Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.198
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1272270, 2024.
Article in English | MEDLINE | ID: mdl-38689729

ABSTRACT

During parturition and the immediate post-partum period there are two opposite, yet interdependent and intertwined systems that are highly active and play a role in determining lifelong health and behaviour in both the mother and her infant: the stress and the anti-stress (oxytocin) system. Before attempting to understand how the environment around birth determines long-term health trajectories, it is essential to understand how these two systems operate and how they interact. Here, we discuss together the hormonal and neuronal arms of both the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic systems and how they interact. Although the HPA axis and glucocorticoid stress axis are well studied, the role of oxytocin as an extremely powerful anti-stress hormone deserves more attention. It is clear that these anti-stress effects depend on oxytocinergic nerves emanating from the supraoptic nucleus (SON) and paraventricular nucleus (PVN), and project to multiple sites at which the stress system is regulated. These, include projections to corticotropin releasing hormone (CRH) neurons within the PVN, to the anterior pituitary, to areas involved in sympathetic and parasympathetic nervous control, to NA neurons in the locus coeruleus (LC), and to CRH neurons in the amygdala. In the context of the interaction between the HPA axis and the oxytocin system birth is a particularly interesting period as, for both the mother and the infant, both systems are very strongly activated within the same narrow time window. Data suggest that the HPA axis and the oxytocin system appear to interact in this early-life period, with effects lasting many years. If mother-child skin-to-skin contact occurs almost immediately postpartum, the effects of the anti-stress (oxytocin) system become more prominent, moderating lifelong health trajectories. There is clear evidence that HPA axis activity during this time is dependent on the balance between the HPA axis and the oxytocin system, the latter being reinforced by specific somatosensory inputs, and this has long-term consequences for stress reactivity.


Subject(s)
Hypothalamo-Hypophyseal System , Oxytocin , Pituitary-Adrenal System , Animals , Female , Humans , Pregnancy , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Oxytocin/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Stress, Physiological/physiology , Stress, Psychological/metabolism , Yin-Yang
2.
Lab Anim (NY) ; 53(6): 148-159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806681

ABSTRACT

Researchers have advocated elevating mouse housing temperatures from the conventional ~22 °C to the mouse thermoneutral point of 30 °C to enhance translational research. However, the impact of environmental temperature on mouse gastrointestinal physiology remains largely unexplored. Here we show that mice raised at 22 °C exhibit whole gut transit speed nearly twice as fast as those raised at 30 °C, primarily driven by a threefold increase in colon transit speed. Furthermore, gut microbiota composition differs between the two temperatures but does not dictate temperature-dependent differences in gut motility. Notably, increased stress signals from the hypothalamic-pituitary-adrenal axis at 22 °C have a pivotal role in mediating temperature-dependent differences in gut motility. Pharmacological and genetic depletion of the stress hormone corticotropin-releasing hormone slows gut motility in stressed 22 °C mice but has no comparable effect in relatively unstressed 30 °C mice. In conclusion, our findings highlight that colder mouse facility temperatures significantly increase gut motility through hormonal stress pathways.


Subject(s)
Gastrointestinal Motility , Mice, Inbred C57BL , Stress, Physiological , Animals , Mice , Male , Temperature , Hypothalamo-Hypophyseal System/physiology , Gastrointestinal Microbiome , Pituitary-Adrenal System/physiology , Corticotropin-Releasing Hormone/metabolism
3.
Dev Psychobiol ; 66(5): e22491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698633

ABSTRACT

Developmental plasticity is particularly important for humans and other primates because of our extended period of growth and maturation, during which our phenotypes adaptively respond to environmental cues. The hypothalamus-pituitary-gonadal (HPG) and hypothalamus-pituitary-adrenal (HPA) axes are likely to be principal targets of developmental "programming" given their roles in coordinating fitness-relevant aspects of the phenotype, including sexual development, adult reproductive and social strategies, and internal responses to the external environment. In social animals, including humans, the social environment is believed to be an important source of cues to which these axes may adaptively respond. The effects of early social environments on the HPA axis have been widely studied in humans, and to some extent, in other primates, but there are still major gaps in knowledge specifically relating to males. There has also been relatively little research examining the role that social environments play in developmental programming of the HPG axis or the HPA/HPG interface, and what does exist disproportionately focuses on females. These topics are likely understudied in males in part due to the difficulty of identifying developmental milestones in males relative to females and the general quiescence of the HPG axis prior to maturation. However, there are clear indicators that early life social environments matter for both sexes. In this review, we examine what is known about the impact of social environments on HPG and HPA axis programming during male development in humans and nonhuman primates, including the role that epigenetic mechanisms may play in this programming. We conclude by highlighting important next steps in this research area.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Primates , Social Environment , Animals , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Male , Primates/physiology , Humans , Female
4.
Endocrinol Metab Clin North Am ; 53(2): 183-194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677861

ABSTRACT

Puberty is characterized by gonadarche and adrenarche. Gonadarche represents the reactivation of the hypothalamic-pituitary-gonadal axis with increased gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone secretion following the quiescence during childhood. Pubarche is the development of pubic hair, axillary hair, apocrine odor reflecting the onset of pubertal adrenal maturation known as adrenarche. A detailed understanding of these pubertal processes will help clarify relationships between the timing of the onset of puberty and cardiovascular, metabolic, and reproductive outcomes in adulthood. The onset of gonadarche is influenced by neuroendocrine signals, genetic variants, metabolic factors, and environmental elements.


Subject(s)
Puberty , Humans , Puberty/physiology , Female , Adrenarche/physiology , Male , Child , Adolescent , Hypothalamo-Hypophyseal System/physiology , Hypothalamo-Hypophyseal System/metabolism
5.
Psychoneuroendocrinology ; 165: 107048, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657341

ABSTRACT

INTRODUCTION: The dynamic capacity of the hypothalamic-pituitary-adrenal (HPA) axis supports healthy adaptions to stress and play a key role in maintaining mental health. Perinatal adaptations in the HPA-axis dynamics in terms of the Cortisol Awakening Response (CAR), may be involved in dysregulation of perinatal mental health. We aimed to determine if CAR and absolute evening cortisol early postpartum differed from non-perinatal women and evaluate the association between the CAR and maternal mental well-being. METHODS: The CAR was computed as the area under the curve with respect to increase from baseline from serial home-sampling of saliva across 0-60 minutes from awakening. We evaluated differences in CAR and absolute evening cortisol between postpartum women (N=50, mean postpartum days: 38, SD: ±11) and non-perinatal women (N=91) in a multiple linear regression model. We also evaluated the association between CAR and maternal mental well-being in a multiple linear regression model. RESULTS: We found that healthy postpartum women had a blunted CAR (p<0.001) corresponding to 84% reduction and 80% lower absolute evening cortisol (p<0.001) relative to non-perinatal healthy women. In the postpartum group, there was a trend-level association between lower CAR and higher scores on the WHO Well-Being Index (WHO-5) (p=0.048) and lower Edinburgh Postnatal Depression Scale (EPDS) scores (p=0.04). CONCLUSION: Our data emphasize the unique hormonal landscape during the postpartum period in terms of blunted CAR and lower absolute evening cortisol in healthy women early postpartum compared to non-perinatal. Our findings show a potential association between a reduced CAR and improved mental well-being during early motherhood, which suggests that reduced CAR might reflect healthy adjustment to early motherhood.


Subject(s)
Circadian Rhythm , Hydrocortisone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Postpartum Period , Saliva , Wakefulness , Humans , Female , Hydrocortisone/metabolism , Hydrocortisone/analysis , Postpartum Period/metabolism , Postpartum Period/physiology , Adult , Saliva/chemistry , Saliva/metabolism , Circadian Rhythm/physiology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Wakefulness/physiology , Pregnancy , Mental Health , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
6.
J Therm Biol ; 121: 103850, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38608548

ABSTRACT

Assessing the physiological stress responses of wild animals opens a window for understanding how organisms cope with environmental challenges. Since stress response is associated with changes in body temperature, the use of body surface temperature through thermal imaging could help to measure acute and chronic stress responses non-invasively. We used thermal imaging, acute handling-stress protocol and an experimental manipulation of corticosterone (the main glucocorticoid hormone in birds) levels in breeding king penguins (Aptenodytes patagonicus), to assess: 1. The potential contribution of the Hypothalamo-Pituitary-Adrenal (HPA) axis in mediating chronic and acute stress-induced changes in adult surface temperature, 2. The influence of HPA axis manipulation on parental investment through thermal imaging of eggs and brooded chicks, and 3. The impact of parental treatment on offspring thermal's response to acute handling. Maximum eye temperature (Teye) increased and minimum beak temperature (Tbeak) decreased in response to handling stress in adults, but neither basal nor stress-induced surface temperatures were significantly affected by corticosterone implant. While egg temperature was not significantly influenced by parental treatment, we found a surprising pattern for chicks: chicks brooded by the (non-implanted) partner of corticosterone-implanted individuals exhibited higher surface temperature (both Teye and Tbeak) than those brooded by glucocorticoid-implanted or control parents. Chick's response to handling in terms of surface temperature was characterized by a drop in both Teye and Tbeak independently of parental treatment. We conclude that the HPA axis seems unlikely to play a major role in determining chronic or acute changes in surface temperature in king penguins. Changes in surface temperature may primarily be mediated by the Sympathetic-Adrenal-Medullary (SAM) axis in response to stressful situations. Our experiment did not reveal a direct impact of parental HPA axis manipulation on parental investment (egg or chick temperature), but a potential influence on the partner's brooding behaviour.


Subject(s)
Corticosterone , Hypothalamo-Hypophyseal System , Spheniscidae , Stress, Physiological , Animals , Spheniscidae/physiology , Spheniscidae/blood , Corticosterone/blood , Hypothalamo-Hypophyseal System/physiology , Hypothalamo-Hypophyseal System/metabolism , Female , Male , Pituitary-Adrenal System/physiology , Pituitary-Adrenal System/metabolism , Body Temperature
7.
Psychoneuroendocrinology ; 164: 107004, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471257

ABSTRACT

Animal research has shown that the hypothalamus-pituitary-gonadal (HPG) axis is inhibited by (chronic and/or severe) stress, which can lead to impaired fertility and reproductive functioning, presumably caused by the inhibition of gonadal steroid secretion and in interactions with glucocorticoids. However, what has not been clarified is how acute psychosocial stress modulates gonadal steroid secretion in humans. Here we summarize the experimental research on the acute effects of stress on the secretion of gonadal steroids in humans. A systematic literature search revealed 21 studies (with N=881 individuals) measuring testosterone, progesterone or estradiol in response to a standardized acute laboratory stressor in healthy humans. Both our literature review and quantitative meta-analysis suggest that in humans, acute stress stimulates rather than inhibits HPG axis activity, although there is a considerable heterogeneity in the reported methods and results. Increased gonadal steroids in response to acute stress contrasts with many animal studies reporting the opposite pattern, at least regarding severe and/or chronic stressors. We discuss methodological issues and challenges for future research and hope to stimulate experimental studies within this area. A better understanding of these mechanisms is needed, and may have important implications for health and disease, as well as the modulation of various behaviors by acute stressors.


Subject(s)
Gonadal Steroid Hormones , Hypothalamo-Hypophyseal System , Animals , Humans , Hypothalamo-Hypophyseal System/physiology , Gonadal Steroid Hormones/physiology , Gonads , Steroids/pharmacology , Stress, Psychological/psychology
8.
Horm Behav ; 162: 105508, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513527

ABSTRACT

Social environments modulate endocrine function, yet it is unclear whether individuals can become like their social partners in how they physiologically respond to stressors. This social transmission of hypothalamic-pituitary-adrenal (HPA) axis reactivity could have long-term consequences for health and lifespan of individuals if their social partners react to stressors with an exaggerated HPA axis response. We tested whether glucocorticoid levels in response to stress of breeding partners changes after breeding depending on whether partners had similar or dissimilar postnatal conditions. We manipulated postnatal conditions by mimicking early life stress in zebra finch chicks (Taeniopygia guttata) via postnatal corticosterone exposure. When they reached adulthood, we created breeding pairs where the female and male had experienced either the same or different early life hormonal treatment (corticosterone or control). Before and after breeding, we obtained blood samples within 3 min and after 10 min or 30 min of restraint stress (baseline, cort10, cort30). We found that corticosterone levels of individuals in response to restraint were affected by their own and their partner's early life conditions, but did not change after breeding. However, across all pairs, partners became more similar in cort30 levels after breeding, although differences between partners in cort10 remained greater in pairs with a corticosterone-treated female. Thus, we show that HPA axis response to stressors in adulthood can be modulated by reproductive partners and that similarity between partners is reduced when females are postnatally exposed to elevated glucocorticoids.


Subject(s)
Corticosterone , Finches , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Stress, Psychological , Animals , Hypothalamo-Hypophyseal System/physiology , Hypothalamo-Hypophyseal System/metabolism , Female , Pituitary-Adrenal System/physiology , Pituitary-Adrenal System/metabolism , Male , Corticosterone/blood , Stress, Psychological/metabolism , Stress, Psychological/blood , Finches/physiology , Reproduction/physiology , Restraint, Physical/physiology
9.
J Occup Environ Med ; 66(6): 475-480, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38471807

ABSTRACT

OBJECTIVE: This study assessed firefighters' physiological stress response to a live fire training evolution (LFTE). METHODS: Seventy-six ( n = 76) firefighters completed an LFTE. Salivary samples were collected pre-, immediately post, and 30-min post-LFTE and analyzed for α-amylase (AA), cortisol (CORT), and secretory immunoglobulin-A (SIgA). RESULTS: Concentrations of AA, CORT, and SIgA were elevated immediately post LFTE versus pre (P<0.001) and 30-min post (P<0.001). Cohen's d effect size comparing pre and immediately-post means were 0.83, 0.77, and 0.61 for AA, CORT, and SIgA and were 0.54, 0.44, and 0.69 for AA, CORT, and SIgA, comparing immediately-post and 30-min post, respectively. CONCLUSIONS: These data demonstrate the stress response and activation of the hypothalamic-pituitary-adrenal/sympathetic-adreno-medullar axis and immune system immediately after real-world firefighting operations. Future work is needed to understand the impact of elevated stress biomarkers on firefighter performance and disease risk.


Subject(s)
Firefighters , Hydrocortisone , Saliva , alpha-Amylases , Humans , Male , Hydrocortisone/analysis , Hydrocortisone/metabolism , Adult , Saliva/chemistry , Female , alpha-Amylases/analysis , alpha-Amylases/metabolism , Stress, Physiological/physiology , Immunoglobulin A, Secretory/analysis , Immunoglobulin A, Secretory/metabolism , Middle Aged , Occupational Stress , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology
10.
Sci Rep ; 14(1): 6837, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514744

ABSTRACT

Early-life adversity (ELA) is related to profound dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, reflected in both, blunted or exaggerated cortisol stress responses in adulthood. Emotion regulation strategies such as cognitive reappraisal might contribute to this inconsistent finding. Here, we investigate an interaction of early-life maternal care (MC), where low MC represents a form of ELA, and instructed emotion regulation on cortisol responses to acute stress. Ninety-three healthy young women were assigned to a low (n = 33) or high (n = 60) MC group, based on self-reported early-life MC. In the laboratory, participants received regulation instructions, asking to cognitively reappraise (reappraisal group, n = 45) or to focus on senses (control group, n = 48) during subsequent stress exposure, induced by the Trier Social Stress Test. Salivary cortisol and subjective stress levels were measured repeatedly throughout the experiment. Multilevel model analyses confirmed a MC by emotion regulation interaction effect on cortisol trajectories, while controlling for hormonal status. Individuals with low MC in the control compared with the reappraisal group showed increased cortisol responses; individuals with high MC did not differ. These results highlight the significance of emotion regulation for HPA axis stress regulation following ELA exposure. They provide methodological and health implications, indicating emotion regulation as a promising target of treatment interventions for individuals with a history of ELA.


Subject(s)
Hypothalamo-Hypophyseal System , Stress, Psychological , Humans , Female , Hypothalamo-Hypophyseal System/physiology , Stress, Psychological/psychology , Hydrocortisone/analysis , Pituitary-Adrenal System/physiology , Cognition/physiology , Saliva/chemistry
11.
J Vet Intern Med ; 38(2): 942-950, 2024.
Article in English | MEDLINE | ID: mdl-38321784

ABSTRACT

BACKGROUND: In dogs, duration of hypothalamic-pituitary-adrenal (HPA) axis suppression after systemic glucocorticoid treatment is reported to vary from a few days to up to 7 weeks after glucocorticoid discontinuation. These data are derived mainly from experimental studies in healthy dogs and not from animals with spontaneous disease. HYPOTHESIS AND OBJECTIVE: To determine the timeline for recovery of the HPA axis in a group of ill dogs treated with intermediate-acting glucocorticoids (IAGCs). ANIMALS: Twenty client-owned dogs that received IAGC for at least 1 week. METHODS: Single-center prospective observational study. An ACTH stimulation test, endogenous ACTH concentration, serum biochemistry profile, and urinalysis were performed at T0 (2-6 days after IAGC discontinuation) and then every 2 weeks (eg, T1, T2, T3) until HPA axis recovery was documented (post-ACTH cortisol concentration > 6 µg/dL). RESULTS: The median time of HPA axis recovery was 3 days (range, 2-133 days). Eleven of 20 dogs showed recovery of the HPA axis at T0, 6/20 at T1, and 1 dog each at T2, T5, and T9. Dose and duration of treatment were not correlated with timing of HPA axis recovery. Activities of ALT and ALP were significantly correlated with the post-ACTH cortisol concentration (rs = -0.34, P = .03; rs = -0.31, P = .05). Endogenous ACTH concentration was significantly correlated with pre (r = 0.72; P < .0001) and post-ACTH cortisol concentrations (r = 0.35; P = .02). The timing of HPA axis recovery of the dogs undergoing an alternate-day tapering dose was not different compared to dogs that did not (3.5 vs 3 days, P = .89). CONCLUSION AND CLINICAL IMPORTANCE: Most dogs experienced HPA axis recovery within a few days after IAGC discontinuation. However, 2/20 dogs required >8 weeks.


Subject(s)
Glucocorticoids , Hypothalamo-Hypophyseal System , Animals , Dogs , Adrenocorticotropic Hormone , Glucocorticoids/therapeutic use , Hydrocortisone , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220501, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38310935

ABSTRACT

Glucocorticoid hormones (GCs) modulate acute 'stress' responses in vertebrates, exerting their actions across many physiological systems to help the organism face and overcome challenges. These actions take place via binding to the glucocorticoid receptor (GR), which determines not only the magnitude of the GC-mediated physiological response but also the negative feedback that downregulates GCs to restore homeostasis. Although GR function is assumed to determine GC regulation capacity, the associations between GR abundance and individuals' coping abilities remain cryptic. We developed a dynamic model fitted to empirical data to predict the effects of GR abundance on both plasma GC response patterns and the magnitude of GC-mediated physiological response. Individuals with higher GRs showed lower GC exposure, stronger physiological responses and greater capacity to adjust this response according to stressor intensity, which may be translated into more resilient and flexible GC phenotypes. Our results also show that among-individual variability in GR abundance challenges the detectability of the association between plasma GC measurements and physiological responses. Our approach provides mechanistic insights into the role of GRs in plasma GC measurements and function, which point at GR abundance fundamentally driving complex features of the GC regulation system in the face of environmental change. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Subject(s)
Hypothalamo-Hypophyseal System , Receptors, Glucocorticoid , Humans , Animals , Receptors, Glucocorticoid/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Glucocorticoids/metabolism
13.
PeerJ ; 12: e16955, 2024.
Article in English | MEDLINE | ID: mdl-38406286

ABSTRACT

Background: Hormone assessment is typically recommended for awake, unsedated dogs. However, one of the most commonly asked questions from veterinary practitioners to the endocrinology laboratory is how sedation impacts cortisol concentrations and the adrenocorticotropic hormone (ACTH) stimulation test. Butorphanol, dexmedetomidine, and trazodone are common sedatives for dogs, but their impact on the hypothalamic-pituitary-adrenal axis (HPA) is unknown. The objective of this study was to evaluate the effects of butorphanol, dexmedetomidine, and trazodone on serum cortisol concentrations. Methods: Twelve healthy beagles were included in a prospective, randomized, four-period crossover design study with a 7-day washout. ACTH stimulation test results were determined after saline (0.5 mL IV), butorphanol (0.3 mg/kg IV), dexmedetomidine (4 µg/kg IV), and trazodone (3-5 mg/kg PO) administration. Results: Compared to saline, butorphanol increased basal (median 11.75 µg/dL (range 2.50-23.00) (324.13 nmol/L; range 68.97-634.48) vs 1.27 µg/dL (0.74-2.10) (35.03 nmol/L; 20.41-57.93); P < 0.0001) and post-ACTH cortisol concentrations (17.05 µg/dL (12.40-26.00) (470.34 nmol/L; 342.07-717.24) vs 13.75 µg/dL (10.00-18.90) (379.31 nmol/L; 275.96-521.38); P ≤ 0.0001). Dexmedetomidine and trazodone did not significantly affect basal (1.55 µg/dL (range 0.75-1.55) (42.76 nmol/L; 20.69-42.76); P = 0.33 and 0.79 µg/dL (range 0.69-1.89) (21.79 nmol/L; 19.03-52.14); P = 0.13, respectively, vs saline 1.27 (0.74-2.10) (35.03 nmol/L; 20.41-57.93)) or post-ACTH cortisol concentrations (14.35 µg/dL (range 10.70-18.00) (395.86 nmol/L; 295.17-496.55); (P = 0.98 and 12.90 µg/dL (range 8.94-17.40) (355.86 nmol/L; 246.62-480); P = 0.65), respectively, vs saline 13.75 µg/dL (10.00-18.60) (379.31 nmol/L; 275.86-513.10). Conclusion: Butorphanol administration should be avoided prior to ACTH stimulation testing in dogs. Further evaluation of dexmedetomidine and trazodone's effects on adrenocortical hormone testing in dogs suspected of HPA derangements is warranted to confirm they do not impact clinical diagnosis.


Subject(s)
Deep Sedation , Hypnotics and Sedatives , Animals , Dogs , Adrenocorticotropic Hormone/blood , Butorphanol , Dexmedetomidine/administration & dosage , Hydrocortisone/blood , Hydrocortisone/metabolism , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Prospective Studies , Trazodone/administration & dosage , Deep Sedation/adverse effects , Deep Sedation/methods , Deep Sedation/veterinary , Hypnotics and Sedatives/administration & dosage
14.
Neurosci Biobehav Rev ; 158: 105566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307304

ABSTRACT

Different stress models are employed to enhance our understanding of the underlying mechanisms and explore potential interventions. However, the utility of these models remains a critical concern, as their validities may be limited by the complexity of stress processes. Literature review revealed that both mental and physical stress models possess reasonable construct and criterion validities, respectively reflected in psychometrically assessed stress ratings and in activation of the sympathoadrenal system and the hypothalamic-pituitary-adrenal axis. The findings are less robust, though, in the pharmacological perturbations' domain, including such agents as adenosine or dobutamine. Likewise, stress models' convergent- and discriminant validity vary depending on the stressors' nature. Stress models share similarities, but also have important differences regarding their validities. Specific traits defined by the nature of the stressor stimulus should be taken into consideration when selecting stress models. Doing so can personalize prevention and treatment of stress-related antecedents, its acute processing, and chronic sequelae. Further work is warranted to refine stress models' validity and customize them so they commensurate diverse populations and circumstances.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Humans , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Stress, Physiological , Disease Progression , Stress, Psychological
15.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220512, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38310934

ABSTRACT

Hypothalamic-pituitary-adrenal axis (HPA) flexibility is an emerging concept recognizing that individuals that will cope best with stressors will probably be those using their hormones in the most adaptive way. The HPA flexibility concept considers glucocorticoids as molecules that convey information about the environment from the brain to the body so that the organismal phenotype comes to complement prevailing conditions. In this context, FKBP5 protein appears to set the extent to which circulating glucocorticoid concentrations can vary within and across stressors. Thus, FKBP5 expression, and the HPA flexibility it causes, seem to represent an individual's ability to regulate its hormones to orchestrate organismal responses to stressors. As FKBP5 expression can also be easily measured in blood, it could be a worthy target of conservation-oriented research attention. We first review the known and likely roles of HPA flexibility and FKBP5 in wildlife. We then describe putative genetic, environmental and epigenetic causes of variation in HPA flexibility and FKBP5 expression among and within individuals. Finally, we hypothesize how HPA flexibility and FKBP5 expression should affect organismal fitness and hence population viability in response to human-induced rapid environmental changes, particularly urbanization. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Tacrolimus Binding Proteins , Humans , Brain/physiology , Glucocorticoids/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Tacrolimus Binding Proteins/physiology
16.
Psychoneuroendocrinology ; 163: 106976, 2024 May.
Article in English | MEDLINE | ID: mdl-38308964

ABSTRACT

Researchers commonly assess the functioning of the hypothalamic-pituitary-adrenal (HPA) axis by measuring natural fluctuations of its end product cortisol throughout the day or in response to a standardized stressor. Although it is conceivable that an individual releasing relatively more cortisol when confronted with a laboratory stressor does the same in everyday life, inconsistencies remain in the literature regarding associations between diurnal cortisol parameters and cortisol stress responses. Hence, the current meta-analysis aggregated findings of 12 studies to examine overall associations of diurnal cortisol parameters (including total output, diurnal slope, and cortisol awakening response [CAR]) with cortisol stress reactivity and recovery in the Trier Social Stress Test (TSST). There were no significant overall associations of total output, slope, or CAR with stress reactivity. Lower total diurnal cortisol output was significantly related to better stress recovery, whereas diurnal slope and CAR were unrelated to stress recovery. Moderation analyses revealed that associations between diurnal cortisol and cortisol stress responses were dependent on the computation method of cortisol parameters, questioning the convergence and validity of commonly employed measures of stress reactivity and recovery. Overall, it seems that we cannot predict characteristics of the diurnal cortisol rhythm from a one-time measure of stress reactivity in a standardized psychosocial laboratory paradigm.


Subject(s)
Hydrocortisone , Stress, Psychological , Circadian Rhythm/physiology , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Saliva , Stress, Psychological/psychology
17.
Mech Ageing Dev ; 218: 111915, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354789

ABSTRACT

The recently identified syndrome known as Long COVID (LC) is characterized by a constellation of debilitating conditions that impair both physical and cognitive functions, thus reducing the quality of life and increasing the risk of developing the most common age-related diseases. These conditions are linked to the presence of symptoms of autonomic dysfunction, in association with low cortisol levels, suggestive of reduced hypothalamic-pituitary-adrenal (HPA) axis activity, and with increased pro-inflammatory condition. Alterations of dopamine and serotonin neurotransmitter levels were also recently observed in LC. Interestingly, at least some of the proposed mechanisms of LC development overlap with mechanisms of Autonomic Nervous System (ANS) imbalance, previously detailed in the framework of the aging process. ANS imbalance is characterized by a proinflammatory sympathetic overdrive, and a concomitant decreased anti-inflammatory vagal parasympathetic activity, associated with reduced anti-inflammatory effects of the HPA axis and cholinergic anti-inflammatory pathway (CAP). These neuro-immune-endocrine system imbalanced activities fuel the vicious circle of chronic inflammation, i.e. inflammaging. Here, we refine our original hypothesis that ANS dysfunction fuels inflammaging and propose that biomarkers of ANS imbalance could also be considered biomarkers of inflammaging, recognized as the main risk factor for developing age-related diseases and the sequelae of viral infections, i.e. LC.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Hypothalamo-Hypophyseal System/physiology , Quality of Life , Pituitary-Adrenal System/physiology , Chronic Disease , Biomarkers , Anti-Inflammatory Agents
18.
Neuropsychobiology ; 83(1): 2-16, 2024.
Article in English | MEDLINE | ID: mdl-38272005

ABSTRACT

Important sex-related differences have been observed in the onset, prevalence, and clinical phenotype of depression, based on several epidemiological studies. Social, behavioural, and educational factors have a great role in underlying this bias; however, also several biological factors are extensively involved. Indeed, sexually dimorphic biological systems might represent the underlying ground for these disparities, including cerebral structures and neural correlates, reproductive hormones, stress response pathways, the immune system and inflammatory reaction, metabolism, and fat distribution. Furthermore, in this perspective, it is also important to consider and focus the attention on specific ages and life stages of individuals: indeed, women experience during their life specific periods of reproductive transitional phases, which are not found in men, that represent windows of particular psychological vulnerability. In addition to these, other biologically related risk factors, including the occurrence of sleep disturbances and the exposure to childhood trauma, which are found to differentially affect men and women, are also putative underlying mechanisms of the clinical bias of depression. Overall, by taking into account major differences which characterize men and women it might be possible to improve the diagnostic process, as well as treat more efficiently depressed individuals, based on a more personalized medicine and research.


Subject(s)
Depression , Hormones , Male , Humans , Female , Depression/etiology , Risk Factors , Sex Characteristics , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System , Sex Factors
19.
J Exp Zool A Ecol Integr Physiol ; 341(3): 256-263, 2024 04.
Article in English | MEDLINE | ID: mdl-38221843

ABSTRACT

A hallmark of the vertebrate stress response is a rapid increase in glucocorticoids and catecholamines; however, this does not mean that these mediators are the best, or should be the only, metric measured when studying stress. Instead, it is becoming increasingly clear that assaying a suite of downstream metrics is necessary in stress physiology. One component of this suite could be assessing double-stranded DNA damage (dsDNA damage), which has recently been shown to increase in blood with both acute and chronic stress in house sparrows (Passer domesticus). To further understand the relationship between stress and dsDNA damage, we designed two experiments to address the following questions: (1) how does dsDNA damage with chronic stress vary across tissues? (2) does the increase in dsDNA damage during acute stress come from one arm of the stress response or both? We found that (1) dsDNA damage affects tissues differently during chronic stress and (2) the hypothalamic-pituitary-adrenal axis influences dsDNA damage with acute stress, but the sympathetic-adreno-medullary system does not. Surprisingly, our data are not explained by studies on changes in hormone receptor levels with chronic stress, so the underlying mechanism remains unclear.


Subject(s)
Corticosterone , Hypothalamo-Hypophyseal System , Animals , Hypothalamo-Hypophyseal System/physiology , Stress, Physiological , Pituitary-Adrenal System/physiology , DNA Damage
20.
Proc Natl Acad Sci U S A ; 121(2): e2308652121, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38175866

ABSTRACT

The hypothalamic-pituitary-thyroid (HPT) axis is fundamental to human biology, exerting central control over energy expenditure and body temperature. However, the consequences of normal physiologic HPT-axis variation in populations without diagnosed thyroid disease are poorly understood. Using nationally representative data from the 2007 to 2012 National Health and Nutrition Examination Survey, we explore relationships with demographic characteristics, longevity, and socio-economic factors. We find much larger variation across age in free T3 than other HPT-axis hormones. T3 and T4 have opposite relationships to mortality: free T3 is inversely related and free T4 is positively related to the likelihood of death. Free T3 and household income are negatively related, particularly at lower incomes. Finally, free T3 among older adults is associated with labor both in terms of unemployment and hours worked. Physiologic TSH/T4 explain only 1.7% of T3 variation, and neither are appreciably correlated to socio-economic outcomes. Taken together, our data suggest an unappreciated complexity of the HPT-axis signaling cascade broadly such that TSH and T4 may not be accurate surrogates of free T3. Furthermore, we find that subclinical variation in the HPT-axis effector hormone T3 is an important and overlooked factor linking socio-economic forces, human biology, and aging.


Subject(s)
Thyroid Gland , Triiodothyronine , Humans , Aged , Longevity , Economic Status , Nutrition Surveys , Hypothalamo-Hypophyseal System/physiology , Thyrotropin , Demography , Thyroxine
SELECTION OF CITATIONS
SEARCH DETAIL
...