutic approaches to restore myocardial compliance and improve diastolic function.


Subject(s)
Disease Models, Animal , Hypertrophy, Left Ventricular , Animals , Swine , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/pathology , Hypertension/physiopathology , Hypertension/etiology , Heart Ventricles/physiopathology , Heart Ventricles/pathology , Heart Failure/physiopathology , Heart Failure/etiology , Heart Failure/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/etiology , Myocardium/pathology , Myocardium/metabolism , Fibrosis , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
11.
J Stroke Cerebrovasc Dis ; 33(6): 107709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570059

ABSTRACT

OBJECTIVES: Reduced cardiac outflow due to left ventricular hypertrophy has been suggested as a potential risk factor for development of cerebral white matter disease. Our study aimed to examine the correlation between left ventricular geometry and white matter disease volume to establish a clearer understanding of their relationship, as it is currently not well-established. METHODS: Consecutive patients from 2016 to 2021 who were ≥18 years and underwent echocardiography, cardiac MRI, and brain MRI within one year were included. Four categories of left ventricular geometry were defined based on left ventricular mass index and relative wall thickness on echocardiography. White matter disease volume was quantified using an automated algorithm applied to axial T2 FLAIR images and compared across left ventricular geometry categories. RESULTS: We identified 112 patients of which 34.8 % had normal left ventricular geometry, 20.5 % had eccentric hypertrophy, 21.4 % had concentric remodeling, and 23.2 % had concentric hypertrophy. White matter disease volume was highest in patients with concentric hypertrophy and concentric remodeling, compared to eccentric hypertrophy and normal morphology with a trend-P value of 0.028. Patients with higher relative wall thickness had higher white matter disease volume (10.73 ± 10.29 cc vs 5.89 ± 6.46 cc, P = 0.003), compared to those with normal relative wall thickness. CONCLUSION: Our results showed that abnormal left ventricular geometry is associated with higher white matter disease burden, particularly among those with abnormal relative wall thickness. Future studies are needed to explore causative relationships and potential therapeutic options that may mediate the adverse left ventricular remodeling and its effect in slowing white matter disease progression.


Subject(s)
Hypertrophy, Left Ventricular , Leukoencephalopathies , Magnetic Resonance Imaging , Ventricular Function, Left , Ventricular Remodeling , Humans , Male , Female , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/pathology , Middle Aged , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/physiopathology , Aged , Risk Factors , Echocardiography , Predictive Value of Tests , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Heart Ventricles/pathology , Retrospective Studies , Adult , White Matter/diagnostic imaging , White Matter/pathology , Risk Assessment
12.
Hypertension ; 81(6): 1400-1409, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563148

ABSTRACT

BACKGROUND: Cuff blood pressure (BP) is recommended for guiding hypertension management. However, central BP has been proposed as a superior clinical measurement. This study aimed to determine whether controlling hypertension as measured by central BP was beneficial in reducing left ventricular mass index beyond control of standard cuff hypertension. METHODS: This multicenter, open-label, blinded-end point trial was conducted in individuals treated for uncomplicated hypertension with controlled cuff BP (<140/90 mm Hg) but elevated central BP (≥0.5 SD above age- and sex-specific normal values). Participants were randomized to 24-months intervention with spironolactone 25 mg/day (n=148) or usual care control (n=153). The primary outcome was change in left ventricular mass index measured by cardiac MRI. Cuff and central BPs were measured by clinic, 7-day home and 24-hour ambulatory BPs. RESULTS: At 24-months, there was a greater reduction in left ventricular mass index (-3.2 [95% CI, -5.0 to -1.3] g/m2; P=0.001) with intervention compared with control. Cuff and central BPs were lowered by a similar magnitude across all BP measurement modes (eg, clinic cuff systolic BP, -6.16 [-9.60 to -2.72] mm Hg and clinic central systolic BP, -4.96 [-8.06 to -1.86] mm Hg; P≥0.48 all). Secondary analyses found that changes in left ventricular mass index correlated to changes in BP, with the magnitude of effect nearly identical for BP measured by cuff (eg, 24-hour systolic BP, ß, 0.17 [0.02-0.31] g/m2) or centrally (24-hour systolic BP, ß, 0.16 [0.01-0.32] g/m2). CONCLUSIONS: Among individuals with central hypertension, spironolactone had beneficial effects in reducing LV mass. Secondary analyses showed that changes in LV mass were equally well associated with lower measured standard cuff BP and central BP. REGISTRATION: URL: https://www.anzctr.org.au/; Unique identifier: ACTRN12613000053729.


Subject(s)
Blood Pressure Determination , Blood Pressure , Hypertension , Spironolactone , Humans , Male , Female , Middle Aged , Hypertension/drug therapy , Hypertension/physiopathology , Spironolactone/therapeutic use , Spironolactone/administration & dosage , Blood Pressure/drug effects , Blood Pressure/physiology , Blood Pressure Determination/methods , Antihypertensive Agents/therapeutic use , Blood Pressure Monitoring, Ambulatory/methods , Mineralocorticoid Receptor Antagonists/therapeutic use , Aged , Treatment Outcome , Adult , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/drug therapy , Heart Ventricles/physiopathology , Heart Ventricles/diagnostic imaging , Heart Ventricles/drug effects
13.
Am J Hypertens ; 37(6): 399-406, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38441300

ABSTRACT

BACKGROUND: Findings regarding the association between Cardio-Ankle Vascular Index (CAVI) and cardiac hypertension-mediated organ damage (HMOD), such as left ventricular hypertrophy (LVH) assessed by echocardiography, in elderly hypertensive patients are scanty. We sought to investigate this issue in the hypertensive fraction of the general population treated with anti-hypertensive drugs enrolled in the Pressioni Monitorate E Loro Associazioni (PAMELA) study. METHODS: The study included 239 out of 562 participants who attended the second and third surveys of the PAMELA study performed after 10 and 25 years from the initial evaluation. Data collection included medical history, anthropometric parameters, office, home, ambulatory blood pressure (BP), blood examinations, echocardiography, and CAVI measurements. RESULTS: In the whole study sample (age 69 ±â€…9 years, 54% males), CAVI was positively correlated with age, office, home, ambulatory systolic BP, LV mass (LVM) index, and negatively associated with body mass index (BMI). In multivariate analysis, CAVI was associated with the LVM index (P < 0.05) independently of major confounders. The participants with LVH exhibited significantly higher CAVI (10.6 ±â€…2.8 vs. 9.2 ±â€…1.8 m/s P < 0.001), larger left atrial diameter, and lower LV ejection fraction values than their counterparts without it. The CAVI value of 9.4 m/s was the best cut-off for prediction of LVH in the whole sample. CONCLUSIONS: Our study provides new evidence of an independent association between CAVI and LVH in treated elderly hypertensive patients and suggests that the use of this metric of arterial stiffness could not only be used to evaluate vascular damage but also to stratify the risk of LVH.


Subject(s)
Antihypertensive Agents , Cardio Ankle Vascular Index , Hypertension , Hypertrophy, Left Ventricular , Humans , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/diagnosis , Male , Female , Hypertension/physiopathology , Hypertension/complications , Hypertension/diagnosis , Hypertension/drug therapy , Aged , Middle Aged , Antihypertensive Agents/therapeutic use , Blood Pressure , Vascular Stiffness , Echocardiography , Italy/epidemiology , Predictive Value of Tests , Blood Pressure Monitoring, Ambulatory , Risk Factors
14.
Int J Cardiovasc Imaging ; 40(5): 1049-1057, 2024 May.
Article in English | MEDLINE | ID: mdl-38519822

ABSTRACT

PURPOSE: This study investigated discordance between echocardiography (echo) and cardiac magnetic resonance (CMR) measurements of the left ventricle (LV) in pediatric patients with aortic and/or mitral regurgitation (AR/MR). METHODS: Retrospective cohort study of pediatric patients. The cohorts were comprised of patients with AR/MR vs. non-AR/MR. Left ventricular end diastolic volume (LVEDV) by CMR and left ventricular internal diameter diastolic (LVIDd) by echo were obtained from clinical reports then echo images were reviewed to remeasure LVEDV by bullet method. Left ventricular internal diameter systolic (LVIDs) and left ventricular ejection fraction (LVEF) measurements by echo and LVEF by CMR were obtained from clinical reports. Fractional shortening (FS%) was recalculated. Z-scores were calculated using normative data. Correlation between echo and CMR LV measurements was assessed using correlation coefficients. Bland-Altman plots assessed bias between imaging modalities. Receiver operator characteristic (ROC) analysis was performed for detection of LV enlargement and LV dysfunction. RESULTS: AR/MR patients had greater discrepancy in LV size interpretation by Z-score compared to non-AR/MR patients. This discrepancy persisted when the bullet method short axis measurements were incorporated. There was negative bias in echo-based measurements compared to CMR. The diagnostic performance of echo in identifying moderate LV enlargement was worse for AR/MR pediatrics patients. CONCLUSION: The discordant interpretation of LV size by echo compared to CMR is worse in pediatric patients with AR/MR when compared to patients without AR/MR even when short axis measurements are incorporated. This finding suggests non-uniform geometrical changes in the LV as it enlarges due to AR/MR.


Subject(s)
Aortic Valve Insufficiency , Heart Ventricles , Mitral Valve Insufficiency , Predictive Value of Tests , Stroke Volume , Ventricular Function, Left , Humans , Retrospective Studies , Female , Child , Male , Reproducibility of Results , Adolescent , Child, Preschool , Mitral Valve Insufficiency/physiopathology , Mitral Valve Insufficiency/diagnostic imaging , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Insufficiency/physiopathology , Age Factors , Magnetic Resonance Imaging, Cine , Infant , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/physiopathology , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/physiopathology
15.
J Cardiovasc Pharmacol ; 83(6): 588-601, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38547517

ABSTRACT

ABSTRACT: Chronic kidney disease (CKD) is a significant global health threat that imposes a substantial burden on both individuals and societies. CKD frequently correlates with cardiovascular events, particularly left ventricular hypertrophy (LVH), which contributes to the high mortality rate associated with CKD. Fibroblast growth factor 23 (FGF23), a hormone primarily involved in regulating calcium and phosphorus metabolism, has been identified as a major risk factor for LVH in CKD patients. Elevated serum FGF23 levels are known to induce LVH and myocardial fibrosis by activating the fibroblast growth factor receptor 4 (FGFR4) signal pathway. Therefore, targeting FGFR4 and its downstream signaling pathways holds potential as a treatment strategy for cardiac dysfunction in CKD. In our current study, we have discovered that Hypericin, a key component derived from Hypericum perforatum , has the ability to alleviate CKD-related LVH by targeting the FGFR4/phospholipase C gamma 1 (PLCγ1) signaling pathway. Through in vitro experiments using rat cardiac myocyte H9c2 cells, we observed that Hypericin effectively inhibits FGF23-induced hypertrophy and fibrosis by suppressing the FGFR4/PLCγ1/calcineurin/nuclear factor of activated T-cell (NFAT3) signaling pathway. In addition, our in vivo studies using mice on a high-phosphate diet and rat models of 5/6 nephrectomy demonstrated that Hypericin has therapeutic effects against CKD-induced LVH by modulating the FGFR4/PLCγ1/calcineurin/NFAT3 signaling pathway. In conclusion, our research highlights the potential of Hypericin as a candidate for the treatment of CKD-induced cardiomyopathy. By suppressing the FGFR4/PLCγ1 signaling pathway, Hypericin shows promise in attenuating LVH and myocardial fibrosis associated with CKD.


Subject(s)
Anthracenes , Disease Models, Animal , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Fibrosis , Hypertrophy, Left Ventricular , Mice, Inbred C57BL , Myocytes, Cardiac , Perylene , Receptor, Fibroblast Growth Factor, Type 4 , Renal Insufficiency, Chronic , Signal Transduction , Animals , Perylene/analogs & derivatives , Perylene/pharmacology , Signal Transduction/drug effects , Fibroblast Growth Factors/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/drug therapy , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/prevention & control , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/drug therapy , Rats , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cell Line , Anthracenes/pharmacology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Phospholipase C gamma/metabolism , NFATC Transcription Factors/metabolism , Mice
16.
Hypertens Res ; 47(6): 1697-1706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553645

ABSTRACT

The current research on the relationship between 24-h central pressure and 24-h brachial pressure with left ventricular hypertrophy (LVH) is characterised by limited sample size and inconsistent findings. Furthermore, the association has never been explored in chronic kidney disease (CKD). A multicentre, cross-sectional study among non-dialysis patients with CKD was conducted. All participants underwent brachial and central ambulatory blood pressure monitoring using MobilO-Graph PWA, while trained cardiologists performed echocardiography. In this study, 2117 non-dialysis patients with CKD were examined. 24-h central systolic blood pressure with c2 calibration (24-h c2SBP) demonstrated a stronger association with left ventricular mass index and LVH compared with 24-h brachial systolic blood pressure (24-h bSBP) in the univariate and multivariate regression analyses. The multivariate net reclassification index (NRI) analysis revealed that 24-h c2SBP exhibited greater discriminatory power over 24-h bSBP (NRI = 0.310, 95% CI [0.192-0.429], P < 0.001). Applying 130/135 mmHg as the threshold for 24-h bSBP/c2SBP to cross-classify, the patients were divided into concordant normotension (1509 individuals), isolated brachial hypertension (155 individuals), isolated central hypertension (11 individuals), and concordant hypertension (442 individuals). With concordant normotension as the reference, the multivariable-adjusted ORs were 0.954 (95% CI, 0.534-1.640; P = 0.870) for isolated brachial hypertension and 2.585 (95%CI, 1.841-3.633; P < 0.001) for concordant hypertension. Among non-dialysis patients with CKD, 24-h c2SBP exhibits greater efficacy in identifying the presence of LVH compared with 24-h bSBP. The presence of LVH was greater in cases of concordant hypertension compared with cases of isolated brachial hypertension and concordant normotension.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Blood Pressure , Hypertrophy, Left Ventricular , Renal Insufficiency, Chronic , Humans , Male , Female , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/physiopathology , Middle Aged , Cross-Sectional Studies , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/complications , Aged , Blood Pressure/physiology , Adult , Echocardiography , Hypertension/physiopathology , Hypertension/complications
17.
Cardiovasc Res ; 120(5): 461-475, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38428029

ABSTRACT

Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.


Subject(s)
Aortic Valve Stenosis , Hypertrophy, Left Ventricular , Ventricular Remodeling , Animals , Humans , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/pathology , Aortic Valve Stenosis/metabolism , Disease Models, Animal , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Species Specificity , Ventricular Function, Left , Ventricular Pressure
18.
High Blood Press Cardiovasc Prev ; 31(2): 157-166, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38530572

ABSTRACT

INTRODUCTION: Cardiac organ damage like left ventricular (LV) hypertrophy and left atrial (LA) enlargement is more prevalent in women than men with hypertension, but the mechanisms underlying this gender difference remain unclear. METHODS: We tested the association of drug nonadherence with the presence of LV hypertrophy and LA enlargement by echocardiography in 186 women and 337 men with uncontrolled hypertension defined as daytime systolic blood pressure (BP) ≥ 135mmHg despite the prescription of at least two antihypertensive drugs. Drug adherence was assessed by measurements of serum drug concentrations interpreted by an experienced pharmacologist. Aldosterone-renin-ratio (ARR) was measured on actual medication. RESULTS: Women had a higher prevalence of LV hypertrophy (46% vs. 33%) and LA enlargement (79% vs 65%, both p < 0.05) than men, while drug nonadherence (8% vs. 9%, p > 0.514) did not differ. Women were older and had lower serum renin concentration and higher ARR than men, while 24-h systolic BP (141 ± 9 mmHg vs. 142 ± 9 mmHg), and the prevalences of obesity (43% vs. 50%) did not differ (all p > 0.10). In multivariable analyses, female gender was independently associated with a two-fold increased risk of LV hypertrophy (OR 2.01[95% CI 1.30-3.10], p = 0.002) and LA enlargement (OR 1.90 [95% CI 1.17-3.10], p = 0.010), while no association with drug nonadherence was found. Higher ARR was independently associated with LV hypertrophy in men only (OR 2.12 [95% CI 1.12-4.00] p = 0.02). CONCLUSIONS: Among patients with uncontrolled hypertension, the higher prevalence of LV hypertrophy and LA enlargement in women was not explained by differences in drug nonadherence. REGISTRATION: URL:  https://www. CLINICALTRIALS: gov ; Unique identifier: NCT03209154.


Subject(s)
Antihypertensive Agents , Hypertension , Hypertrophy, Left Ventricular , Medication Adherence , Renin , Aged , Female , Humans , Male , Middle Aged , Aldosterone/blood , Antihypertensive Agents/therapeutic use , Arterial Pressure/drug effects , Atrial Function, Left/drug effects , Atrial Remodeling/drug effects , Biomarkers/blood , Cross-Sectional Studies , Health Status Disparities , Hypertension/drug therapy , Hypertension/physiopathology , Hypertension/epidemiology , Hypertrophy, Left Ventricular/epidemiology , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/diagnostic imaging , Prevalence , Renin/blood , Risk Assessment , Risk Factors , Sex Factors , Treatment Outcome , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
19.
High Blood Press Cardiovasc Prev ; 31(2): 167-175, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38530573

ABSTRACT

INTRODUCTION: Although a number of pathophysiological aspects of childhood obesity have been reported, few information are available on obesity-related cardiac organ damage. AIM: The present study was aimed at assessing the impact of anthropometric, blood pressure (BP) and metabolic variable on cardiac structure and function in youth. METHODS: In 78 subjects aged 5-16 years attending the outpatient clinic of cardiovascular risk (Valencia, Spain) anthropometric and metabolic variables, clinic and ambulatory BP and echocardiographic parameters were assessed. Subjects were also classified according to the presence of insulin resistance. RESULTS: Subjects mean age (± SD) amounted to 12.03 ± 2.4 years and males to 53.8%. Ten subjects were normoweight, 11 overweight, 39 obese, and 18 severely obese. No significant difference in office and ambulatory BP was detected among different bodyweight groups. A significant direct correlation was observed between left ventricular mass index (LVMI) and obesity markers [body mass index (BMI): r = 0.38, waist circumference (WC): r = 0.46, P < 0.04 for both]. Left ventricular hypertrophy, relative wall thickness and left atrial diameter were significantly related to BMI and WC. In contrast, office and ambulatory BP were unrelated to other variables, and differences in LVMI among different BP phenotypes were not significant. When partitioning the population by insulin resistance, LVMI, adjusted for confounders, was significantly greater in the insulin-resistant group. CONCLUSIONS: In children and adolescents characterized by different body weight patterns, weight factors "per se" and the related insulin resistance state appear to represent the main determinants of LVMI and left ventricular hypertrophy, independently on BP values and BP phenotypes.


Subject(s)
Blood Pressure , Body Mass Index , Hypertrophy, Left Ventricular , Insulin Resistance , Pediatric Obesity , Humans , Male , Child , Adolescent , Female , Pediatric Obesity/physiopathology , Pediatric Obesity/diagnosis , Pediatric Obesity/epidemiology , Pediatric Obesity/complications , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/etiology , Child, Preschool , Age Factors , Spain/epidemiology , Ventricular Function, Left , Ventricular Remodeling , Waist Circumference , Risk Assessment , Risk Factors , Cross-Sectional Studies
20.
Nutr Metab Cardiovasc Dis ; 34(6): 1399-1406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402001

ABSTRACT

BACKGROUND AND AIM: Left ventricular hypertrophy (LVH) has been shown to be associated with the occurrence of atrial fibrillation (AF). However, the predictive value of the LVH phenotype for incident AF remains uncertain. This study aimed to investigate the predictive value of LVH phenotype for incident AF. METHODS AND RESULTS: This study utilized the Multi-Ethnic Study of Atherosclerosis (MESA) data. LVH was defined by cardiac magnetic resonance measured LV mass index. Isolated LVH was determined as LVH without elevated cardiac biomarker and malignant LVH was determined as LVH with at least 1 elevated biomarker. Receiver-operating characteristic (ROC) analysis was performed to calculate areas under the curves (AUC) for predicting AF. A total of 4983 community-dwelling participants were included, with a mean age of 61.5 years. 279 (5.6 %) had isolated LVH, and 222 (4.5 %) had malignant LVH. During a median follow-up of 8.5 years, 272 incident AF was observed. Compared to participants without LVH and elevated cardiac biomarkers, those with isolated LVH (HR, 1.82; 95 % CI, 1.03-3.20) and malignant LVH (HR, 4.13; 95 % CI, 2.77-6.16) had a higher risk of incident AF. Malignant LVH carried a 1.5-fold increased risk of AF compared to isolated LVH (HR: 2.48, 95 % CI: 1.30-4.73). Including the LVH phenotype in the CHARGE-AF model improved model discrimination (AUC increase: 0.03, p < 0.001). CONCLUSIONS: The risks of AF incidence varied across LVH phenotypes. Malignant LVH carried the highest risk among LVH phenotypes. LVH phenotype provides incremental predictive value over the variables included in the CHARGE-AF model.


Subject(s)
Atrial Fibrillation , Hypertrophy, Left Ventricular , Phenotype , Predictive Value of Tests , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Atrial Fibrillation/ethnology , Atrial Fibrillation/physiopathology , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/epidemiology , Hypertrophy, Left Ventricular/ethnology , Hypertrophy, Left Ventricular/physiopathology , Male , Female , Aged , Middle Aged , Incidence , Risk Assessment , Risk Factors , United States/epidemiology , Aged, 80 and over , Prognosis , Time Factors , Ventricular Function, Left , Biomarkers/blood , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...