Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 369
Filter
1.
Neurosci Lett ; 762: 136154, 2021 09 25.
Article in English | MEDLINE | ID: mdl-34358626

ABSTRACT

INTRODUCTION: The human hypoglossal nucleus (nXII) was morphologically examined from mid-gestation to the perinatal period. MATERIALS/METHODS: Serial brain sections from 6 preterm and 4 perinatal infants aged 21-43 postmenstrual weeks (PW) were stained with the Klüver-Barrera method. Following microscopic observation, morphometric parameters (volume, neuronal number, and neuronal profile area [PA]) were analysed. RESULTS: Two types of neurons, motor and non-motor neurons, were observed at 21 PW. The motor neurons were distributed into clusters, which were not completely separated. The non-motor neurons were dispersed among the motor neurons. Myelination of the hypoglossal nerve roots was noted at 21 PW, when degenerated neurons were sporadically encountered. To a lesser extent, they were seen until 35 PW. The nXII volume increased exponentially with age. Conversely, the neuronal numerical density decreased exponentially, while the total number remained relatively stable. The neuronal PA increased gradually, with a greater rate of increase measured in the caudal part. CONCLUSIONS: In the human nXII, motor and non-motor neurons are distinguishable from mid-gestation. Then, while the nXII expands exponentially in volume, the two types of neurons change in number and PA almost in parallel during the second half of gestation. Natural neuronal death may also occur.


Subject(s)
Medulla Oblongata/cytology , Medulla Oblongata/embryology , Motor Neurons/cytology , Female , Fetus , Humans , Hypoglossal Nerve/cytology , Hypoglossal Nerve/embryology , Infant, Newborn , Male
2.
Development ; 146(17)2019 09 06.
Article in English | MEDLINE | ID: mdl-31427287

ABSTRACT

Feeding and breathing are essential motor functions and rely on the activity of hypoglossal and phrenic motor neurons that innervate the tongue and diaphragm, respectively. Little is known about the genetic programs that control the development of these neuronal subtypes. The transcription factor Tshz1 is strongly and persistently expressed in developing hypoglossal and phrenic motor neurons. We used conditional mutation of Tshz1 in the progenitor zone of motor neurons (Tshz1MNΔ) to show that Tshz1 is essential for survival and function of hypoglossal and phrenic motor neurons. Hypoglossal and phrenic motor neurons are born in correct numbers, but many die between embryonic day 13.5 and 14.5 in Tshz1MNΔ mutant mice. In addition, innervation and electrophysiological properties of phrenic and hypoglossal motor neurons are altered. Severe feeding and breathing problems accompany this developmental deficit. Although motor neuron survival can be rescued by elimination of the pro-apoptotic factor Bax, innervation, feeding and breathing defects persist in Bax-/-; Tshz1MNΔ mutants. We conclude that Tshz1 is an essential transcription factor for the development and physiological function of phrenic and hypoglossal motor neurons.


Subject(s)
Homeodomain Proteins/metabolism , Hypoglossal Nerve/cytology , Motor Neurons/physiology , Phrenic Nerve/cytology , Repressor Proteins/metabolism , Animals , Animals, Newborn , Apoptosis/genetics , Cell Survival/genetics , Diaphragm/innervation , Homeodomain Proteins/genetics , Mice , Mice, Transgenic , Mutation , Plethysmography , Repressor Proteins/genetics , Respiration , Tongue/innervation , bcl-2-Associated X Protein/genetics
3.
J Chem Neuroanat ; 100: 101651, 2019 10.
Article in English | MEDLINE | ID: mdl-31128245

ABSTRACT

In obstructive sleep apnea (OSA) patients, contraction of the muscles of the tongue is needed to protect the upper airway from collapse. During wakefulness, norepinephrine directly excites motoneurons that innervate the tongue and other upper airway muscles but its excitatory effects decline during sleep, thus contributing to OSA. In addition to motoneurons, NE may regulate activity in premotor pathways but little is known about these upstream effects. To start filling this void, we injected a retrograde tracer (beta-subunit of cholera toxin-CTb; 5-10 nl, 1%) into the hypoglossal (XII) motor nucleus in 7 rats. We then used dual immunohistochemistry and brightfield microscopy to count dopamine beta-hydroxylase (DBH)-positive axon terminals closely apposed to CTb cells located in five anatomically distinct XII premotor regions. In different premotor groups, we found on the average 2.2-4.3 closely apposed DBH terminals per cell, with ˜60% more terminals on XII premotor neurons located in the ventrolateral pontine parabrachial region and ventral medullary gigantocellular region than on XII premotor cells of the rostral or caudal intermediate medullary reticular regions. This difference suggests stronger control by norepinephrine of the interneurons that mediate complex behavioral effects than of those mediating reflexes or respiratory drive to XII motoneurons.


Subject(s)
Adrenergic Neurons/cytology , Brain Stem/cytology , Hypoglossal Nerve/cytology , Presynaptic Terminals , Tongue/innervation , Animals , Female , Interneurons/cytology , Male , Rats , Rats, Long-Evans
4.
J Neurophysiol ; 121(4): 1535-1542, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30785813

ABSTRACT

The effect of capsaicin on glycinergic synaptic transmission to juvenile rat hypoglossal motor neurons in acute brainstem slices was evaluated in the presence of TTX. Capsaicin caused a robust decrease in miniature IPSC frequency, amplitude, and half-width, showing that this effect is independent of action potential generation. In the presence of capsazepine, a classic TRPV1 antagonist, capsaicin was still able to reduce spontaneous inhibitory postsynaptic current (IPSC) amplitude and frequency. We further investigated whether the effect of capsaicin on glycinergic transmission to hypoglossal motor neurons is pre- or postsynaptic in nature by recording pairs of evoked IPSCs. Interestingly, capsaicin also reduced evoked IPSC amplitude without affecting paired-pulse ratio, indicating a postsynaptic mechanism of action. Significant reduction was also observed in evoked IPSC half-width, rise time, and decay tau. We also show that capsaicin does not have any effect on either transient (It) or sustained (Is) potassium currents. Finally, we also show that the hyperpolarization-activated cationic current (Ih) also remains unchanged after capsaicin application. NEW & NOTEWORTHY Capsaicin reduces the amplitude of quantal and evoked glycinergic inhibitory neurotransmission to brainstem motor neurons without altering activity-dependent transmitter release. This effect of capsaicin is not due to activation of TRPV1 receptors, as it is not blocked by capsazepine, a TRPV1 receptor antagonist. Capsaicin does not alter voltage-dependent potassium current or the hyperpolarization-activated cationic current in brainstem motor neurons.


Subject(s)
Capsaicin/pharmacology , Hypoglossal Nerve/physiology , Inhibitory Postsynaptic Potentials , Motor Neurons/drug effects , Animals , Brain Stem/cytology , Brain Stem/metabolism , Brain Stem/physiology , Capsaicin/analogs & derivatives , Female , Glycine/metabolism , Hypoglossal Nerve/cytology , Hypoglossal Nerve/metabolism , Male , Motor Neurons/metabolism , Motor Neurons/physiology , Potassium Channels/metabolism , Rats , Rats, Wistar , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors
5.
J Neurophysiol ; 121(4): 1102-1110, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30699003

ABSTRACT

Doxapram is a respiratory stimulant used for decades as a treatment option in apnea of prematurity refractory to methylxanthine treatment. Its mode of action, however, is still poorly understood. We investigated direct effects of doxapram on the pre-Bötzinger complex (PreBötC) and on a downstream motor output system, the hypoglossal nucleus (XII), in the transverse brainstem slice preparation. While doxapram has only a modest stimulatory effect on frequency of activity generated within the PreBötC, a much more robust increase in the amplitude of population activity in the subsequent motor output generated in the XII was observed. In whole cell patch-clamp recordings of PreBötC and XII neurons, we confirmed significantly increased firing of evoked action potentials in XII neurons in the presence of doxapram, while PreBötC neurons showed no significant alteration in firing properties. Interestingly, the amplitude of activity in the motor output was not increased in the presence of doxapram compared with control conditions during hypoxia. We conclude that part of the stimulatory effects of doxapram is caused by direct input on brainstem centers with differential effects on the rhythm generating kernel (PreBötC) and the downstream motor output (XII). NEW & NOTEWORTHY The clinically used respiratory stimulant doxapram has distinct effects on the rhythm generating kernel (pre-Bötzinger complex) and motor output centers (nucleus hypoglossus). These effects are obliterated during hypoxia and are mediated by distinct changes in the intrinsic properties of neurons of the nucleus hypoglossus and synaptic transmission received by pre-Bötzinger complex neurons.


Subject(s)
Brain Stem/drug effects , Central Nervous System Stimulants/pharmacology , Doxapram/pharmacology , Hypoglossal Nerve/drug effects , Motor Neurons/drug effects , Respiratory System Agents/pharmacology , Action Potentials , Animals , Brain Stem/cytology , Brain Stem/physiology , Central Pattern Generators/cytology , Central Pattern Generators/drug effects , Central Pattern Generators/physiology , Female , Hypoglossal Nerve/cytology , Hypoglossal Nerve/physiology , Male , Mice , Motor Neurons/physiology , Respiration
6.
Anat Rec (Hoboken) ; 302(6): 869-892, 2019 06.
Article in English | MEDLINE | ID: mdl-30312533

ABSTRACT

The autonomic brainstem generates breathing rhythm by integrating inputs from chemosensors and mechanosensors in the viscera and coordinating descending outputs from higher structures in the central nervous system. Hypoglossal motoneurons (XII MNs) receive inputs from respiratory premotor neurons, important for maintaining airway patency. Previous studies in rodents report significant changes in breathing control during the first 3 weeks of life, with a sensitive period at 10 to 13 days postbirth (P10-P13) characterized by pronounced changes in neurotransmitters, excitation-inhibition balance, and breathing physiology. However, age-dependent morphological changes of XII MNs during the first 3 weeks postbirth and especially this sensitive period are under-studied. Here, we comprehensively characterize and quantify the early morphological changes in rat XII MNs. We hypothesized that morphological changes in XII MNs correspond to the functionally defined sensitive period observed at postnatal day 10-13 (P10-P13). To test this hypothesis, we used an innovative contemporary statistical approach to analyze Golgi-Cox stained XII MNs at nine postnatal ages between P1 and P21. Our findings reveal two subpopulations of XII MNs, which are dependent on age and morphological features. Soma size increased approximately 40% from P1 to P21, without changing shape. However, dendritic arborization increased in extent/distance and complexity. Dendritic branching of developing neurons significantly increased from P1 through P13, with the greatest increase at P10-P13 based on the Sholl method. Our detailed characterization of XII MN morphological development establishes a foundation for the study and elucidation of morphological changes caused by maternal and perinatal conditions. Anat Rec, 302:869-892, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Brain Stem/cytology , Hypoglossal Nerve/cytology , Motor Neurons/physiology , Animals , Animals, Newborn , Brain Stem/diagnostic imaging , Brain Stem/growth & development , Female , Hypoglossal Nerve/diagnostic imaging , Image Processing, Computer-Assisted , Neuronal Plasticity , Pregnancy , Rats
7.
J Neurophysiol ; 120(4): 1525-1533, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29975163

ABSTRACT

We previously reported that cholinergic current responses mediated via nicotinic acetylcholine (ACh) receptors (nAChRs) in the prepositus hypoglossi nucleus (PHN), which participates in gaze control, can be classified into distinct types based on different kinetics and are mainly composed of α7- and/or non-α7-subtypes: fast (F)-, slow (S)-, and fast and slow (FS)-type currents. In this study, to clarify how each current type is related to neuronal activities, we investigated the relationship between the current types and the membrane properties and the firing responses that were induced by each current type. The proportion of the current types differed in neurons that exhibited different afterhyperpolarization (AHP) profiles and firing patterns, suggesting that PHN neurons show a preference for specific current types dependent on the membrane properties. In response to ACh, F-type neurons showed either one action potential (AP) or multiple APs with a short firing duration, and S-type neurons showed multiple APs with a long firing duration. The firing frequency of F-type neurons was significantly higher than that of S-type and FS-type neurons. An α7-subtype-specific antagonist abolished the firing responses of F-type neurons and reduced the responses of FS-type neurons but had little effect on the responses of S-type neurons, which were reduced by a non-α7-subtype-specific antagonist. These results suggest that the different properties of the current types and the distinct expression of the nAChR subtypes in PHN neurons with different membrane properties produce unique firing responses via the activation of nAChRs. NEW & NOTEWORTHY Prepositus hypoglossi nucleus (PHN) neurons show distinct nicotinic acetylcholine receptor (nAChR)-mediated current responses. The proportion of the current types differed in the neurons that exhibited different afterhyperpolarization profiles and firing patterns. The nAChR-mediated currents with different kinetics induced firing responses of the neurons that were distinct in the firing frequency and duration. These results suggest that the different properties of the current types in PHN neurons with different membrane properties produce unique firing responses via the activation of nAChRs.


Subject(s)
Action Potentials , Hypoglossal Nerve/metabolism , Neurons/metabolism , Receptors, Nicotinic/metabolism , Animals , Brain Stem/cytology , Brain Stem/metabolism , Brain Stem/physiology , Female , Hypoglossal Nerve/cytology , Hypoglossal Nerve/physiology , Male , Neurons/physiology , Rats , Rats, Long-Evans , Rats, Wistar
8.
Neuroscience ; 367: 15-33, 2017 Dec 26.
Article in English | MEDLINE | ID: mdl-29069620

ABSTRACT

In brainstem motor networks, hypoglossal motoneurons (HMs) play the physiological role of driving tongue contraction, an activity critical for inspiration, phonation, chewing and swallowing. HMs are an early target of neurodegenerative diseases like amyotrophic lateral sclerosis that, in its bulbar form, is manifested with initial dysphagia and dysarthria. One important pathogenetic component of this disease is the high level of extracellular glutamate due to uptake block that generates excitotoxicity. To understand the earliest phases of this condition we devised a model, the rat brainstem slice, in which block of glutamate uptake is associated with intense bursting of HMs, dysmetabolism and death. Since blocking bursting becomes a goal to prevent cell damage, the present report enquired whether boosting GABAergic inhibition could fulfill this aim and confer beneficial outcome. Propofol (0.5 µM) and midazolam (0.01 µM), two allosteric modulators of GABAA receptors, were used at concentrations yielding analogous potentiation of GABA-mediated currents. Propofol also partly depressed NMDA receptor currents. Both drugs significantly shortened bursting episodes without changing single burst properties, their synchronicity, or their occurrence. Two hours later, propofol prevented the rise in reactive oxygen species (ROS) and, at 4 hours, it inhibited intracellular release of apoptosis-inducing factor (AIF) and prevented concomitant cell loss. Midazolam did not contrast ROS and AIF release. The present work provides experimental evidence for the neuroprotective action of a general anesthetic like propofol, which, in this case, may be achieved through a combination of boosted GABAergic inhibition and reduced ROS production.


Subject(s)
Brain Stem/cytology , Hypnotics and Sedatives/pharmacology , Motor Neurons/drug effects , Oxidative Stress/drug effects , Propofol/pharmacology , gamma-Aminobutyric Acid/metabolism , Analysis of Variance , Animals , Animals, Newborn , Apoptosis Inducing Factor/metabolism , Dose-Response Relationship, Drug , Excitatory Amino Acids/toxicity , Female , Hypoglossal Nerve/cytology , In Vitro Techniques , Male , Membrane Potentials/drug effects , Neural Inhibition/drug effects , Neural Inhibition/genetics , Neurotransmitter Agents/pharmacology , Patch-Clamp Techniques , Rats , Rats, Wistar , Receptors, GABA/metabolism
9.
Neurosci Lett ; 655: 95-100, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28676256

ABSTRACT

Although propofol is a widely used intravenous general anaesthetic, many studies report its toxic potential, particularly on the developing central nervous system. We investigated its action on hypoglossal motoneurons (HMs) that control two critical functions in neonates, namely tongue muscle activity and airway patency. Thus, clinically relevant concentrations of propofol (1 and 5µM) were applied (4h) to neonatal rat brainstem slices to evaluate the expression of apoptosis-inducing factor (AIF) as biomarker of toxicity. This anaesthetic strongly increased AIF in the cytoplasm and the nucleus, without early loss of HMs. Electrophysiological recordings from HMs showed that propofol (5µM) enhanced GABA- and glycine-evoked current amplitude and lengthened GABAergic current decay time. Propofol also depressed NMDA receptor-mediated responses without affecting AMPA receptors. Since GABA and glycine depolarize neonatal HMs, we propose that the damaging action by propofol on these motoneurons might arise from the facilitated action of these transmitters with subsequent cytoplasmic Ca2+ overload. This phenomenon, in turn, may trigger cell death mechanisms manifested as increased expression of AIF and its translocation into the nucleus. Since propofol is also employed for induction and maintenance of paediatric surgery, caution is needed because its potential neurotoxicity might negatively impact neurodevelopment.


Subject(s)
Anesthetics, Intravenous/toxicity , Hypoglossal Nerve/cytology , Motor Neurons/drug effects , Propofol/toxicity , Animals , Animals, Newborn , Apoptosis Inducing Factor/metabolism , Cell Count , Glycine/pharmacology , In Vitro Techniques , Motor Neurons/cytology , Motor Neurons/physiology , N-Methylaspartate/pharmacology , Patch-Clamp Techniques , Rats, Wistar , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , gamma-Aminobutyric Acid/pharmacology
10.
JCI Insight ; 2(4): e91456, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28239660

ABSTRACT

Decreased noradrenergic excitation of hypoglossal motoneurons during sleep causing hypotonia of pharyngeal dilator muscles is a major contributor to the pathogenesis of obstructive sleep apnea (OSA), a widespread disease for which treatment options are limited. Previous OSA drug candidates targeting various excitatory/inhibitory receptors on hypoglossal motoneurons have proved unviable in reactivating these neurons, particularly during rapid-eye-movement (REM) sleep. To identify a viable drug target, we show that the repurposed α2-adrenergic antagonist yohimbine potently reversed the depressant effect of REM sleep on baseline hypoglossal motoneuron activity (a first-line motor defense against OSA) in rats. Remarkably, yohimbine also restored the obstructive apnea-induced long-term facilitation of hypoglossal motoneuron activity (hLTF), a much-neglected form of noradrenergic-dependent neuroplasticity that could provide a second-line motor defense against OSA but was also depressed during REM sleep. Corroborating immunohistologic, optogenetic, and pharmacologic evidence confirmed that yohimbine's beneficial effects on baseline hypoglossal motoneuron activity and hLTF were mediated mainly through activation of pontine A7 and A5 noradrenergic neurons. Our results suggest a 2-tier (impaired first- and second-line motor defense) mechanism of noradrenergic-dependent pathogenesis of OSA and a promising pharmacotherapy for rescuing both these intrinsic defenses against OSA through disinhibition of A7 and A5 neurons by α2-adrenergic blockade.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/pharmacology , Hypoglossal Nerve/drug effects , Motor Neurons/drug effects , Sleep Apnea, Obstructive , Sleep, REM/drug effects , Yohimbine/pharmacology , Adrenergic Neurons/drug effects , Animals , Hypoglossal Nerve/cytology , Male , Neuronal Plasticity/drug effects , Pons , Rats
11.
J Neurophysiol ; 117(4): 1544-1552, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28148643

ABSTRACT

We previously showed that nicotine exposure in utero and after birth via breast milk [developmental nicotine exposure (DNE)] is associated with many changes in the structure and function of hypoglossal motoneurons (XIIMNs), including a reduction in the size of the dendritic arbor and an increase in cell excitability. Interestingly, the elevated excitability was associated with a reduction in the expression of glutamate receptors on the cell body. Together, these observations are consistent with a homeostatic compensation aimed at restoring cell excitability. Compensation for increased cell excitability could also occur by changing potassium conductance, which plays a critical role in regulating resting potential, spike threshold, and repetitive spiking behavior. Here we test the hypothesis that the previously observed increase in the excitability of XIIMNs from DNE animals is associated with an increase in whole cell potassium currents. Potassium currents were measured in XIIMNs in brain stem slices derived from DNE and control rat pups ranging in age from 0 to 4 days by whole cell patch-clamp electrophysiology. All currents were measured after blockade of action potential-dependent synaptic transmission with tetrodotoxin. Compared with control cells, XIIMNs from DNE animals showed significantly larger transient and sustained potassium currents, but this was observed only under conditions of increased cell and network excitability, which we evoked by raising extracellular potassium from 3 to 9 mM. These observations suggest that the larger potassium currents in nicotine-exposed neurons are an important homeostatic compensation that prevents "runaway" excitability under stressful conditions, when neurons are receiving elevated excitatory synaptic input.NEW & NOTEWORTHY Developmental nicotine exposure is associated with increased cell excitability, which is often accompanied by compensatory changes aimed at normalizing excitability. Here we show that whole cell potassium currents are also increased in hypoglossal motoneurons from nicotine-exposed neonatal rats under conditions of increased cell and network excitability. This is consistent with a compensatory response aimed at preventing instability under conditions in which excitatory synaptic input is high and is compatible with the concept of homeostatic plasticity.


Subject(s)
Action Potentials/drug effects , Brain Stem , Motor Neurons/drug effects , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Potassium/metabolism , Age Factors , Animals , Animals, Newborn , Brain Stem/drug effects , Brain Stem/growth & development , Brain Stem/metabolism , Cadmium Chloride/pharmacology , Female , Hypoglossal Nerve/cytology , Hypoglossal Nerve/physiology , Male , Motor Neurons/physiology , Patch-Clamp Techniques , Potassium/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Sprague-Dawley , Sodium Channel Blockers/pharmacology , Synaptic Transmission/drug effects , Tetrodotoxin/pharmacology
12.
Exp Neurol ; 287(Pt 2): 254-260, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27477858

ABSTRACT

Developmental nicotine exposure (DNE) is associated with increased risk of cardiorespiratory, intellectual, and behavioral abnormalities in neonates, and is a risk factor for apnea of prematurity, altered arousal responses and Sudden Infant Death Syndrome. Alterations in nicotinic acetylcholine receptor signaling (nAChRs) after DNE lead to changes in excitatory neurotransmission in neural networks that control breathing, including a heightened excitatory response to AMPA microinjection into the hypoglossal motor nucleus. Here, we report on experiments designed to probe possible postsynaptic and presynaptic mechanisms that may underlie this plasticity. Pregnant dams were exposed to nicotine or saline via an osmotic mini-pump implanted on the 5th day of gestation. We used whole-cell patch clamp electrophysiology to record from hypoglossal motoneurons (XIIMNs) in thick medullary slices from neonatal rat pups (N=26 control and 24 DNE cells). To enable the translation of our findings to breathing-related consequences of DNE, we only studied XIIMNs that were receiving rhythmic excitatory drive from the respiratory central pattern generator. Tetrodotoxin was used to isolate XIIMNs from presynaptic input, and their postsynaptic responses to bath application of l-glutamic acid (glutamate) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were studied under voltage clamp. DNE had no influence on inward current magnitude evoked by either glutamate or AMPA. However, in cells from DNE animals, bath application of AMPA was associated with a right shift in the amplitude distribution (P=0.0004), but no change in the inter-event interval distribution of miniature excitatory postsynaptic currents (mEPSCs). DNE had no influence on mEPSC amplitude or frequency evoked by glutamate application, or under (unstimulated) baseline conditions. Thus, in the presence of AMPA, DNE is associated with a small but significant increase in quantal size, but no change in the probability of glutamate release.


Subject(s)
Glutamic Acid/metabolism , Hypoglossal Nerve/cytology , Motor Neurons/drug effects , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Synaptic Transmission/drug effects , Age Factors , Animals , Animals, Newborn , Drug Interactions , Excitatory Postsynaptic Potentials/drug effects , Female , Hypoglossal Nerve/growth & development , In Vitro Techniques , Male , Medulla Oblongata/cytology , Membrane Potentials/drug effects , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Sodium Channel Blockers/pharmacology , Synaptic Transmission/physiology , Tetrodotoxin/pharmacology
13.
J Neurophysiol ; 115(5): 2649-57, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26936981

ABSTRACT

Cholinergic transmission in both the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN) plays an important role in horizontal eye movements. We previously demonstrated that the current responses mediated via nicotinic acetylcholine receptors (nAChRs) were larger than those mediated via muscarinic acetylcholine receptors (mAChRs) in cholinergic MVN and PHN neurons that project to the cerebellum. In this study, to clarify the predominant nAChR responses and the expression patterns of nAChRs in MVN and PHN neurons that exhibit distinct neurotransmitter phenotypes, we identified cholinergic, inhibitory, and glutamatergic neurons using specific transgenic rats and investigated current responses to the application of acetylcholine (ACh) using whole cell recordings in brain stem slices. ACh application induced larger nAChR-mediated currents than mAChR-mediated currents in every neuronal phenotype. In the presence of an mAChR antagonist, we found three types of nAChR-mediated currents that exhibited different rise and decay times and designated these as fast (F)-, slow (S)-, and fast and slow (FS)-type currents. F-type currents were the predominant response in inhibitory MVN neurons, whereas S-type currents were observed in the majority of glutamatergic MVN and PHN neurons. No dominant response type was observed in cholinergic neurons. Pharmacological analyses revealed that the F-, S-, and FS-type currents were mainly mediated by α7, non-α7, and both α7 and non-α7 nAChRs, respectively. These findings suggest that cholinergic responses in the major neuronal populations of the MVN and PHN are predominantly mediated by nAChRs and that the expression of α7 and non-α7 nAChRs differ among the neuronal phenotypes.


Subject(s)
Hypoglossal Nerve/metabolism , Neurons/metabolism , Receptors, Nicotinic/metabolism , Synaptic Transmission , Vestibular Nuclei/metabolism , Animals , Female , Hypoglossal Nerve/cytology , Hypoglossal Nerve/physiology , Male , Neurons/drug effects , Neurons/physiology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Phenotype , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Receptors, Nicotinic/genetics , Vestibular Nuclei/cytology , Vestibular Nuclei/physiology
14.
J Neurophysiol ; 115(5): 2672-80, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26936988

ABSTRACT

Motoneurons differ in the behaviors they control and their vulnerability to disease and aging. For example, brain stem motoneurons such as hypoglossal motoneurons (HMs) are involved in licking, suckling, swallowing, respiration, and vocalization. In contrast, spinal motoneurons (SMs) innervating the limbs are involved in postural and locomotor tasks requiring higher loads and lower movement velocities. Surprisingly, the properties of these two motoneuron pools have not been directly compared, even though studies on HMs predominate in the literature compared with SMs, especially for adult animals. Here we used whole cell patch-clamp recording to compare the electrophysiological properties of HMs and SMs in age-matched neonatal mice (P7-P10). Passive membrane properties were remarkably similar in HMs and SMs, and afterhyperpolarization properties did not differ markedly between the two populations. HMs had narrower action potentials (APs) and a faster upstroke on their APs compared with SMs. Furthermore, HMs discharged APs at higher frequencies in response to both step and ramp current injection than SMs. Therefore, while HMs and SMs have similar passive properties, they differ in their response to similar levels of depolarizing current. This suggests that each population possesses differing suites of ion channels that allow them to discharge at rates matched to the different mechanical properties of the muscle fibers that drive their distinct motor functions.


Subject(s)
Action Potentials , Hypoglossal Nerve/physiology , Motor Neurons/physiology , Spinal Cord/physiology , Animals , Female , Hypoglossal Nerve/cytology , Male , Mice , Mice, Inbred C57BL , Movement , Spinal Cord/cytology
15.
J Neurophysiol ; 115(3): 1307-13, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26745245

ABSTRACT

The maximum firing rates of motoneurons (MNs), activated in response to synaptic drive, appear to be much lower than that elicited by current injection. It could be that the decrease in input resistance associated with increased synaptic activity (but not current injection) might blunt overall changes in membrane depolarization and thereby limit spike-frequency output. To test this idea, we recorded, in the same cells, maximal firing responses to current injection and to synaptic activation. We prepared 300 µm medullary slices in neonatal rats that contained hypoglossal MNs and used whole-cell patch-clamp electrophysiology to record their maximum firing rates in response to triangular-ramp current injections and to glutamate receptor-mediated excitation. Brief pressure pulses of high-concentration glutamate led to significant depolarization, high firing rates, and temporary cessation of spiking due to spike inactivation. In the same cells, we applied current clamp protocols that approximated the time course of membrane potential change associated with glutamate application and with peak current levels large enough to cause spike inactivation. Means (SD) of maximum firing rates obtained in response to glutamate application were nearly identical to those obtained in response to ramp current injection [glutamate 47.1 ± 12.0 impulses (imp)/s, current injection 47.5 ± 11.2 imp/s], even though input resistance was 40% less during glutamate application compared with current injection. Therefore, these data suggest that the reduction in input resistance associated with receptor-mediated excitation does not, by itself, limit the maximal firing rate responses in MNs.


Subject(s)
Action Potentials , Hypoglossal Nerve/physiology , Motor Neurons/physiology , Receptors, Glutamate/metabolism , Animals , Excitatory Postsynaptic Potentials , Glutamic Acid/pharmacology , Hypoglossal Nerve/cytology , Hypoglossal Nerve/drug effects , Hypoglossal Nerve/metabolism , Motor Neurons/drug effects , Motor Neurons/metabolism , Rats , Rats, Sprague-Dawley
16.
Brain Struct Funct ; 221(7): 3755-86, 2016 09.
Article in English | MEDLINE | ID: mdl-26476929

ABSTRACT

Hypoglossal motor neurons (XII MNs) innervate tongue muscles important in breathing, suckling and vocalization. Morphological properties of 103 XII MNs were studied using Neurobiotin™ filling in transverse brainstem slices from C57/Bl6 mice (n = 34) from embryonic day (E) 17 to postnatal day (P) 28. XII MNs from areas thought to innervate different tongue muscles showed similar morphology in most, but not all, features. Morphological properties of XII MNs were established prior to birth, not differing between E17-18 and P0. MN somatic volume gradually increased for the first 2 weeks post-birth. The complexity of dendritic branching and dendrite length of XII MNs increased throughout development (E17-P28). MNs in the ventromedial XII motor nucleus, likely to innervate the genioglossus, frequently (42 %) had dendrites crossing to the contralateral side at all ages, but their number declined with postnatal development. Unexpectedly, putative dendritic spines were found in all XII MNs at all ages, and were primarily localized to XII MN somata and primary dendrites at E18-P4, increased in distal dendrites by P5-P8, and were later predominantly found in distal dendrites. Dye-coupling between XII MNs was common from E18 to P7, but declined strongly with maturation after P7. Axon collaterals were found in 20 % (6 of 28) of XII MNs with filled axons; collaterals terminated widely outside and, in one case, within the XII motor nucleus. These results reveal new morphological features of mouse XII MNs, and suggest that dendritic projection patterns, spine density and distribution, and dye-coupling patterns show specific developmental changes in mice.


Subject(s)
Hypoglossal Nerve/cytology , Hypoglossal Nerve/embryology , Motor Neurons/cytology , Animals , Axons , Dendrites/metabolism , Dendritic Spines , Female , Hypoglossal Nerve/metabolism , Male , Mice , Mice, Inbred C57BL , Motor Neurons/metabolism , Neuroanatomical Tract-Tracing Techniques
17.
Brain Struct Funct ; 221(3): 1533-53, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25575900

ABSTRACT

The hypoglossal motor nucleus is one of the efferent components of the neural network underlying the tongue prehension behavior of Ranid frogs. Although the appropriate pattern of the motor activity is determined by motor pattern generators, sensory inputs can modify the ongoing motor execution. Combination of fluorescent tracers were applied to investigate whether there are direct contacts between the afferent fibers of the trigeminal, facial, vestibular, glossopharyngeal-vagal, hypoglossal, second cervical spinal nerves and the hypoglossal motoneurons. Using confocal laser scanning microscope, we detected different number of close contacts from various sensory fibers, which were distributed unequally between the motoneurons innervating the protractor, retractor and inner muscles of the tongue. Based on the highest number of contacts and their closest location to the perikaryon, the glossopharyngeal-vagal nerves can exert the strongest effect on hypoglossal motoneurons and in agreement with earlier physiological results, they influence the protraction of the tongue. The second largest number of close appositions was provided by the hypoglossal and second cervical spinal afferents and they were located mostly on the proximal and middle parts of the dendrites of retractor motoneurons. Due to their small number and distal location, the trigeminal and vestibular terminals seem to have minor effects on direct activation of the hypoglossal motoneurons. We concluded that direct contacts between primary afferent terminals and hypoglossal motoneurons provide one of the possible morphological substrates of very quick feedback and feedforward modulation of the motor program during various stages of prey-catching behavior.


Subject(s)
Hypoglossal Nerve/cytology , Medulla Oblongata/cytology , Motor Neurons/cytology , Tongue/innervation , Afferent Pathways/cytology , Animals , Cranial Nerves/cytology , Motor Activity , Predatory Behavior , Ranidae , Tongue/cytology
18.
J Comp Neurol ; 524(4): 738-58, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26224546

ABSTRACT

Neurons in the trigeminal (Mo5), facial (Mo7), ambiguus (Amb), and hypoglossal (Mo12) motor nuclei innervate jaw, facial, pharynx/larynx/esophagus, and tongue muscles, respectively. They are essential for movements subserving feeding, exploration of the environment, and social communication. These neurons are largely controlled by sensory afferents and premotor neurons of the reticular formation, where central pattern generator circuits controlling orofacial movements are located. To provide a description of the orofacial nuclei of the adult mouse and to ascertain the influence of excitatory and inhibitory afferents upon them, we used stereology to estimate the number of motoneurons as well as of varicosities immunopositive for glutamate (VGluT1+, VGluT2+) and GABA/glycine (known as VIAAT+ or VGAT+) vesicular transporters in the Mo5, Mo7, Amb, and Mo12. Mo5, Mo7, Amb, and Mo12 contain ∼1,000, ∼3,000, ∼600, and ∼1,700 cells, respectively. VGluT1+, VGluT2+, and VIAAT+ varicosities respectively represent: 28%, 41%, and 31% in Mo5; 2%, 49%, and 49% in Mo7; 12%, 42%, and 46% in Amb; and 4%, 54%, and 42% in Mo12. The Mo5 jaw-closing subdivision shows the highest VGluT1+ innervation. Noticeably, the VGluT2+ and VIAAT+ varicosity density in Mo7 is 5-fold higher than in Mo5 and 10-fold higher than in Amb and Mo12. The high density of terminals in Mo7 likely reflects the convergence and integration of numerous inputs to motoneurons subserving the wide range of complex behaviors to which this nucleus contributes. Also, somatic versus neuropil location of varicosities suggests that most of these afferents are integrated in the dendritic trees of Mo7 neurons.


Subject(s)
Face/innervation , Facial Nucleus/cytology , Medulla Oblongata/cytology , Motor Neurons/cytology , Mouth/innervation , Trigeminal Motor Nucleus/cytology , Animals , Cell Count , Facial Nucleus/metabolism , Glutamic Acid/metabolism , Glycine/metabolism , Hypoglossal Nerve/cytology , Hypoglossal Nerve/metabolism , Immunohistochemistry , Male , Medulla Oblongata/metabolism , Mice, Inbred C57BL , Motor Neurons/metabolism , Neural Inhibition/physiology , Organ Size , Trigeminal Motor Nucleus/metabolism , Vesicular Transport Proteins/metabolism , gamma-Aminobutyric Acid/metabolism
19.
EMBO Rep ; 16(5): 590-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25755256

ABSTRACT

Asc-1 (SLC7A10) is an amino acid transporter whose deletion causes neurological abnormalities and early postnatal death in mice. Using metabolomics and behavioral and electrophysiological methods, we demonstrate that Asc-1 knockout mice display a marked decrease in glycine levels in the brain and spinal cord along with impairment of glycinergic inhibitory transmission, and a hyperekplexia-like phenotype that is rescued by replenishing brain glycine. Asc-1 works as a glycine and L-serine transporter, and its transport activity is required for the subsequent conversion of L-serine into glycine in vivo. Asc-1 is a novel regulator of glycine metabolism and a candidate for hyperekplexia disorders.


Subject(s)
Amino Acid Transport System y+/metabolism , Brain/metabolism , Glycine/metabolism , Synaptic Transmission , Amino Acid Transport System y+/genetics , Animals , Biological Transport , Genotype , Hypoglossal Nerve/cytology , Metabolome , Metabolomics/methods , Mice , Mice, Knockout , Mutation , Neurons/metabolism , Phenotype , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Serine/metabolism , Synaptic Transmission/genetics
20.
Sleep ; 38(1): 139-46, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25325470

ABSTRACT

STUDY OBJECTIVES: Hypoglossal motoneurons were recorded intracellularly to determine whether postsynaptic inhibition or disfacilitation was responsible for atonia of the lingual muscles during rapid eye movement (REM) sleep. DESIGN: Intracellular records were obtained of the action potentials and subthreshold membrane potential activity of antidromically identified hypoglossal motoneurons in cats during wakefulness, nonrapid eye movement (NREM) sleep, and REM sleep. A cuff electrode was placed around the hypoglossal nerve to antidromically activate hypoglossal motoneurons. The state-dependent changes in membrane potential, spontaneous discharge, postsynaptic potentials, and rheobase of hypoglossal motoneurons were determined. ANALYSES AND RESULTS: During quiet wakefulness and NREM sleep, hypoglossal motoneurons exhibited spontaneous repetitive discharge. In the transition from NREM sleep to REM sleep, repetitive discharge ceased and the membrane potential began to hyperpolarize; maximal hyperpolarization (10.5 mV) persisted throughout REM sleep. During REM sleep there was a significant increase in rheobase, which was accompanied by barrages of large-amplitude inhibitory postsynaptic potentials (IPSPs), which were reversed following the intracellular injection of chloride ions. The latter result indicates that they were mediated by glycine; IPSPs were not present during wakefulness or NREM sleep. CONCLUSIONS: We conclude that hypoglossal motoneurons are postsynaptically inhibited during naturally occurring REM sleep; no evidence of disfacilitation was observed. The data also indicate that glycine receptor-mediated postsynaptic inhibition of hypoglossal motoneurons is crucial in promoting atonia of the lingual muscles during REM sleep.


Subject(s)
Hypoglossal Nerve/cytology , Inhibitory Postsynaptic Potentials/physiology , Motor Neurons/physiology , Muscle Hypotonia , Sleep, REM/physiology , Tongue/innervation , Tongue/physiology , Animals , Cats , Chlorides/pharmacology , Electric Stimulation , Hypoglossal Nerve/physiology , Male , Membrane Potentials , Muscles/innervation , Muscles/physiology , Receptors, Glycine/metabolism , Wakefulness/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...