Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.791
Filter
1.
Pak J Pharm Sci ; 37(2(Special)): 459-462, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822550

ABSTRACT

The purpose of this study was to examine the potential hypoglycemic effects of administering ginger (Zingiber officinale) and garlic (Allium sativum) to rats with induced type 2 diabetes. A total of forty-five male adult albino rats were randomly assigned to five groups. The groups were named Normal Control, Diabetic Control, Ginger group, Garlic group and a combination group of ginger and garlic. Diabetes was produced in all groups, except the normal control group, using an intraperitoneal injection of streptozotocin at a dosage of 60 mg/body weight. During the course of two months, rats were administered varying amounts of ginger and garlic powders as part of their treatment After the experiment concluded, measurements were taken for glycated hemoglobin, serum glucose, insulin, cholesterol, high density protein, low density protein and liver glycogen levels. These groups exhibited considerably greater serum insulin and high-density lipoprotein concentrations (P<0.05) compared to the diabetic control group. Conversely, body weight, fasting blood glucose, total cholesterol, low density lipoprotein, and glycated hemoglobin levels were significantly lower (P<0.05) in all groups compared to the diabetic control group. A statistically significant increase (P<0.05) increase shown in liver glycogen levels. This study proposes that the utilization of ginger and garlic powders improve the condition of type 2 diabetes and maybe reduce the risk of subsequent diabetic complications.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Garlic , Hypoglycemic Agents , Insulin , Powders , Zingiber officinale , Animals , Garlic/chemistry , Zingiber officinale/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Male , Blood Glucose/drug effects , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Rats , Insulin/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Glycated Hemoglobin/metabolism , Plant Extracts/pharmacology , Phytotherapy , Liver Glycogen/metabolism , Streptozocin
2.
Food Res Int ; 188: 114513, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823886

ABSTRACT

This study reports the effect of thermal pretreatment and the use of different commercial proteolytic enzymes (Protamex, Flavourzyme, Protana prime, and Alcalase) on the free amino acid content (FAA), peptide profile, and antioxidant, antidiabetic, antihypertensive, and anti-inflammatory potential (DPPH, FRAP, and ABTS assay, DPP-IV, ACE-I, and NEP inhibitory activities) of dry-cured ham bone hydrolyzates. The effect of in vitro digestion was also determined. Thermal pretreatment significantly increased the degree of hydrolysis, the FAA, and the DPP-IV and ACE-I inhibitory activities. The type of peptidase used was the most significant factor influencing antioxidant activity and neprilysin inhibitory activity. Protana prime hydrolyzates failed to inhibit DPP-IV and neprilysin enzymes and had low values of ACE-I inhibitory activity. After in vitro digestion, bioactivities kept constant in most cases or even increased in ACE-I inhibitory activity. Therefore, hydrolyzates from dry-cured ham bones could serve as a potential source of functional food ingredients for health benefits.


Subject(s)
Antioxidants , Digestion , Animals , Hydrolysis , Antioxidants/metabolism , Antioxidants/analysis , Bone and Bones/metabolism , Swine , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Food Handling/methods , Hot Temperature , Amino Acids/metabolism , Amino Acids/analysis , Meat Products/analysis , Hypoglycemic Agents/pharmacology , Antihypertensive Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Peptide Hydrolases/metabolism , Dipeptidyl-Peptidase IV Inhibitors , Neprilysin/metabolism , Neprilysin/antagonists & inhibitors , Endopeptidases
4.
Drug Dev Res ; 85(4): e22216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831547

ABSTRACT

A new series of quinoxaline-sulfonamide derivatives 3-12 were synthesized using fragment-based drug design by reaction of quinoxaline sulfonyl chloride (QSC) with different amines and hydrazines. The quinoxaline-sulfonamide derivatives were evaluated for antidiabetic and anti-Alzheimer's potential against α-glucosidase, α-amylase, and acetylcholinesterase enzymes. These derivatives showed good to moderate potency against α-amylase and α-glucosidase with inhibitory percentages between 24.34 ± 0.01%-63.09 ± 0.02% and 28.95 ± 0.04%-75.36 ± 0.01%, respectively. Surprisingly, bis-sulfonamide quinoxaline derivative 4 revealed the most potent activity with inhibitory percentages of 75.36 ± 0.01% and 63.09 ± 0.02% against α-glucosidase and α-amylase compared to acarbose (IP = 57.79 ± 0.01% and 67.33 ± 0.01%), respectively. Moreover, the quinoxaline derivative 3 exhibited potency as α-glucosidase and α-amylase inhibitory with a minute decline from compound 4 and acarbose with inhibitory percentages of 44.93 ± 0.01% and 38.95 ± 0.01%. Additionally, in vitro acetylcholinesterase inhibitory activity for designed derivatives exhibited weak to moderate activity. Still, sulfonamide-quinoxaline derivative 3 emerged as the most active member with inhibitory percentage of 41.92 ± 0.02% compared with donepezil (IP = 67.27 ± 0.60%). The DFT calculations, docking simulation, target prediction, and ADMET analysis were performed and discussed in detail.


Subject(s)
Cholinesterase Inhibitors , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Quinoxalines , Sulfonamides , alpha-Amylases , alpha-Glucosidases , Quinoxalines/chemistry , Quinoxalines/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Structure-Activity Relationship , Acetylcholinesterase/metabolism , Models, Molecular , Pharmacophore
5.
Sultan Qaboos Univ Med J ; 24(2): 243-249, 2024 May.
Article in English | MEDLINE | ID: mdl-38828248

ABSTRACT

Objectives: This study aimed to evaluate the safety and efficacy of remogliflozin compared to vildagliptin as an add-on drug to metformin in type 2 diabetes mellitus (T2DM) treatment. Metformin is considered a first-line drug in T2DM. However, as the disease progresses with heightened insulin resistance and declining ß-cell function, the use of metformin alone is often inadequate to achieve optimum glucose levels. Methods: This prospective, randomised study was conducted at Maulana Azad Medical College and Associated Hospital in New Delhi, India, between February 2020 to January 2021. This study recruited 60 T2DM patients aged 35-70 years with glycated haemoglobin (HbA1c) >6.5% taking metformin at a daily dosage of 1,500-3,000 mg for ≥3 months. Patients were randomly assigned in a 1:1 ratio to receive either vildagliptin (50 mg) or remogliflozin (100 mg) twice daily for 90 days. The primary endpoint was a change in HbA1c levels from baseline to the end of 90 days whereas secondary endpoints were changes in lipid profile and weight. Results: The decrement in mean HbA1c levels was significantly higher in the remogliflozin group than in the vildagliptin group (-8.1% versus -2.4%; P <0.001). In addition, more significant weight loss was found in remogliflozin-treated patients (-5.2% versus -0.6%; P <0.01). Both treatments were well tolerated throughout the study. Conclusion: Compared to vildagliptin, remoglilflozin was significantly more effective in glycaemic control and weight loss in patients with T2DM and can therefore be considered as an add-on drug in T2DM not adequately controlled by metformin monotherapy.


Subject(s)
Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Hypoglycemic Agents , Metformin , Vildagliptin , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Vildagliptin/pharmacology , Vildagliptin/therapeutic use , Metformin/therapeutic use , Metformin/pharmacology , Middle Aged , Male , Female , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Prospective Studies , Aged , Adult , Drug Therapy, Combination/methods , India , Glycated Hemoglobin/analysis , Glycated Hemoglobin/drug effects , Glucosides/therapeutic use , Glucosides/pharmacology , Treatment Outcome , Blood Glucose/analysis , Blood Glucose/drug effects , Sorbitol/analogs & derivatives , Sorbitol/therapeutic use , Sorbitol/pharmacology , Sorbitol/adverse effects , Sorbitol/administration & dosage , Pyrazoles
6.
Sci Rep ; 14(1): 12638, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825591

ABSTRACT

In this study, changes in bioactive compound contents and the in vitro biological activity of mixed grains, including oats, sorghum, finger millet, adzuki bean, and proso millet, with eight different blending ratios were investigated. The total phenolic compounds and flavonoid contents ranged from 14.43-16.53 mg gallic acid equivalent/g extract and 1.22-5.37 mg catechin equivalent/g extract, respectively, depending on the blending ratio. The DI-8 blend (30% oats, 30% sorghum, 15% finger millet, 15% adzuki bean, and 10% proso millet) exhibited relatively higher antioxidant and anti-diabetic effects than other blending samples. The levels of twelve amino acids and eight organic acids in the grain mixes were measured. Among the twenty metabolites, malonic acid, asparagine, oxalic acid, tartaric acid, and proline were identified as key metabolites across the blending samples. Moreover, the levels of lactic acid, oxalic acid, and malonic acid, which are positively correlated with α-glucosidase inhibition activity, were considerably higher in the DI-blending samples. The results of this study suggest that the DI-8 blend could be used as a functional ingredient as it has several bioactive compounds and biological activities, including anti-diabetic activity.


Subject(s)
Antioxidants , Edible Grain , Antioxidants/pharmacology , Antioxidants/chemistry , Edible Grain/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Phenols/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Amino Acids/metabolism , Amino Acids/analysis
7.
J Oleo Sci ; 73(5): 717-727, 2024.
Article in English | MEDLINE | ID: mdl-38692894

ABSTRACT

The anti-diabetic effect of Ficus carica (Fig) seed oil was investigated. 4 groups with 6 rats in each group were used in the experiment as control, diabetes (45 mg/kg streptozotocin), fig seed oil (FSO) (6 mL/ kg/day/rat by gavage) and diabetes+FSO groups. Glucose, urea, creatinine, ALT, AST, GSH, AOPP and MDA analyses were done. Pancreatic tissues were examined histopathologically. When fig seed oil was given to the diabetic group, the blood glucose level decreased. In the diabetes+FSO group, serum urea, creatinine, AOPP, MDA levels and ALT and AST activities decreased statistically significantly compared to the diabetes group, while GSH levels increased significantly, histopathological, immunohistochemical, and immunofluorescent improvements were observed. It has been shown for the first time that FSO has positive effects on blood glucose level and pancreatic health. It can be said that the protective effect of fig seed oil on tissues may be due to its antioxidant activity.


Subject(s)
Antioxidants , Blood Glucose , Diabetes Mellitus, Experimental , Ficus , Hypoglycemic Agents , Pancreas , Plant Oils , Seeds , Streptozocin , Animals , Ficus/chemistry , Diabetes Mellitus, Experimental/drug therapy , Plant Oils/pharmacology , Plant Oils/isolation & purification , Seeds/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Blood Glucose/metabolism , Male , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Antioxidants/pharmacology , Rats , Rats, Wistar , Creatinine/blood
8.
Neuromolecular Med ; 26(1): 18, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691185

ABSTRACT

Seipin is a key regulator of lipid metabolism, the deficiency of which leads to severe lipodystrophy. Hypothalamus is the pivotal center of brain that modulates appetite and energy homeostasis, where Seipin is abundantly expressed. Whether and how Seipin deficiency leads to systemic metabolic disorders via hypothalamus-involved energy metabolism dysregulation remains to be elucidated. In the present study, we demonstrated that Seipin-deficiency induced hypothalamic inflammation, reduction of anorexigenic pro-opiomelanocortin (POMC), and elevation of orexigenic agonist-related peptide (AgRP). Importantly, administration of rosiglitazone, a thiazolidinedione antidiabetic agent, rescued POMC and AgRP expression, suppressed hypothalamic inflammation, and restored energy homeostasis in Seipin knockout mice. Our findings offer crucial insights into the mechanism of Seipin deficiency-associated energy imbalance and indicates that rosiglitazone could serve as potential intervening agent towards metabolic disorders linked to Seipin.


Subject(s)
Agouti-Related Protein , Energy Metabolism , GTP-Binding Protein gamma Subunits , Homeostasis , Hypothalamus , Mice, Knockout , Pro-Opiomelanocortin , Rosiglitazone , Animals , Mice , Hypothalamus/metabolism , Energy Metabolism/drug effects , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/biosynthesis , Agouti-Related Protein/genetics , GTP-Binding Protein gamma Subunits/genetics , Rosiglitazone/pharmacology , Male , Neuroinflammatory Diseases/etiology , Mice, Inbred C57BL , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Neuropeptides/genetics , Neuropeptides/deficiency , Gene Expression Regulation/drug effects
9.
Mol Biol Rep ; 51(1): 640, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727848

ABSTRACT

Memory issues are a prevalent symptom in different neurodegenerative diseases and can also manifest in certain psychiatric conditions. Despite limited medications approved for treating memory problems, research suggests a lack of sufficient options in the market. Studies indicate that a significant percentage of elderly individuals experience various forms of memory disorders. Metformin, commonly prescribed for type 2 diabetes, has shown neuroprotective properties through diverse mechanisms. This study explores the potential of metformin in addressing memory impairments. The current research gathered its data by conducting an extensive search across electronic databases including PubMed, Web of Science, Scopus, and Google Scholar. Previous research suggests that metformin enhances brain cell survival and memory function in both animal and clinical models by reducing oxidative stress, inflammation, and cell death while increasing beneficial neurotrophic factors. The findings of the research revealed that metformin is an effective medication for enhancing various types of memory problems in numerous studies. Given the rising incidence of memory disorders, it is plausible to utilize metformin, which is an affordable and accessible drug. It is often recommended as a treatment to boost memory.


Subject(s)
Memory Disorders , Metformin , Metformin/therapeutic use , Metformin/pharmacology , Memory Disorders/drug therapy , Humans , Animals , Oxidative Stress/drug effects , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Memory/drug effects , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Brain/drug effects , Brain/metabolism
10.
Sci Rep ; 14(1): 10053, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698047

ABSTRACT

Type 2 diabetes mellitus is a worldwide public health issue. In the globe, Egypt has the ninth-highest incidence of diabetes. Due to its crucial role in preserving cellular homeostasis, the autophagy process has drawn a lot of attention in recent years, Therefore, the purpose of this study was to evaluate the traditional medication metformin with the novel therapeutic effects of cinnamondehyde on adipocyte and hepatic autophagy in a model of high-fat diet/streptozotocin-diabetic rats. The study was conducted on 40 male albino rats, classified into 2 main groups, the control group and the diabetic group, which was subdivided into 4 subgroups (8 rats each): untreated diabetic rats, diabetic rats received oral cinnamaldehyde 40 mg/kg/day, diabetic rats received oral metformin 200 mg/kg/day and diabetic rats received a combination of both cinnamaldehyde and metformin daily for 4 weeks. The outcomes demonstrated that cinnamaldehyde enhanced the lipid profile and glucose homeostasis. Moreover, Cinnamaldehyde had the opposite effects on autophagy in both tissues; by altering the expression of genes that control autophagy, such as miRNA 30a and mammalian target of rapamycin (mTOR), it reduced autophagy in adipocytes and stimulated it in hepatic tissues. It may be inferred that by increasing the treatment efficacy of metformin and lowering its side effects, cinnamaldehyde could be utilized as an adjuvant therapy with metformin for the treatment of type 2 diabetes.


Subject(s)
Acrolein , Acrolein/analogs & derivatives , Adipocytes , Autophagy , Diabetes Mellitus, Experimental , Liver , Metformin , Animals , Acrolein/pharmacology , Acrolein/therapeutic use , Autophagy/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Rats , Adipocytes/drug effects , Adipocytes/metabolism , Metformin/pharmacology , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Streptozocin , Blood Glucose/metabolism , TOR Serine-Threonine Kinases/metabolism
11.
Sci Rep ; 14(1): 10286, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704482

ABSTRACT

Jinlida granule (JLD) is a Traditional Chinese Medicine (TCM) formula used for the treatment of type 2 diabetes mellitus (T2DM). However, the mechanism of JLD treatment for T2DM is not fully revealed. In this study, we explored the mechanism of JLD against T2DM by an integrative pharmacology strategy. Active components and corresponding targets were retrieved from Traditional Chinese Medicine System Pharmacology (TCMSP), SwissADME and Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine Database (BATMAN-TCM) database. T2DM-related targets were obtained from Drugbank and Genecards databases. The protein-protein interaction (PPI) network was constructed and analyzed with STRING (Search Toll for the Retrieval of Interacting Genes/proteins) and Cytoscape to get the key targets. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed with the Database for Annotation, Visualization and Integrated Discovery (DAVID). Lastly, the binding capacities and reliability between potential active components and the targets were verified with molecular docking and molecular dynamics simulation. In total, 185 active components and 337 targets of JLD were obtained. 317 targets overlapped with T2DM-related targets. RAC-alpha serine/threonine-protein kinase (AKT1), tumor necrosis factor (TNF), interleukin-6 (IL-6), cellular tumor antigen p53 (TP53), prostaglandin G/H synthase 2 (PTGS2), Caspase-3 (CASP3) and signal transducer and activator of transcription 3 (STAT3) were identified as seven key targets by the topological analysis of the PPI network. GO and KEGG enrichment analyses showed that the effects were primarily associated with gene expression, signal transduction, apoptosis and inflammation. The pathways were mainly enriched in PI3K-AKT signaling pathway and AGE-RAGE signaling pathway in diabetic complications. Molecular docking and molecular dynamics simulation verified the good binding affinity between the key components and targets. The predicted results may provide a theoretical basis for drug screening of JLD and a new insight for the therapeutic effect of JLD on T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Molecular Docking Simulation , Protein Interaction Maps , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Protein Interaction Maps/drug effects , Signal Transduction/drug effects , Medicine, Chinese Traditional/methods , Molecular Dynamics Simulation , Computational Biology/methods , Gene Ontology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry
12.
Sci Rep ; 14(1): 10528, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719861

ABSTRACT

The current study aimed to assess the effect of the germination process of wild mustard seeds on the phenolic profile, antioxidant, antibacterial, and antidiabetic properties, and some relevant enzyme activities. The total phenolic and flavonoid contents increased 5- and 10-fold, respectively, and were maximized on 5-days sprouts. One new phenolic compound was identified on 5-days sprout extract using HPLC. The concentrations of the identified phenolic compounds increased 1.5-4.3 folds on 5-days sprouts compared with dry seeds. The total antioxidant activity multiplied 17- and 21-fold on 5-days sprouts using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays, respectively. The activity of carbohydrate-cleaving, phenolic-synthesizing and antioxidant enzymes also increased during germination. On 5-days sprouts, there was a substantial correlation between the highest ß-glucosidase and peroxidase activities with highest phenolic and flavonoid levels and maximum antioxidant activity. The phenolic extract of 5-days sprouts exhibited antimicrobial activities against Escherichia coli and Staphylococcus aureus and showed potent antidiabetic activity established by its inhibitory effect against α-amylase and α-glucosidase compared to dry seeds.


Subject(s)
Antioxidants , Germination , Mustard Plant , Phenols , Plant Extracts , Seeds , Phenols/analysis , Phenols/pharmacology , Phenols/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Germination/drug effects , Seeds/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mustard Plant/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Flavonoids/analysis , Flavonoids/pharmacology , Flavonoids/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Chromatography, High Pressure Liquid
13.
BMJ Open Diabetes Res Care ; 12(3)2024 May 06.
Article in English | MEDLINE | ID: mdl-38719505

ABSTRACT

INTRODUCTION: There has been increasing evidence that the gut microbiota is closely related to type 2 diabetes (T2D). Metformin (Met) is often used in combination with saxagliptin (Sax) and repaglinide (Rep) for the treatment of T2D. However, little is known about the effects of these combination agents on gut microbiota in T2D. RESEARCH DESIGN AND METHODS: A T2D mouse model induced by a high-fat diet (HFD) and streptozotocin (STZ) was employed. The T2D mice were randomly divided into six groups, including sham, Met, Sax, Rep, Met+Sax and Met+Rep, for 4 weeks. Fasting blood glucose level, serum biochemical index, H&E staining of liver, Oil red O staining of liver and microbiota analysis by 16s sequencing were used to access the microbiota in the fecal samples. RESULTS: These antidiabetics effectively prevented the development of HFD/STZ-induced high blood glucose, and the combination treatment had a better effect in inhibiting lipid accumulation. All these dosing regimens restored the decreasing ratio of the phylum Bacteroidetes: Firmicutes, and increasing abundance of phylum Desulfobacterota, expect for Met. At the genus level, the antidiabetics restored the decreasing abundance of Muribaculaceae in T2D mice, but when Met was combined with Rep or Sax, the abundance of Muribaculaceae was decreased. The combined treatment could restore the reduced abundance of Prevotellaceae_UCG-001, while Met monotherapy had no such effect. In addition, the reduced Lachnospiraceae_NK4A136_group was well restored in the combination treatment groups, and the effect was much greater than that in the corresponding monotherapy group. Therefore, these dosing regimens exerted different effects on the composition of gut microbiota, which might be associated with the effect on T2D. CONCLUSIONS: Supplementation with specific probiotics may further improve the hypoglycemic effects of antidiabetics and be helpful for the development of new therapeutic drugs for T2D.


Subject(s)
Adamantane , Blood Glucose , Carbamates , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diet, High-Fat , Dipeptides , Gastrointestinal Microbiome , Hypoglycemic Agents , Metformin , Piperidines , Animals , Gastrointestinal Microbiome/drug effects , Metformin/pharmacology , Metformin/therapeutic use , Mice , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/microbiology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Carbamates/pharmacology , Dipeptides/pharmacology , Male , Adamantane/analogs & derivatives , Adamantane/pharmacology , Adamantane/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Blood Glucose/analysis , Blood Glucose/drug effects , Mice, Inbred C57BL , Drug Therapy, Combination , Streptozocin
14.
SAR QSAR Environ Res ; 35(5): 411-432, 2024 May.
Article in English | MEDLINE | ID: mdl-38764437

ABSTRACT

Phytochemicals are now increasingly exploited as remedial agents for the management of diabetes due to side effects attributable to commercial antidiabetic agents. This study investigated the structural and molecular mechanisms by which betulinic acid exhibits its antidiabetic effect via in vitro and computational techniques. In vitro antidiabetic potential was analysed via on α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin inhibitory assays. Its structural and molecular inhibitory mechanisms were investigated using Density Functional Theory (DFT) analysis, molecular docking and molecular dynamics (MD) simulation. Betulinic acid significantly (p < 0.05) inhibited α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin enzymes with IC50 of 70.02 µg/mL, 0.27 µg/mL, 1.70 µg/mL and 8.44 µg/mL, respectively. According to DFT studies, betulinic acid possesses similar reaction in gaseous phase and water due to close values observed for highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) and the chemical descriptors. The dipole moment indicates that betulinic acid has high polarity. Molecular electrostatic potential surface revealed the electrophilic and nucleophilic attack-prone atoms of the molecule. Molecular dynamic studies revealed a stable complex between betulinic acid and α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin. The study elucidated the potent antidiabetic properties of betulinic acid by revealing its conformational inhibitory mode of action on enzymes involved in the onset of diabetes.


Subject(s)
Betulinic Acid , Chymotrypsin , Hypoglycemic Agents , Lipase , Molecular Docking Simulation , Molecular Dynamics Simulation , Pentacyclic Triterpenes , alpha-Amylases , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Lipase/antagonists & inhibitors , Lipase/chemistry , Lipase/metabolism , Chymotrypsin/antagonists & inhibitors , Chymotrypsin/metabolism , Triterpenes/chemistry , Triterpenes/pharmacology , Quantitative Structure-Activity Relationship , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Diabetes Mellitus/drug therapy , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry
15.
Narra J ; 4(1): e697, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798839

ABSTRACT

Diabetes is closely related to immune response problems when it occurs chronically. Pegagan (Centella asiatica) is a medicinal plant with active compounds. Madecassoside is beneficial in treating diabetes, and nanoparticle technology is expected to enhance the medicinal potential and availability of pegagan compounds. The aim of this study was to determine the effect of chitosan-coated pegagan nanoparticles on the cytokine profile of chronic diabetic mice, which included CD4+TNF-α+, CD8+TNF-α+, CD4+IFN-γ+, CD8+IFN-γ+ and IL-6+. An experimental study with a randomized complete block design (CRD) consisting of six treatments with seven replicates was conducted. The groups were: healthy mice as negative control; diabetic mice treated with distilled water as positive control and diabetic mice treated with nanoparticle coated with chitosan (NPC) 20 mg/kg, 30 mg/kg, 40 mg/kg, and metformin 130 mg/kgBW. The data were tested using one-way analysis of variance (ANOVA) with a significance level of 5% and continued with the Duncan's multiple range test. The results showed that pegagan NPC could significantly reduce the relative number of CD4+TNF-α+, CD8+TNF-α+, CD4+IFN-γ+ and CD8+IFN-γ+ and IL-6 in the dose of 20 mg/kg, 30 mg/kg and 40 mg/kg (p<0.05). The treatment dose of 20 mg/kg reduced CD4+TNF-α+, CD8+TNF-α+, CD4+IFN-γ+, CD8+IFN-γ+ to the levels of healthy mice and a dose of 30 mg/kg could reduce IL-6 as in healthy mice. These findings suggest that chitosan-coated pegagan nanoparticles are a promising therapy for diabetes, as they have the potential to modulate the immune response associated with chronic diabetes.


Subject(s)
Centella , Chitosan , Cytokines , Diabetes Mellitus, Experimental , Nanoparticles , Animals , Chitosan/chemistry , Chitosan/administration & dosage , Chitosan/pharmacology , Nanoparticles/chemistry , Mice , Centella/chemistry , Cytokines/metabolism , Diabetes Mellitus, Experimental/drug therapy , Male , Triterpenes/pharmacology , Triterpenes/administration & dosage , Triterpenes/chemistry , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Interleukin-6 , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metformin/pharmacology , Metformin/administration & dosage
16.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731493

ABSTRACT

The aim of this study was to investigate the potential of Amaranthus cruentus flavonoids (quercetin, kaempferol, catechin, hesperetin, naringenin, hesperidin, and naringin), cinnamic acid derivatives (p-coumaric acid, ferulic acid, and caffeic acid), and benzoic acids (vanillic acid and 4-hydroxybenzoic acid) as antioxidants, antidiabetic, and antihypertensive agents. An analytical method for simultaneous quantification of flavonoids, cinnamic acid derivatives, and benzoic acids for metabolomic analysis of leaves and inflorescences from A. cruentus was developed with HPLC-UV-DAD. Evaluation of linearity, limit of detection, limit of quantitation, precision, and recovery was used to validate the analytical method developed. Maximum total flavonoids contents (5.2 mg/g of lyophilized material) and cinnamic acid derivatives contents (0.6 mg/g of lyophilized material) were found in leaves. Using UV-Vis spectrophotometry, the maximum total betacyanin contents (74.4 mg/g of lyophilized material) and betaxanthin contents (31 mg/g of lyophilized material) were found in inflorescences. The leaf extract showed the highest activity in removing DPPH radicals. In vitro antidiabetic activity of extracts was performed with pancreatic α-glucosidase and intestinal α-amylase, and compared to acarbose. Both extracts exhibited a reduction in enzyme activity from 57 to 74%. Furthermore, the in vivo tests on normoglycemic murine models showed improved glucose homeostasis after sucrose load, which was significantly different from the control. In vitro antihypertensive activity of extracts was performed with angiotensin-converting enzyme and contrasted to captopril; both extracts exhibited a reduction of enzyme activity from 53 to 58%. The leaf extract induced a 45% relaxation in an ex vivo aorta model. In the molecular docking analysis, isoamaranthin and isogomphrenin-I showed predictive binding affinity for α-glucosidases (human maltase-glucoamylase and human sucrase-isomaltase), while catechin displayed binding affinity for human angiotensin-converting enzyme. The data from this study highlights the potential of A. cruentus as a functional food.


Subject(s)
Amaranthus , Antihypertensive Agents , Hypoglycemic Agents , Metabolomics , Plant Extracts , Plant Leaves , Amaranthus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Chromatography, High Pressure Liquid , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Metabolomics/methods , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Male , Rats , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/analysis
17.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731488

ABSTRACT

This study synthesized a novel oat ß-glucan (OBG)-Cr(III) complex (OBG-Cr(III)) and explored its structure, inhibitory effects on α-amylase and α-glucosidase, and hypoglycemic activities and mechanism in vitro using an insulin-resistant HepG2 (IR-HepG2) cell model. The Cr(III) content in the complex was found to be 10.87%. The molecular weight of OBG-Cr(III) was determined to be 7.736 × 104 Da with chromium ions binding to the hydroxyl groups of OBG. This binding resulted in the increased asymmetry and altered spatial conformation of the complex along with significant changes in morphology and crystallinity. Our findings demonstrated that OBG-Cr(III) exhibited inhibitory effects on α-amylase and α-glucosidase. Furthermore, OBG-Cr(III) enhanced the insulin sensitivity of IR-HepG2 cells, promoting glucose uptake and metabolism more efficiently than OBG alone. The underlying mechanism of its hypoglycemic effect involved the modulation of the c-Cbl/PI3K/AKT/GLUT4 signaling pathway, as revealed by Western blot analysis. This research not only broadened the applications of OBG but also positioned OBG-Cr(III) as a promising Cr(III) supplement with enhanced hypoglycemic benefits.


Subject(s)
Chromium , Hypoglycemic Agents , alpha-Glucosidases , beta-Glucans , Humans , Chromium/chemistry , Chromium/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , beta-Glucans/chemistry , beta-Glucans/pharmacology , Hep G2 Cells , alpha-Glucosidases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Insulin Resistance , Glucose/metabolism , Signal Transduction/drug effects , Glucose Transporter Type 4/metabolism , Avena/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis
18.
Molecules ; 29(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38731628

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) has proven to be a useful method for analyzing various aspects of material science and biology, like the supramolecular organization of (slightly) fluorescent compounds or the metabolic activity in non-labeled cells; in particular, FLIM phasor analysis (phasor-FLIM) has the potential for an intuitive representation of complex fluorescence decays and therefore of the analyzed properties. Here we present and make available tools to fully exploit this potential, in particular by coding via hue, saturation, and intensity the phasor positions and their weights both in the phasor plot and in the microscope image. We apply these tools to analyze FLIM data acquired via two-photon microscopy to visualize: (i) different phases of the drug pioglitazone (PGZ) in solutions and/or crystals, (ii) the position in the phasor plot of non-labelled poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), and (iii) the effect of PGZ or PGZ-containing NPs on the metabolism of insulinoma (INS-1 E) model cells. PGZ is recognized for its efficacy in addressing insulin resistance and hyperglycemia in type 2 diabetes mellitus, and polymeric nanoparticles offer versatile platforms for drug delivery due to their biocompatibility and controlled release kinetics. This study lays the foundation for a better understanding via phasor-FLIM of the organization and effects of drugs, in particular, PGZ, within NPs, aiming at better control of encapsulation and pharmacokinetics, and potentially at novel anti-diabetics theragnostic nanotools.


Subject(s)
Nanoparticles , Pioglitazone , Pioglitazone/pharmacology , Pioglitazone/chemistry , Nanoparticles/chemistry , Animals , Cell Line, Tumor , Humans , Microscopy, Fluorescence/methods , Rats , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry
19.
Sci Rep ; 14(1): 10832, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734755

ABSTRACT

Sodium-glucose co-transporters type 2 inhibitors (SLGT2i) are highly effective in controlling type 2 diabetes, but reported beneficial cardiovascular effects suggest broader actions on insulin resistance. Weight loss may be initially explained by glycosuria-induced net caloric output and secondary volumetric reduction, but its maintenance could be due to loss of visceral fat mass. Structured ultrasound (US) imaging of abdominal adipose tissue ("eco-obesity") is a recently described methodology used to measure 5 consecutive layers of abdominal fat, not assessable by DEXA or CT scan: superficial subcutaneous (SS), deep subcutaneous (DS), preperitoneal (PP), omental (Om) and right perirenal (RK). PP, Om and RK are predictors of metabolic syndrome (MS) with defined cut-off points. To assess the effect of SLGT2i on every fat depot we enrolled 29 patients with type 2 Diabetes (HbA1c 6.5-9%) and Obesity (IMC > 30 kg/m2) in an open-label, randomized, phase IV trial (EudraCT: 2019-000979-16): the Omendapa trial. Diabetes was diagnosed < 12 months before randomization and all patients were treatment naïve. 14 patients were treated with metformin alone (cohort A) and 15 were treated with metformin + dapaglifozin (cohort B). Anthropometric measures and laboratory tests for glucose, lipid profile, insulin, HOMA, leptin, ultrasensitive-CRP and microalbuminuria (MAL) were done at baseline, 3rd and 6th months. At 6th month, weight loss was -5.5 ± 5.2 kg (5.7% from initial weight) in cohort A and -8.4 ± 4.4 kg (8.6%) in cohort B. Abdominal circumference showed a -2.7 ± 3.1 cm and -5.4 ± 2.5 cm reduction, respectively (p = 0.011). Both Metformin alone (-19.4 ± 20.1 mm; -21.7%) or combined with Dapaglifozin (-20.5 ± 19.4 mm; -21.8%) induced significant Om fat reduction. 13.3% of cohort A patients and 21.4% of cohort's B reached Om thickness below the cut-off for MS criteria. RK fat loss was significantly greater in cohort B group compared to cohort A, at both kidneys. Only in the Met + Dapa group, we observed correlations between Om fat with leptin/CRP/MAL and RK fat with HOMA-IR. US is a useful clinical tool to assess ectopic fat depots. Both Metformin and Dapaglifozin induce fat loss in layers involved with MS but combined treatment is particularly effective in perirenal fat layer reduction. Perirenal fat should be considered as a potential target for cardiovascular dapaglifozin beneficial effects.


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Metformin , Obesity , Humans , Metformin/therapeutic use , Metformin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Glucosides/therapeutic use , Glucosides/pharmacology , Female , Male , Obesity/drug therapy , Obesity/complications , Middle Aged , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Aged , Drug Therapy, Combination , Adult
20.
BMC Complement Med Ther ; 24(1): 201, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778308

ABSTRACT

BACKGROUND: Several studies showed the hypoglycemic and hypolipidemic effects of Satureja Khuzestanica (SK) in animal models. This study aimed to determine the effect of SK supplementation on glycemic and lipid outcomes of patients with type 2 diabetes mellitus (T2DM). METHODS: The study was designed as a double-blind, placebo-controlled, randomized clinical trial using block randomization. Seventy-eight T2DM patients were randomly assigned to intervention (n = 39) or placebo (n = 39) groups. They received SK or placebo in 500 mg capsules daily for 12 weeks. Anthropometric, blood pressure, liver enzymes, glycemic, and lipid outcomes were measured before and after the intervention. RESULTS: At baseline, there were no significant differences in age, sex, or glycated hemoglobin (HbA1c) levels between the groups. SK supplementation led to a significant decrease in FBS (-12.6 ± 20.7 mg/dl in the intervention group versus 3.5 ± 31.9 mg/dl; p = 0.007), HbA1c (-0.28 ± 0.45 in the intervention group versus 0.11 ± 0.54% in the placebo group; p = < 0.001), insulin (-1.65 ± 6.18 in the intervention group versus 2.09 ± 5.90 mIU/L in the placebo group; p = 0.03), total cholesterol (-14.6 ± 21.1 mg/dl in the intervention group versus 8.2 ± 30.9 mg/dl in the placebo group; p < 0.001), LDL-cholesterol (-4.6 ± 15.2 mg/dl in the intervention group versus 5.8 ± 14.6 mg/dl in placebo group; p < 0.001) levels, and significant increase in HDL-cholesterol (3.9 ± 4.9 mg/dl in the intervention group versus 0.9 ± 5.2 mg/dl in placebo group; p = 0.005). CONCLUSION: Based on the study results, SK supplementation may improve glycemic indices and lipid profile of patients with T2DM. Our findings may provide novel complementary treatments without adverse effects for diabetes complications. These results need to be further confirmed in clinical trials. REGISTRATION: This trial has been registered in the Iranian Registry of Clinical Trials (IRCT ID: IRCT20190715044214N1, registration date: 21/02/2021).


Subject(s)
Diabetes Mellitus, Type 2 , Lipids , Plant Extracts , Satureja , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Female , Middle Aged , Double-Blind Method , Lipids/blood , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Dietary Supplements , Glycemic Index/drug effects , Adult , Blood Glucose/drug effects , Aged , Glycated Hemoglobin , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...