Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 371
Filter
1.
J Med Chem ; 67(9): 7112-7129, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38647397

ABSTRACT

Research into kappa opioid receptor (KOR) agonists with attenuated central-nervous-system side effects is a critical focus for developing productive and safe analgesics. Herein, a series of ortho-substituted N-cyclopropylmethyl-7α-phenyl-6,14-endoethano-tetrahydronorthebaines were designed, synthesized, and subjected to bioassays. Compound 7a exhibited high subtype selectivity and potent agonistic activity toward KOR (KOR, Ki = 3.9 nM, MOR/KOR = 270, DOR/KOR = 1075; [35S]GTPγS binding, EC50 = 3.4 nM). Additionally, this compound exhibited robust and persistent antinociceptive effects in rodent models with different animal strains (hot plate test, ED50 = 0.20-0.30 mg/kg, i.p.; abdominal constriction test, ED50 = 0.20-0.60 mg/kg, i.p.), with its KOR-mediated mechanism for antinociception firmly established. Notably, compound 7a, unlike conventional KOR agonists, displayed minimal sedation and aversion at the antinociceptive ED50 dose. This feature addresses a crucial limitation in existing KOR agonists, positioning compound 7a as a promising novel therapeutic agent.


Subject(s)
Receptors, Opioid, kappa , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Animals , Mice , Structure-Activity Relationship , Male , Humans , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/chemical synthesis , Hypnotics and Sedatives/chemistry , Rats , Analgesics/pharmacology , Analgesics/chemical synthesis , Analgesics/chemistry , Drug Discovery , Rats, Sprague-Dawley , Cricetulus
2.
Phytomedicine ; 128: 155355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555773

ABSTRACT

BACKGROUND: Five Polyporales mushrooms, namely Amauroderma rugosum, Ganoderma lucidum, G. resinaceum, G. sinense and Trametes versicolor, are commonly used in China for managing insomnia. However, their active components for this application are not fully understood, restricting their universal recognition. PURPOSE: In this study, we aimed to identify sedative-hypnotic compounds shared by these five Polyporales mushrooms. STUDY DESIGN AND METHODS: A UPLC-Q-TOF-MS/MS-based untargeted metabolomics, including OPLS-DA (orthogonal projection of potential structure discriminant analysis) and OPLS (orthogonal projections to latent structures) analysis together with mouse assays, were used to identify the main sedative-hypnotic compounds shared by the five Polyporales mushrooms. A pentobarbital sodium-induced sleeping model was used to investigate the sedative-hypnotic effects of the five mushrooms and their sedative-hypnotic compounds. RESULTS: Ninety-two shared compounds in the five mushrooms were identified. Mouse assays showed that these mushrooms exerted sedative-hypnotic effects, with different potencies. Six triterpenes [four ganoderic acids (B, C1, F and H) and two ganoderenic acids (A and D)] were found to be the main sedative-hypnotic compounds shared by the five mushrooms. CONCLUSION: We for the first time found that these six triterpenes contribute to the sedative-hypnotic ability of the five mushrooms. Our novel findings provide pharmacological and chemical justifications for the use of the five medicinal mushrooms in managing insomnia.


Subject(s)
Hypnotics and Sedatives , Metabolomics , Polyporales , Tandem Mass Spectrometry , Animals , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/chemistry , Mice , Metabolomics/methods , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Polyporales/chemistry , Male , Agaricales/chemistry , Sleep/drug effects , Sleep Initiation and Maintenance Disorders/drug therapy , Reishi/chemistry
3.
J Neurosci ; 43(13): 2338-2348, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36849414

ABSTRACT

Photoaffinity ligands are best known as tools used to identify the specific binding sites of drugs to their molecular targets. However, photoaffinity ligands have the potential to further define critical neuroanatomic targets of drug action. In the brains of WT male mice, we demonstrate the feasibility of using photoaffinity ligands in vivo to prolong anesthesia via targeted yet spatially restricted photoadduction of azi-m-propofol (aziPm), a photoreactive analog of the general anesthetic propofol. Systemic administration of aziPm with bilateral near-ultraviolet photoadduction in the rostral pons, at the border of the parabrachial nucleus and locus coeruleus, produced a 20-fold increase in the duration of sedative and hypnotic effects compared with control mice without UV illumination. Photoadduction that missed the parabrachial-coerulean complex also failed to extend the sedative or hypnotic actions of aziPm and was indistinguishable from nonadducted controls. Paralleling the prolonged behavioral and EEG consequences of on target in vivo photoadduction, we conducted electrophysiologic recordings in rostral pontine brain slices. Using neurons within the locus coeruleus to further highlight the cellular consequences of irreversible aziPm binding, we demonstrate transient slowing of spontaneous action potentials with a brief bath application of aziPm that becomes irreversible on photoadduction. Together, these findings suggest that photochemistry-based strategies are a viable new approach for probing CNS physiology and pathophysiology.SIGNIFICANCE STATEMENT Photoaffinity ligands are drugs capable of light-induced irreversible binding, which have unexploited potential to identify the neuroanatomic sites of drug action. We systemically administer a centrally acting anesthetic photoaffinity ligand in mice, conduct localized photoillumination within the brain to covalently adduct the drug at its in vivo sites of action, and successfully enrich irreversible drug binding within a restricted 250 µm radius. When photoadduction encompassed the pontine parabrachial-coerulean complex, anesthetic sedation and hypnosis was prolonged 20-fold, thus illustrating the power of in vivo photochemistry to help unravel neuronal mechanisms of drug action.


Subject(s)
Anesthetics, Intravenous , Brain , Hypnosis , Hypnotics and Sedatives , Ligands , Photoaffinity Labels , Propofol , Animals , Male , Mice , Adrenergic Neurons/drug effects , Anesthesia, Intravenous , Brain/cytology , Brain/drug effects , Brain/metabolism , Brain/radiation effects , Electrocorticography , Electroencephalography , Hypnosis/methods , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/radiation effects , Locus Coeruleus/cytology , Locus Coeruleus/drug effects , Locus Coeruleus/metabolism , Locus Coeruleus/radiation effects , Mice, Inbred C57BL , Parabrachial Nucleus/drug effects , Parabrachial Nucleus/metabolism , Parabrachial Nucleus/radiation effects , Photoaffinity Labels/chemistry , Photoaffinity Labels/radiation effects , Propofol/administration & dosage , Propofol/analogs & derivatives , Propofol/pharmacology , Propofol/radiation effects , Time Factors , Ultraviolet Rays , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/chemistry , Anesthetics, Intravenous/pharmacology , Anesthetics, Intravenous/radiation effects
4.
J Ethnopharmacol ; 282: 114630, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34517061

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia limbata C. A. Mey. (Persian name: Maryam Goli-e-labeh dar) has been used for treating central nervous disorders such as insomnia, anxiety and depression in Persian traditional medicine. S. limbata is known for its pharmacological activities which could be at least in a part, upon the presence of rosmarinic acid (RA). However, the sedative-hypnotic effect, anxiolytic activity, possible side effects, and the mechanism of action of S. limbata extract has not yet been examined. AIM OF THE STUDY: In the current study the sedative-hypnotic effect, anxiolytic activity, possible side effects, and the mechanism of action of S. limbata extracts were evaluated. Besides, the effects of altitude and phenological stage on the RA content of S. limbata were investigated. MATERIALS AND METHODS: Sedative-hypnotic and anxiolytic effects were evaluated through the pentobarbital induced loss of righting reflex test and open field test, respectively. Flumazenil was used to reveal the mechanism of action. Possible side effects were investigated in the passive avoidance and grip strength tests. Besides, the effects of altitude and phenological stage (vegetative, flowering, and seed setting) on the RA content of S. limbata were evaluated using reversed-phase high-performance liquid chromatography (RP-HPLC). RESULTS: Following behavioral tests, sedative-hypnotic and anxiolytic effects were observed. Since the observed effects were reversed by flumazenil and no side effect on the memory and muscle strength was reported, modulation of the α1-containing GABA-A receptors could be proposed as one of the involved mechanisms. According to the RP-HPLC analysis, harvesting S. limbata in the vegetative stage at the altitude of 2500 m led to the highest content of RA (8.67 ± 0.13 mg/g dry matter). Among different extract of the plant samples collected in the vegetative stage at the altitude of 2500 m, the hydroalcoholic extract showed the highest rosmarinic acid content. CONCLUSION: The obtained results help to find the optimum situation to gain the highest content of RA as well as the pharmacological activity that could be economically important for the pharmaceutical industries.


Subject(s)
Cinnamates/chemistry , Depsides/chemistry , Hypnotics and Sedatives/pharmacology , Plant Extracts/pharmacology , Salvia/chemistry , Altitude , Animals , Antidotes/pharmacology , Diazepam/chemistry , Diazepam/pharmacology , Flumazenil/pharmacology , Hypnotics and Sedatives/adverse effects , Hypnotics and Sedatives/chemistry , Male , Memory/drug effects , Mice , Plant Components, Aerial , Plant Extracts/adverse effects , Plant Extracts/chemistry , Toxicity Tests , Rosmarinic Acid
5.
Molecules ; 26(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34885687

ABSTRACT

Hops contain flavonoids that have sedative and sleep-promoting activities such as α-acid, ß-acid, and xanthohumol. In this study, the sleep-enhancing activity of a Saaz-Saphir hops mixture was measured. In the caffeine-induced insomnia model, the administration of a Saaz-Saphir mixture increased the sleep time compared to Saaz or Saphir administration alone, which was attributed to the increase in NREM sleep time by the δ-wave increase. Oral administration of the Saaz-Saphir mixture for 3 weeks increased the γ-amino butyric acid (GABA) content in the brain and increased the expression of the GABAA receptor. As the GABA antagonists picrotoxin and bicuculline showed a decrease in sleep activity, it was confirmed that the GABAA receptor was involved in the Saaz-Saphir mixture activity. In addition, the GABAA receptor antagonist also reduced the sleep activity induced by xanthohumol and humulone contained in the Saaz-Saphir mixture. Therefore, xanthohumol and humulone contained in the Saaz-Saphir mixture showed sleep-promoting activity mediated by the GABAA receptors. The mixture of the Saaz and Saphir hop varieties may thus help mitigate sleep disturbances compared to other hop varieties.


Subject(s)
Cyclohexenes/pharmacology , Flavonoids/pharmacology , Humulus/chemistry , Propiophenones/pharmacology , Receptors, GABA-A/genetics , Sleep Initiation and Maintenance Disorders/drug therapy , Terpenes/pharmacology , Acids/chemistry , Animals , Bicuculline/pharmacology , Caffeine/adverse effects , Cyclohexenes/chemistry , Disease Models, Animal , Electroencephalography , Flavonoids/chemistry , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/pharmacology , Humans , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Mice , Picrotoxin/pharmacology , Propiophenones/chemistry , Sleep/drug effects , Sleep/physiology , Sleep Initiation and Maintenance Disorders/chemically induced , Sleep Initiation and Maintenance Disorders/pathology , Terpenes/chemistry , gamma-Aminobutyric Acid/genetics
6.
BMC Microbiol ; 21(1): 296, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34715778

ABSTRACT

BACKGROUND: Ganoderma (Lingzhi in Chinese) has shown good clinical outcomes in the treatment of insomnia, restlessness, and palpitation. However, the mechanism by which Ganoderma ameliorates insomnia is unclear. We explored the mechanism of the anti-insomnia effect of Ganoderma using systems pharmacology from the perspective of central-peripheral multi-level interaction network analysis. METHODS: The active components and central active components of Ganoderma were obtained from the TCMIP and TCMSP databases, then screened to determine their pharmacokinetic properties. The potential target genes of these components were identified using the Swiss Target Prediction and TCMSP databases. The results were matched with the insomnia target genes obtained from the GeneCards, OMIM, DisGeNET, and TCMIP databases. Overlapping targets were subjected to multi-level interaction network analysis and enrichment analysis using the STRING, Metascape, and BioGPS databases. The networks analysed were protein-protein interaction (PPI), drug-component-target gene, component-target gene-organ, and target gene-extended disease; we also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS: In total, 34 sedative-hypnotic components (including 5 central active components) were identified, corresponding to 51 target genes. Multi-level interaction network analysis and enrichment analysis demonstrated that Ganoderma exerted an anti-insomnia effect via multiple central-peripheral mechanisms simultaneously, mainly by regulating cell apoptosis/survival and cytokine expression through core target genes such as TNF, CASP3, JUN, and HSP90αA1; it also affected immune regulation and apoptosis. Therefore, Ganoderma has potential as an adjuvant therapy for insomnia-related complications. CONCLUSION: Ganoderma exerts an anti-insomnia effect via complex central-peripheral multi-level interaction networks.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Ganoderma/chemistry , Sleep Initiation and Maintenance Disorders , Databases, Genetic , Databases, Pharmaceutical , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Gene Regulatory Networks/drug effects , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/therapeutic use , Network Pharmacology , Protein Interaction Maps/drug effects , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/genetics , Sleep Initiation and Maintenance Disorders/metabolism
7.
Food Funct ; 12(21): 10589-10601, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34585202

ABSTRACT

Rhodiola rosea L. (Crassulaceae) are popularly used as a natural supplement for the treatment of insomnia and anxiety. Here, saponin extracts from R. rosea were investigated for their roles on relieving sleeplessness. The levels of neurotransmitters, hormones, and inflammation cytokines in plasma, and the expression of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), prostaglandin D2 (PGD2), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) in the hypothalamus and hippocampus were detected using ELISA, RT-PCR, and western blotting. First, the butanol fraction extracted from R. rosea was collected as the total saponins (HJT-I), then a saponin-rich fraction (HJT-II) was obtained after the further purification of HJT-I. The saponin contents of HJT-I and HJT-II were 28.92% and 65.69%, respectively. Second, behavioral tests were performed and showed that both HJT-I and HJT-II could effectively reduce the duration of immobility in the tail suspension test, and shorten sleep latency and prolong the sleep duration time in the sodium barbital-induced sleeping test, with HJT-II better than HJT-I. Third, ELLISA results showed that the concentrations of GABA, 5-HT, norepinephrine (NA), PGD2, and IL-1ß in plasma were significantly increased after HJT-I and HJT-II administration, while IL-6 was decreased. HJT-I and HJT-II also exhibited differential modulation of the receptors of 5-HT, GABA, PGD2, and IL-1ß expression. In hypothalamus, HJT-II was more powerful than HJT-I in regulation of the GABAARα2, GABAARα3, and glutamic acid decarboxylase (GAD) 65/67 expression, as well as 5-HT2A and IL-1ß. As for DPR and PGD2, HJT-II was more effective in the hippocampus. The efficacy of HJT-I was better than HJT-II at stimulating GABAARα2, GAD 65/67, 5-HT1A, and IL-1ß expression in the hippocampus. In conclusion, the potential sedative and hypnotic effects of HJT-I and HJT-II may possibly be related to the serotonergic, GABAAergic, and immune systems, while the underlying mechanism of HJT-I and HJT-II differed from each other.


Subject(s)
Hypnotics and Sedatives/pharmacology , Plant Extracts/pharmacology , Rhodiola/chemistry , Saponins/pharmacology , Sleep/drug effects , Animals , Gene Expression Regulation/drug effects , Hypnotics and Sedatives/chemistry , Male , Phytotherapy , Plant Extracts/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, GABA/genetics , Receptors, GABA/metabolism , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Saponins/chemistry , gamma-Aminobutyric Acid/metabolism
8.
Mol Biol Rep ; 48(9): 6539-6550, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34420148

ABSTRACT

Lipoic acid (LA) is globally known and its supplements are widely used. Despite its importance for the organism it is not considered a vitamin any more. The multiple metabolic forms and the differences in kinetics (absorption, distribution and excretion), as well as the actions of its enantiomers are analysed in the present article together with its biosynthetic path. The proteins involved in the transfer, biotransformation and activity of LA are mentioned. Furthermore, the safety and the toxicological profile of the compound are commented, together with its stability issues. Mechanisms of lipoic acid intervention in the human body are analysed considering the antioxidant and non-antioxidant characteristics of the compound. The chelating properties, the regenerative ability of other antioxidants, the co-enzyme activity and the signal transduction by the implication in various pathways will be discussed in order to be elucidated the pleiotropic effects of LA. Finally, lipoic acid integrating analogues are mentioned under the scope of the multiple pharmacological actions they acquire towards degenerative conditions.


Subject(s)
Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Antipsychotic Agents/metabolism , Chelating Agents/metabolism , Hypnotics and Sedatives/metabolism , Hypoglycemic Agents/metabolism , Immunomodulating Agents/metabolism , Thioctic Acid/analogs & derivatives , Thioctic Acid/metabolism , Animals , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/chemistry , Antioxidants/adverse effects , Antioxidants/chemistry , Antipsychotic Agents/adverse effects , Antipsychotic Agents/chemistry , Chelating Agents/adverse effects , Chelating Agents/chemistry , Dietary Supplements , Humans , Hypnotics and Sedatives/adverse effects , Hypnotics and Sedatives/chemistry , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/chemistry , Immunomodulating Agents/adverse effects , Immunomodulating Agents/chemistry , Kinetics , Oxidation-Reduction , Signal Transduction , Thioctic Acid/adverse effects , Thioctic Acid/chemistry
9.
Biomed Pharmacother ; 141: 111923, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34328091

ABSTRACT

Although Zhusha Anshen Pill (ZSASP) is a commonly used traditional prescription for insomnia, the safety of cinnabar in the formula has always been controversial since its initial application in medical fields. Here, we developed a new prescription, Tieshuang Anshen Prescription (TSASP), by improving ZSASP with Fe2+ instead of Hg2+. Besides, TSASP was further optimized by establishing and testing the HPLC fingerprint and its sedative-hypnotic effect of formulas with different compatibility ratios and performing correlation spectrum analysis. The safety of TSASP was also evaluated by HE staining of liver and kidney. In addition, a validated and robust UHPLC-MS/MS method was established to demonstrate the pharmacokinetic characteristics of berberine, palmatine, jatrorrhizine, ligustilide, catalpol, loganin, liquiritin and liquiritigenin after oral administration of TSASP. Our study originally provides a new non-toxic prescription, TSASP, with better sedative-hypnotic effect in comparison with ZSASP, revealing that Fe2+ could replace Hg2+ to eliminate its toxicity and play a sedative role. Meanwhile, we believe that our pharmacokinetics results may contribute valuable reference to both TSASP's specific mechanism of action and its further clinical efficacy and effectiveness research.


Subject(s)
Drugs, Chinese Herbal/pharmacokinetics , Hypnotics and Sedatives/pharmacokinetics , Iron/pharmacokinetics , Locomotion/drug effects , Mercury/pharmacokinetics , Sleep/drug effects , Animals , Animals, Outbred Strains , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Female , Hypnotics and Sedatives/analysis , Hypnotics and Sedatives/chemistry , Iron/analysis , Iron/chemistry , Locomotion/physiology , Male , Mercury/analysis , Mercury/chemistry , Mercury Compounds/analysis , Mercury Compounds/chemistry , Mercury Compounds/pharmacokinetics , Mice , Rats , Rats, Wistar , Sleep/physiology
10.
Molecules ; 26(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063337

ABSTRACT

The functional food market is growing with a compound annual growth rate of 7.9%. Thai food recipes use several kinds of herbs. Lemongrass, garlic, and turmeric are ingredients used in Thai curry paste. Essential oils released in the preparation step create the flavor and fragrance of the famous tom yum and massaman dishes. While the biological activities of these ingredients have been investigated, including the antioxidant, anti-inflammatory, and antimicrobial activities, there is still a lack of understanding regarding the responses to the essential oils of these plants. To investigate the effects of essential oil inhalation on the brain and mood responses, electroencephalography was carried out during the non-task resting state, and self-assessment of the mood state was performed. The essential oils were prepared in several dilutions in the range of the supra-threshold level. The results show that Litsea cubeba oil inhalation showed a sedative effect, observed from alpha and beta wave power reductions. The frontal and temporal regions of the brain were involved in the wave alterations. Garlic oil increased the alpha wave power at lower concentrations; however, a sedative effect was also observed at higher concentrations. Lower dilution oil induced changes in the fast alpha activity in the frontal region. The alpha and beta wave powers were decreased with higher dilution oils, particularly in the temporal, parietal, and occipital regions. Both Litsea cubeba and turmeric oils resulted in better positive moods than garlic oil. Garlic oil caused more negative moods than the others. The psychophysiological activities and the related brain functions require further investigation. The knowledge obtained from this study may be used to design functional food products.


Subject(s)
Affect/drug effects , Curcuma/chemistry , Frontal Lobe/physiology , Garlic/chemistry , Litsea/chemistry , Oils, Volatile/administration & dosage , Temporal Lobe/physiology , Administration, Inhalation , Brain Waves/drug effects , Dose-Response Relationship, Drug , Electroencephalography , Female , Frontal Lobe/drug effects , Functional Food/analysis , Functional Food/economics , Gas Chromatography-Mass Spectrometry , Healthy Volunteers , Humans , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Odorants , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/administration & dosage , Plant Oils/chemistry , Plant Oils/pharmacology , Rest/physiology , Temporal Lobe/drug effects , Thailand , Young Adult
11.
Drug Metab Pharmacokinet ; 39: 100394, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33992952

ABSTRACT

The accidental ingestion of drugs is a common concern, especially in the case of young children. A physiologically based pharmacokinetic (PBPK) model that implements the age-dependent size growth and ontogeny of organ functions can be used to predict the concentration-time profiles of drugs in the pediatric population. In this study, the feasibility of using a PBPK model for predicting the amount of drug accidentally swallowed by a child was assessed based on a case study in an infant. Alprazolam was the drug involved in the current case. The developed PBPK model of alprazolam was first evaluated using pharmacokinetic data obtained in healthy adult male volunteers. Then, it was adapted for application to virtual Japanese pediatric subjects having the same demographic information as the infant of interest. The pharmacokinetic data observed in the infant fell within the range of the 5th and 95th percentiles of the pharmacokinetic simulations after administration of 0.4 mg alprazolam (equivalent to one tablet) in the panel of virtual infants. PBPK simulations could provide estimates of the amount accidentally ingested by a child and also give mechanistic insights into the observed drug concentrations. The current study demonstrates the potential clinical utility of PBPK modeling.


Subject(s)
Alprazolam , Chemically-Induced Disorders , Computer Simulation , Inactivation, Metabolic/physiology , Metabolic Clearance Rate/physiology , Accidents, Home , Alprazolam/chemistry , Alprazolam/metabolism , Alprazolam/pharmacokinetics , Biomarkers, Pharmacological/blood , Chemically-Induced Disorders/diagnosis , Chemically-Induced Disorders/metabolism , Cytochrome P-450 CYP3A/genetics , Eating , Female , Humans , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/metabolism , Hypnotics and Sedatives/pharmacokinetics , Infant , Models, Biological , Renal Elimination
12.
J Ethnopharmacol ; 275: 114069, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33794334

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Stress is a state of feeling that inhibits one from responding properly in the face of a threat. Agarwood smoke has been used in traditional medicine as a sedative anti-anxious, and anti-restless therapy. Its scent emitted from heat induces people to enter a stable state; however, the underlying molecular effect is still unclear. AIM OF THE STUDY: This study analyzed novel biological events and gene expression signatures induced by agarwood incense smoke in mice. MATERIALS AND METHODS: Incense smoke was produced by heating at 150 °C for 30 min in a headspace autosampler oven. We treated mice with exposure to incense smoke from Kynam agarwood for 45 min/day for 7 consecutive days. After a 7-day inhalation period, the potent agarwood smoke affected-indicators in serum were measured, and the RNA profiles of the mouse brains were analyzed by microarray to elucidate the biological events induced by agarwood incense smoke. RESULTS: Chemical profile analysis showed that the major component in the incense smoke of Kynam was 2-(2-phenylethyl) chromone (26.82%). Incense smoke from Kynam induced mice to enter a stable state and increased the levels of serotonin in sera. The emotion-related pathways, including dopaminergic synapse, serotonergic synapse, GABAergic synapse, long-term depression and neuroactive ligand-receptor interaction, were significantly affected by incense smoke. Moreover, the expression of Crhr2 and Chrnd genes, involved with neuroactive ligand-receptor interaction pathway, was upregulated by incense smoke. CONCLUSIONS: By a newly-established incense smoke exposure system, we first identified that anti-anxious and anti-depressant effects of agarwood incense smoke were likely associated with the increase of serotonin levels and multiple neuroactive pathways in mice.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Hypnotics and Sedatives/pharmacology , Plant Extracts/pharmacology , Serotonin/metabolism , Smoke/analysis , Wood/chemistry , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/chemistry , Antidepressive Agents/therapeutic use , Behavior, Animal/drug effects , Brain/drug effects , Emotions/drug effects , Flavonoids/pharmacology , Flavonoids/therapeutic use , Gene Expression/drug effects , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/therapeutic use , Male , Medicine, Traditional , Mice, Inbred BALB C , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
13.
Nat Prod Res ; 35(10): 1657-1661, 2021 May.
Article in English | MEDLINE | ID: mdl-31140298

ABSTRACT

Aerial parts (leaves, flowers, stem) of Peperomia galioides extract administered to mice, was used to confirm its anti-inflammatory and sedative folk uses. The anti-inflammatory activity was assessed by croton oil-induced ear oedema and myeloperoxidase (acute inflammation); cotton pellet-induced granuloma (sub-acute inflammation) and Escherichia coli Lipopolysaccharide (LPS) induced inflammation (cellular mediators). The sedative activity was studied by the pentobarbital-induced sleeping time test. Single doses (300 and 600 mg/kg; i.p.) of the extract reduced croton oil-induced ear oedema and myeloperoxidase activity. Six days administration of the extract (300 mg/kg, i.p.) to mice implanted with cotton pellets diminished granuloma formation. LPS (20 mg/kg, i.p.) enhanced plasma nitrites and TNF-α levels that were inhibited by the extract. The duration but not the onset of sleeping time was enhanced by 300 and 600 mg/kg of the extract. Our results show that P. galioides has anti-inflammatory and sedative activities in mice, which validates its traditional use.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Hypnotics and Sedatives/pharmacology , Peperomia/chemistry , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Croton Oil/toxicity , Edema/chemically induced , Edema/drug therapy , Hypnotics and Sedatives/chemistry , Inflammation/chemically induced , Inflammation/drug therapy , Male , Mice , Peroxidase/metabolism , Plant Extracts/chemistry , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Sleep/drug effects , Tumor Necrosis Factor-alpha/blood
14.
Intern Emerg Med ; 16(3): 785-788, 2021 04.
Article in English | MEDLINE | ID: mdl-33095413

ABSTRACT

The slowness of dripping and the presence of alcohol have been offered/suggested as possible causes for the increased risk of developing dependence to the oral formulation of lormetazepam rather than to other anxiolytic and hypnotic drugs. We hence assessed the time of dripping of the most used benzodiazepines and z-drugs oral solution products under experimental conditions and the different employed excipients through a comparative analysis of the Summaries of Product Characteristics. A wide range of the median overall dispensing time was found across the eight products included in the analysis. Among the products containing LMZ, Minias® ranked in the fourth position, while LMZ Mylan Generics® and Noctamid® in the sixth and third, respectively. Our data suggest that the pace of dripping and the presence of alcohol cannot be considered themselves the cause that triggered the abuse of lormetazepam. More precisely, the quantity of alcohol per bottle has been found negligible at therapeutic doses; however, when these are exceeded, they may have clinical implications for patients. Further studies are needed to assess them. Meanwhile, the public-health problem remains and some improvements should be carried out at different levels, to guarantee the appropriate prescription and use of lormetazepam oral solution.


Subject(s)
Ethanol/administration & dosage , Hypnotics and Sedatives/administration & dosage , Lorazepam/analogs & derivatives , Substance-Related Disorders/epidemiology , Administration, Oral , Humans , Hypnotics and Sedatives/chemistry , Lorazepam/administration & dosage , Lorazepam/chemistry , Risk Factors
15.
J Ethnopharmacol ; 279: 113627, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-33246117

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine believes that depression syndrome has become one of the core pathogenesis of insomnia. The pharmacology of traditional Chinese medicine points out that Perilla frutescens has the effect of regulating Qi and relieving depression, promoting Qi circulation to relieve pain, so Perilla frutescens may have the potential therapeutic effect on insomnia. Related studies have reported the sedative and hypnotic effects of Perilla frutescens, but these studies have not yet explored the mechanism of sedative and hypnotic effects of Perilla frutescens essential oil (PFEO) through inhalation administration. AIM OF THE STUDY: The purpose of this study is to explore the underlying sedative and hypnotic mechanisms of PFEO through the GABAergic system pathways. MATERIALS AND METHODS: Established the PCPA insomnia model of mice, The open field test, pentobarbital-induced falling asleep rate, latency of sleeping time, and duration of sleeping time experiments were used to evaluate the behavior of mice, the enzyme-linked immunosorbent assay was used to analyze the content of 5-HT and GABA in hypothalamus and cerebral cortex. Immunohistochemical experiment, Western blot experiment and RT-PCR experiment were used to study the mechanism of PFEO through GABAergic pathway to regulate insomnia. The main volatile constituents of PFEO were analyzed by gas chromatography-mass spectrometry (GC-MS). RESULTS: The inhalation of PFEO has sedative and hypnotic effects, which reduce significantly the autonomic activity of PCPA insomnia mice, increase falling asleep rate, shorten latency of sleeping time, and prolong duration of sleeping time; the results of enzyme-linked immunosorbent assay show that PFEO increase the content of 5-HT and GABA in hypothalamus and cerebral cortex. The results showed that inhalation of PFEO increase the expression of GABAAα1 and GABAAα2 positive cells, increase the level of GABAAα1 and GABAAα2 protein and also increase the level of GABAAα1 mRNA and GABAAα2 mRNA in the hypothalamus and cerebral cortex. The highest content of PFEO is Perillaldehyde (54.37%), followed by 1,4-Cineole (7.42%), Acetaldehyde diethyl acetal (6.61%), D-Limonene (5.09%), Eucalyptol (4.94%), etc. CONCLUSION: The inhalation of PFEO has sedative and hypnotic effects, it is speculated that the mechanism of which may be the sedative and hypnotic effects through the GABAergic pathway.


Subject(s)
Hypnotics and Sedatives/pharmacology , Oils, Volatile/pharmacology , Perilla frutescens/chemistry , Sleep Initiation and Maintenance Disorders/drug therapy , Administration, Inhalation , Animals , Disease Models, Animal , Female , Gas Chromatography-Mass Spectrometry , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/isolation & purification , Male , Medicine, Chinese Traditional/methods , Mice , Mice, Inbred ICR , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Serotonin/metabolism , Sleep/drug effects , Sleep Initiation and Maintenance Disorders/physiopathology , gamma-Aminobutyric Acid/metabolism
16.
Z Naturforsch C J Biosci ; 76(9-10): 357-365, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-32986615

ABSTRACT

The methanol extract and its ethyl acetate fraction (EAF) of Actaea acuminata (Wall. ex. Royle) H. Hara roots were reported to exhibit significant antianxiety, anticonvulsant and antidepressant activities, and mild sedative activity. But the constituents responsible for these activities have not been isolated. The present study was undertaken to isolate neuroprotective compounds of A. acuminata following bioactivity-guided-fractionation. The column chromatography of EAF and its sub-fractions led to the isolation of four phenolic compounds (bergenin, gallic acid, acetyl bergenin and racemic mixture of diacetyl bergenin), which were characterized by IR and NMR spectral analysis. All the compounds exhibited significant antianxiety and antidepressant activities with respect to control. The gallic acid and bergenin did not show anticonvulsant activity, whereas acetyl bergenin and racemic mixture of diacetyl bergenin exhibited significant anticonvulsant activity. Neuropharmacological activities of A. acuminata are attributed due to polyphenolic compounds. Scientific validation of traditional claims of A. acuminata has opened up roadmap of research for the development of CNS affecting lead molecules.


Subject(s)
Actaea/chemistry , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Plant Roots/chemistry , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy/methods , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Magnetic Resonance Spectroscopy/methods , Neuroprotective Agents/chemistry , Plant Extracts/chemistry , Proton Magnetic Resonance Spectroscopy/methods , Spectrophotometry, Infrared/methods
17.
Molecules ; 25(24)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322767

ABSTRACT

The subject of the work was the synthesis of new derivatives of1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione with potential analgesic and sedative activity. Eight compounds werereceived. The analgesic activity of the new compounds was confirmed in the "hot plate" test and in the "writhing" test. All tested imides 8-15 were more active in the "writhing" test than aspirin, and two of them, 9 and 11, were similar to morphine. In addition, all of the new imides inhibited the locomotor activity in mice to a statistically significant extent, and two of them also prolonged the duration of thiopental sleep.On the basis of the results obtained for the previously synthesized imides and the results presented in this paper, an attempt was madeto determine the relationship between thechemical structure of imides and their analgesic and sedativeproperties.


Subject(s)
Analgesics/pharmacology , Hypnotics and Sedatives/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Analgesics/chemistry , Animals , Hypnotics and Sedatives/chemistry , Locomotion/drug effects , Male , Mice , Pyridines/chemistry , Pyrroles/chemistry , Structure-Activity Relationship
18.
Molecules ; 25(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076534

ABSTRACT

Byttneria pilosa is locally known as Harijora, and used by the native hill-tract people of Bangladesh for the treatment of rheumatalgia, snake bite, syphilis, fractured bones, elephantiasis and an antidote for poisoning. The present study was carried out to determine the possible anti-inflammatory, analgesic, neuropharmacological and anti-diarrhoeal activity of the methanol extract of B. pilosa leaves (MEBPL) through in vitro, in vivo and in silico approaches. In the anti-inflammatory study, evaluated by membrane stabilizing and protein denaturation methods, MEBPL showed a significant and dose dependent inhibition. The analgesic effect of MEBPL tested by inducing acetic acid and formalin revealed significant inhibition of pain in both tests. During the anxiolytic evaluation, the extract exhibited a significant and dose-dependent reduction of anxiety-like behaviour in mice. Similarly, mice treated with MEBPL demonstrated dose-dependent reduction in locomotion effect in the open field test and increased sedative effect in the thiopental sodium induced sleeping test. MEBPL also showed good anti-diarrheal activity in both castor oil induced diarrheal and intestinal motility tests. Besides, a previously isolated compound (beta-sitosterol) exhibited good binding affinity in docking and drug-likeliness properties in ADME/T studies. Overall, B. pilosa is a biologically active plant and could be a potential source of drug leads, which warrants further advanced study.


Subject(s)
Analgesics/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents/chemistry , Malvaceae/chemistry , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Bangladesh/epidemiology , Computational Chemistry , Diarrhea/drug therapy , Humans , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/therapeutic use , Mice , Pain/drug therapy , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Leaves/chemistry
19.
Molecules ; 25(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066512

ABSTRACT

Gardenia jasminoides Ellis is a famous fragrant flower in China. Previous pharmacological research mainly focuses on its fruit. In this study, the essential oil of the flower of 'Shanzhizi', which was a major variety for traditional Chinese medicine use, was extracted by hydro distillation and analyzed by GC-MS. Mouse anxiety models included open field, elevated plus maze (EPM), and light and dark box (LDB), which were used to evaluate its anxiolytic effect via inhalation. The involvement of monoamine system was studied by pretreatment with neurotransmitter receptor antagonists WAY100635, flumazenil and sulpiride. The monoamine neurotransmitters contents in the prefrontal cortex (PFC) and hippocampus after aroma inhalation were also analyzed. The results showed that inhalation of G. jasminoides essential oil could significantly elevated the time and entries into open arms in EPM tests and the time explored in the light chamber in LDB tests with no sedative effect. WAY100635 and sulpiride, but not flumazenil, blocked its anxiolytic effect. Inhalation of G. jasminoides essential oil significantly down-regulated the 5-HIAA/5-HT in the PFC and reduced the 5-HIAA content in hippocampus compared to the control treatment. In conclusion, inhalation of gardenia essential oil showed an anxiolytic effect in mice. Monoamine, especially the serotonergic system, was involved in its anxiolytic effect.


Subject(s)
Anti-Anxiety Agents/pharmacology , Gardenia/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Administration, Inhalation , Animals , Anti-Anxiety Agents/administration & dosage , Anti-Anxiety Agents/chemistry , Biogenic Monoamines/analysis , Cyclohexanes/pharmacology , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Elevated Plus Maze Test , Flumazenil/pharmacology , Gas Chromatography-Mass Spectrometry , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Male , Mice, Inbred ICR , Oils, Volatile/administration & dosage , Pentobarbital/pharmacology , Piperazines/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Receptors, Neurotransmitter/antagonists & inhibitors , Sleep/drug effects , Sulpiride/pharmacology , Synaptic Transmission/drug effects
20.
Article in English | MEDLINE | ID: mdl-32877802

ABSTRACT

The aim of this study was to develop a new approach to sample preparation of biological material based on a combination of the Dried Blood Spot (DBS) method and capillary electrophoresis coupled with mass spectrometry (CE-MS) for the analysis of blood samples collected in vivo or post-mortem. The proposed approach allowed the identification of typical drugs from different groups, such as tricyclic antidepressants (amitriptyline, imipramine), selective serotonin reuptake inhibitors (citalopram), benzodiazepines (tetrazepam) and hypnotics (zolpidem). In this study, a blood sample was spotted on FTA DMPK C cards, then dried, and 6-mm discs were cut out. The sample preparation procedure involved microwave-assisted extraction (MAE). Various extraction agents, temperatures and durations of extraction were examined in order to achieve the highest efficiency of the process. The method was subjected to a validation procedure. Limits of detection (LOD = 1.76 - 14.7 ng/mL) and quantification (LOQ = 5.25 - 49.0 ng/mL), inter- (CV = 1.31 - 9.43%) and intra- (CV = 3.26 - 18.52%) day precision of the determinations, recovery (RE = 85.0-105.4%) and matrix effect on ionization of analytes (ME = 98.6-105.5%) were determined. Furthermore, the developed DBS/MAE/CM-MS method was selective and analytes present in the blood applied on DBS cards were found to be stable after 7 and after 14 days. Moreover, the developed method was successfully applied to the analysis of both post-mortem samples and blood samples taken from patients treated with the analyzed drugs.


Subject(s)
Antidepressive Agents, Tricyclic/blood , Dried Blood Spot Testing/methods , Electrophoresis, Capillary/methods , Hypnotics and Sedatives/blood , Antidepressive Agents, Tricyclic/chemistry , Antidepressive Agents, Tricyclic/isolation & purification , Child, Preschool , Forensic Toxicology , Humans , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/isolation & purification , Limit of Detection , Linear Models , Male , Mass Spectrometry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...