Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.202
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1335149, 2024.
Article in English | MEDLINE | ID: mdl-38737547

ABSTRACT

Backgroud: Gastric cancer is one of the most common cancers worldwide, and its development is associated with a variety of factors. Previous observational studies have reported that thyroid dysfunction is associated with the development of gastric cancer. However, the exact relationship between the two is currently unclear. We used a two-sample Mendelian randomization (MR) study to reveal the causal relationship between thyroid dysfunction and gastric cancer for future clinical work. Materials and methods: This study is based on a two-sample Mendelian randomization design, and all data are from public GWAS databases. We selected hyperthyroidism, hypothyroidism, free thyroxine (FT4), and thyroid-stimulating hormone (TSH) as exposures, with gastric cancer as the outcome. We used three statistical methods, namely Inverse-variance weighted (IVW), MR-Egger, and weighted median, to assess the causal relationship between thyroid dysfunction and gastric cancer. The Cochran's Q test was used to assess the heterogeneity among SNPs in the IVW analysis results, and MR-PRESSO was employed to identify and remove IVs with heterogeneity from the analysis results. MR-Egger is a weighted linear regression model, and the magnitude of its intercept can be used to assess the horizontal pleiotropy among IVs. Finally, the data were visualized through the leave-one-out sensitivity test to evaluate the influence of individual SNPs on the overall causal effect. Funnel plots were used to assess the symmetry of the selected SNPs, forest plots were used to evaluate the confidence and heterogeneity of the incidental estimates, and scatter plots were used to assess the exposure-outcome relationship. All results were expressed as odds ratios (OR) and 95% confidence intervals (95% CI). P<0.05 represents statistical significance. Results: According to IVW analysis, there was a causal relationship between hypothyroidism and gastric cancer, and hypothyroidism could reduce the risk of gastric cancer (OR=0.936 (95% CI:0.893-0.980), P=0.006).This means that having hypothyroidism is a protective factor against stomach cancer. This finding suggests that hypothyroidism may be associated with a reduced risk of gastric cancer.Meanwhile, there was no causal relationship between hyperthyroidism, FT4, and TSH and gastric cancer. Conclusions: In this study, we found a causal relationship between hypothyroidism and gastric cancer with the help of a two-sample Mendelian randomisation study, and hypothyroidism may be associated with a reduced risk of gastric cancer, however, the exact mechanism is still unclear. This finding provides a new idea for the study of the etiology and pathogenesis of gastric cancer, and our results need to be further confirmed by more basic experiments in the future.


Subject(s)
Mendelian Randomization Analysis , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/epidemiology , Humans , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Thyroid Diseases/genetics , Thyroid Diseases/epidemiology , Thyroid Diseases/complications , Thyrotropin/blood , Hyperthyroidism/genetics , Hyperthyroidism/complications , Hyperthyroidism/epidemiology , Hypothyroidism/genetics , Hypothyroidism/epidemiology , Risk Factors , Causality
2.
Medicine (Baltimore) ; 103(19): e38055, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728465

ABSTRACT

Multiple studies have indicated a potential correlation between immune-mediated inflammatory diseases (IMIDs) and Frozen shoulder (FS). To explore the genetic causal relationship between IMIDs and FS using 2-sample Mendelian randomization (MR) analysis. Genome-wide association study (GWAS) summary data for FS were obtained from Green's study, while data for 10 IMIDs were sourced from the FinnGen Consortium. The MR analysis was performed using inverse variance weighting, MR Egger, and weighted median methods. IVW, as the primary MR analysis technique, was complemented with other sensitivity analyses to validate the robustness of the results. Additionally, reverse MR analysis was further conducted to investigate the presence of reverse causal relationships. In the forward MR analysis, genetically determined 4 IMIDs are causally associated with FS: rheumatoid arthritis (odds ratio [OR] (95% confidence interval [95% CI]) = 1.05 [1.02-1.09], P < .01); type 1 diabetes (OR [95% CI] = 1.06 [1.03-1.09], P < .01); hypothyroidism (OR [95% CI] = 1.07 [1.01-1.14], P = .02); and Celiac disease (OR [95% CI] = 1.02 [1.01-1.04], P = .01). However, no causal relationship was found between 6 IMIDs (autoimmune hyperthyroidism, Crohn disease, ulcerative colitis, psoriasis, sicca syndrome and systemic lupus erythematosus) and FS. Sensitivity analyses did not detect any heterogeneity or horizontal pleiotropy. In the reverse MR analysis, no causal relationship was observed between FS and IMIDs. In conclusion, this MR study suggests a potential causal relationship between rheumatoid arthritis, type 1 diabetes, hypothyroidism, and Celiac disease in the onset and development of FS. Nevertheless, more basic and clinical research will be needed in the future to support our findings.


Subject(s)
Bursitis , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Bursitis/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Genetic Predisposition to Disease , Hypothyroidism/genetics , Polymorphism, Single Nucleotide
3.
BMC Cancer ; 24(1): 629, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783224

ABSTRACT

PURPOSE: Observational studies and clinical validation have suggested a link between thyroid dysfunction and an elevated ovarian cancer (OC) risk. However, whether this association indicates a cause-and-effect relationship remains uncertain. We aimed to investigate the plausible causal impact of thyroid dysfunction on OC through a Mendelian randomization (MR) study. METHODS: Genome-wide association study (GWAS) data for thyrotropin (TSH), free thyroxine (FT4), hypothyroidism, and hyperthyroidism were obtained as exposures and those for OC (N = 199,741) were selected as outcomes. Inverse variance-weighted method was used as the main estimation method. A series of sensitivity analyses, including Cochran's Q test, MR-Egger intercept analysis, forest plot scatter plot, and leave-one-out test, was conducted to assess the robustness of the estimates. RESULTS: Genetic prediction of hyperthyroidism was associated with a potential increase in OC risk (odds ratio = 1.094, 95% confidence interval: 1.029-1.164, p = 0.004). However, no evidence of causal effects of hypothyroidism, TSH, and FT4 on OC or reverse causality was detected. Sensitivity analyses demonstrated consistent and reliable results, with no significant estimates of heterogeneity or pleiotropy. CONCLUSIONS: This study employed MR to establish a correlation between hyperthyroidism and OC risk. By genetically predicting OC risk in patients with hyperthyroidism, our research suggests new insights for early prevention and intervention of OC.


Subject(s)
Genome-Wide Association Study , Hyperthyroidism , Mendelian Randomization Analysis , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/blood , Hyperthyroidism/genetics , Hyperthyroidism/complications , Thyrotropin/blood , Hypothyroidism/genetics , Polymorphism, Single Nucleotide , Thyroxine/blood , Risk Factors , Genetic Predisposition to Disease
4.
Front Endocrinol (Lausanne) ; 15: 1308208, 2024.
Article in English | MEDLINE | ID: mdl-38818502

ABSTRACT

Objective: Hypothyroidism, characterized by reduced thyroid hormone levels, and endometrial cancer, a prevalent gynecological malignancy, have been suggested to have a potential association in previous observational studies. However, the causal relationship between them remains uncertain. This study aimed to investigate the causal relationship between hypothyroidism and endometrial cancer using a bilateral Mendelian randomization approach. Methods: A bidirectional two-sample Mendelian randomization study was conducted using summary statistics from genome-wide association studies to identify genetic variants associated with hypothyroidism and endometrial cancer. The inverse variance weighting method was used as the main analysis, and sensitivity analyses were conducted to validate the MR results. Results: The results of our analysis did not support a causal effect of hypothyroidism (OR: 0.93, p=0.08) or autoimmune hypothyroidism (OR: 0.98, p=0.39) on endometrial cancer risk. In the reverse MR analysis, we did not find a significant causal effect of endometrial cancer on hypothyroidism (OR: 0.96, p=0.75) or autoimmune hypothyroidism (OR: 0.92, p=0.50). Based on subgroup analysis by pathological subtypes of endometrial cancer, the above findings were further substantiated (all p-value >0.05). Conclusions: Our Mendelian randomization analysis suggests a lack of causal association between hypothyroidism and endometrial cancer. To gain a deeper understanding of this association, it is essential to conduct large-scale randomized controlled trials in the future to validate our findings.


Subject(s)
Endometrial Neoplasms , Genome-Wide Association Study , Hypothyroidism , Mendelian Randomization Analysis , Humans , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/epidemiology , Hypothyroidism/genetics , Hypothyroidism/epidemiology , Polymorphism, Single Nucleotide , Risk Factors
5.
Front Endocrinol (Lausanne) ; 15: 1356832, 2024.
Article in English | MEDLINE | ID: mdl-38562416

ABSTRACT

Background: Non-scarring alopecia is typically represented by two main types: alopecia areata (AA) and androgenetic alopecia (AGA). While previous observational studies have indicated a link between non-scarring alopecia and hypothyroidism, the precise causal relationship remains uncertain. To determine the potential links between non-scarring alopecia and hypothyroidism, we conducted a bidirectional two-sample Mendelian randomization (MR) analysis. Methods: We used independent genetic instruments from the FinnGen consortium for AA (682 cases, 361,140 controls) and AGA (195 cases, 201,019 controls) to investigate the association with hypothyroidism in the UK Biobank study (22,687 cases, 440,246 controls). The primary analysis was performed using the inverse variance-weighted method. Complementary approaches were employed to evaluate the pleiotropy and heterogeneity. Results: Genetically predicted AA exhibited a positive causal effect on hypothyroidism (odds ratio [OR], 1.0017; 95% confidence interval [CI], 1.0004-1.0029; P = 0.0101). Additionally, hypothyroidism was found to be strongly correlated with an increase in the risk of AA (OR, 45.6839; 95% CI, 1.8446-1131.4271, P = 0.0196). However, no causal relationship was demonstrated between AGA and hypothyroidism. A sensitivity analysis validated the integrity of these causal relationships. Conclusion: This MR study supports a bidirectional causal link between AA and hypothyroidism. Nevertheless, additional research is needed to gain a more thorough comprehension of the causal relationship between non-scarring alopecia and hypothyroidism.


Subject(s)
Alopecia Areata , Hypothyroidism , Humans , Mendelian Randomization Analysis , Hypothyroidism/complications , Hypothyroidism/genetics , Odds Ratio
6.
Front Endocrinol (Lausanne) ; 15: 1379607, 2024.
Article in English | MEDLINE | ID: mdl-38686204

ABSTRACT

Background: Hepatobiliary cancer (HBC), including hepatocellular carcinoma (HCC) and biliary tract cancer (BTC), is currently one of the malignant tumors that mainly cause human death. Many HBCs are diagnosed in the late stage, which increases the disease burden, indicating that effective prevention strategies and identification of risk factors are urgent. Many studies have reported the role of thyroid hormones on HBC. Our research aims to assess the causal effects and investigate the mediation effects between thyroid function and HBC. Methods: Utilizing the Mendelian randomization (MR) approach, the study employs single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) to explore causal links between thyroid function [free thyroxine (FT4), thyroid stimulating hormone (TSH), hyperthyroidism and hypothyroidism] and HBC. Data were sourced from the ThyroidOmic consortium and FinnGen consortium. The analysis included univariable and multivariable MR analysis, followed by mediation analysis. Results: The study found a significant causal association between high FT4 levels and the reduced risk of BTC, but not HCC. However, TSH, hyperthyroidism and hypothyroidism had no causal associations with the risk of HBC. Notably, we also demonstrated that only higher FT4 levels with the reference range (FT4-RR) could reduce the risk of BTC because this protective effect no longer existed under the conditions of hyperthyroidism or hypothyroidism. Finally, we found that the protective effect of FT4-RR on BTC was mediated partially by decreasing the risk of metabolic syndrome (MetS) and reducing the waist circumference (WC). Conclusion: The findings suggest that higher FT4-RR may have a protective effect against BTC, which is partially mediated by decreased risk of MetS and a reduction in WC. This study highlights the potential role of FT4 in the pathogenesis of BTC and underscores that MetS and WC may play mediation effects as two mediators in this process.


Subject(s)
Biliary Tract Neoplasms , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Thyroxine , Humans , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/blood , Biliary Tract Neoplasms/epidemiology , Biliary Tract Neoplasms/prevention & control , Thyroxine/blood , Mediation Analysis , Risk Factors , Hypothyroidism/genetics , Hypothyroidism/blood , Female , Male , Hyperthyroidism/genetics , Hyperthyroidism/blood , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/prevention & control , Carcinoma, Hepatocellular/etiology
7.
Front Endocrinol (Lausanne) ; 15: 1345267, 2024.
Article in English | MEDLINE | ID: mdl-38586463

ABSTRACT

Background: Carotid Intima-Media Thickness (CIMT) is a key marker for atherosclerosis, with its modulation being crucial for cardiovascular disease (CVD) risk assessment. While thyroid function's impact on cardiovascular health is recognized, the causal relationship and underlying mechanisms influencing CIMT remain to be elucidated. Methods: In this study, Mendelian Randomization (MR) was employed to assess the causal relationship between thyroid function and CIMT. Thyroid hormone data were sourced from the Thyroidomics Consortium, while lipid traits and CIMT measurements were obtained from the UK Biobank. The primary analysis method was a two-sample MR using multiplicative random effects inverse variance weighting (IVW-MRE). Additionally, the study explored the influence of thyroid hormones on lipid profiles and assessed their potential mediating role in the thyroid function-CIMT relationship through multivariate MR analysis. Results: The study revealed that lower levels of Free Thyroxine (FT4) within the normal range are significantly associated with increased CIMT. This association was not observed with free triiodothyronine (FT3), thyroid-stimulating hormone (TSH), or TPOAb. Additionally, mediation analysis suggested that apolipoprotein A-I and B are involved in the relationship between thyroid function and CIMT. The findings indicate a potential U-shaped curve relationship between FT4 levels and CIMT, with thyroid hormone supplementation in hypothyroid patients showing benefits in reducing CIMT. Conclusion: This research establishes a causal link between thyroid function and CIMT using MR methods, underscoring the importance of monitoring thyroid function for early cardiovascular risk assessment. The results advocate for the consideration of thyroid hormone supplementation in hypothyroid patients as a strategy to mitigate the risk of carotid atherosclerosis. These insights pave the way for more targeted approaches in managing patients with thyroid dysfunction to prevent cardiovascular complications.


Subject(s)
Carotid Intima-Media Thickness , Hypothyroidism , Humans , Mendelian Randomization Analysis , Hypothyroidism/genetics , Hypothyroidism/complications , Thyroid Hormones , Apolipoproteins
9.
BMC Med Genomics ; 17(1): 79, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539190

ABSTRACT

BACKGROUND: Hypothyroidism is a common endocrine disorder that exerts a substantial influence on people all over the world. Levothyroxine (LT-4) is the drug of choice for the treatment of hypothyroidism and the starting oral dose is typically ranging from 1.5 to 1.7 µg/kg/day. The target is to achieve an optimum serum TSH level of 0.4-4.0 mIU/L; hence, the dose is titrated accordingly. Once the LT-4 dose is adjusted to obtain the target TSH level, it usually remains stable for a long period of time in most cases. However, some of the patients require frequent dose adjustments and some of them require unusually high doses. Therefore, the aim of this study is to determine the association of pharmacogenomic, clinical and behavioural factors with the oral levothyroxine (LT-4) dose requirement of hypothyroid patients in Sri Lanka. METHOD: This study will be conducted as a matched case-control study and will involve primary hypothyroid patients who visit the diabetes and endocrinology clinic at the National Hospital, Kandy, Sri Lanka. We will recruit a total of 292 cases and select 292 controls from the clinic who are matched in terms of age, sex and Body Mass Index (BMI). An interviewer-administered questionnaire will be used to collect data from the participants (n = 584). Of the 584 patients, blood samples will be collected from a sub-sample (n = 150) for DNA extraction. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) will be performed for single nucleotide polymorphisms (SNP) analysis. DISCUSSION: Frequent dose adjustments of levothyroxine cause a serious economic burden to the healthcare system. By identifying the root causes of the variations in LT-4 dosage, a more comprehensive comprehension of hypothyroidism and its management can be attained in Sri Lanka. Furthermore, upon identification of a positive association/correlation between genetic polymorphisms and the LT-4 dose, SNP profiles can be used as a possible genetic marker for dose adjustment determination in future patients.


Subject(s)
Hypothyroidism , Thyroxine , Humans , Thyroxine/therapeutic use , Case-Control Studies , Pharmacogenetics , Sri Lanka , Hypothyroidism/drug therapy , Hypothyroidism/genetics , Thyrotropin/therapeutic use
10.
J Stomatol Oral Maxillofac Surg ; 125(3S): 101836, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508395

ABSTRACT

INTRODUCTION: The established association between thyroid disorders (TD) and its two main subtypes-hyperthyroidism and hypothyroidism-and the incidence of oral and oropharyngeal cancer (OCPC) has been substantiated. However, the direct causal relationship and potential intermediary mechanisms linking these conditions have not been clearly defined in prior studies. MATERIAL & METHODS: This study employed univariate Mendelian randomization (MR) analysis to explore those relationship. Instrumental variables from genome-wide association study (GWAS) datasets for TD (n = 218,792), hyperthyroidism (n = 460,499), hypothyroidism (n = 213,990), and OCPC (n = 12,619), along with 41 intermediary inflammatory cytokines (n = 8293), were analyzed. Inverse variance weighting (IVW) method assessed the causal relationships, while summary MR analysis with pQTL datasets from decode and 91 inflammatory cytokines explored the cytokines' roles as biomarkers and therapeutic targets for OCPC. Multivariable MR (MVMR) analysis quantified the mediation effect of these cytokines in the TD-OCPC relationship. RESULTS: UVMR analysis provided strong evidence for a causal relationship between TD (OR = 1.376, 95 % CI = 1.142-1.656, p = 0.001), hyperthyroidism (OR = 1.319, 95 % CI=1.129-1.541, p = 0.001), hypothyroidism (OR = 1.224, 95 % CI = 1.071-1.400, p = 0.003), and the risk of OCPC. CXCL9 was identified as a significant intermediary in mediating the risk of OCPC from TD and its two subtypes (OR = 1.218, 95 % CI = 1.016-1.461, P = 0.033), suggesting its potential as a predictive biomarker for OCPC. MVMR analysis further revealed that CXCL9 mediated 7.94 %, 14.4 %, and 18 % of the effects of TD, hyperthyroidism, and hypothyroidism on OCPC risk, respectively. DISCUSSION: This study not only elucidated the potential causal relationships between TD including its two subtypes and OCPC risk, but also highlighted CXCL9 as a pivotal mediator in this association.


Subject(s)
Chemokine CXCL9 , Genome-Wide Association Study , Mendelian Randomization Analysis , Mouth Neoplasms , Oropharyngeal Neoplasms , Humans , Oropharyngeal Neoplasms/epidemiology , Oropharyngeal Neoplasms/etiology , Oropharyngeal Neoplasms/genetics , Mouth Neoplasms/epidemiology , Mouth Neoplasms/etiology , Mouth Neoplasms/genetics , Mouth Neoplasms/diagnosis , Chemokine CXCL9/genetics , Hyperthyroidism/epidemiology , Hyperthyroidism/genetics , Hyperthyroidism/complications , Hyperthyroidism/diagnosis , Thyroid Diseases/epidemiology , Thyroid Diseases/complications , Thyroid Diseases/diagnosis , Thyroid Diseases/genetics , Risk Factors , Hypothyroidism/epidemiology , Hypothyroidism/genetics , Hypothyroidism/complications
11.
Front Endocrinol (Lausanne) ; 15: 1310083, 2024.
Article in English | MEDLINE | ID: mdl-38405140

ABSTRACT

Background: Previous studies have suggested a potential association between AITD and MG, but the evidence is limited and controversial, and the exact causal relationship remains uncertain. Objective: Therefore, we employed a Mendelian randomization (MR) analysis to investigate the causal relationship between AITD and MG. Methods: To explore the interplay between AITD and MG, We conducted MR studies utilizing GWAS-based summary statistics in the European ancestry. Several techniques were used to ensure the stability of the causal effect, such as random-effect inverse variance weighted, weighted median, MR-Egger regression, and MR-PRESSO. Heterogeneity was evaluated by calculating Cochran's Q value. Moreover, the presence of horizontal pleiotropy was investigated through MR-Egger regression and MR-PRESSO. Results: The IVW method indicates a causal relationship between both GD(OR 1.31,95%CI 1.08 to 1.60,P=0.005) and autoimmune hypothyroidism (OR: 1.26, 95% CI: 1.08 to 1.47, P =0.002) with MG. However, there is no association found between FT4(OR 0.88,95%CI 0.65 to 1.18,P=0.406), TPOAb(OR: 1.34, 95% CI: 0.86 to 2.07, P =0.186), TSH(OR: 0.97, 95% CI: 0.77 to 1.23, P =0.846), and MG. The reverse MR analysis reveals a causal relationship between MG and GD(OR: 1.50, 95% CI: 1.14 to 1.98, P =3.57e-3), with stable results. On the other hand, there is a significant association with autoimmune hypothyroidism(OR: 1.29, 95% CI: 1.04 to 1.59, P =0.019), but it is considered unstable due to the influence of horizontal pleiotropy (MR PRESSO Distortion Test P < 0.001). MG has a higher prevalence of TPOAb(OR: 1.84, 95% CI: 1.39 to 2.42, P =1.47e-5) positivity and may be linked to elevated TSH levels(Beta:0.08,95% CI:0.01 to 0.14,P =0.011), while there is no correlation between MG and FT4(Beta:-9.03e-3,95% CI:-0.07 to 0.05,P =0.796). Conclusion: AITD patients are more susceptible to developing MG, and MG patients also have a higher incidence of GD.


Subject(s)
Hashimoto Disease , Hypothyroidism , Myasthenia Gravis , Thyroiditis, Autoimmune , Humans , Mendelian Randomization Analysis , Myasthenia Gravis/complications , Myasthenia Gravis/epidemiology , Myasthenia Gravis/genetics , Hypothyroidism/complications , Hypothyroidism/epidemiology , Hypothyroidism/genetics , Thyrotropin
12.
BMC Oral Health ; 24(1): 247, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368359

ABSTRACT

BACKGROUND: The role of thyroid health in temporomandibular disorders (TMDs) has been emphasized in observational studies. However, whether the causation exists is unclear, and controversy remains about which specific disorder, such as hypothyroidism or hyperthyroidism, is destructive in TMDs. This study aims to investigate the overall and specific causal effects of various thyroid conditions on TMDs. METHODS: Mendelian randomization (MR) studies were performed using genetic instruments for thyrotropin (TSH, N = 119,715), free thyroxine (fT4, N = 49,269), hypothyroidism (N = 410,141), hyperthyroidism (N = 460,499), and TMDs (N = 211,023). We assessed the overall effect of each thyroid factor via inverse-variance weighted (IVW), weighted median, and MR-Egger methods, and performed extensive sensitivity analyses. Additionally, multivariable MR was conducted to evaluate the direct or indirect effects of hypothyroidism on TMDs whilst accounting for TSH, fT4 and hyperthyroidism, and vice versa. RESULTS: Univariable MR analyses revealed a causal effect of hypothyroidism on an increased risk of TMDs (IVW OR: 1.12, 95% CI: 1.05-1.20, p = 0.001). No significant association between genetically predicted hyperthyroidism, TSH, or fT4 and TMDs. In the multivariable MR analyses, the effects of hypothyroidism on TMDs occurrence remained significant even after adjSusting for TSH, fT4 and hyperthyroidism (multivariable IVW OR: 1.10, 95% CI: 1.03-1.17, p = 0.006). No pleiotropy and heterogeneity were detected in the analyses (p > 0.05). CONCLUSIONS: Hypothyroidism might causally increase the risk of TMDs through a direct pathway, highlighting the critical role of managing thyroid health in the prevention of TMDs. Clinicians should give heightened attention to patients with hypothyroidism when seeking medical advice for temporomandibular discomfort. However, caution is warranted due to the potential confounders, pleiotropy, and selection bias in the MR study.


Subject(s)
Hyperthyroidism , Hypothyroidism , Temporomandibular Joint Disorders , Humans , Causality , Genome-Wide Association Study , Hyperthyroidism/complications , Hyperthyroidism/genetics , Hypothyroidism/complications , Hypothyroidism/genetics , Temporomandibular Joint Disorders/genetics , Thyrotropin , Mendelian Randomization Analysis
13.
Mol Immunol ; 168: 17-24, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368726

ABSTRACT

BACKGROUND: In recent years, mounting evidence has indicated a co-morbid relationship between hypothyroidism and rheumatoid arthritis (RA), however, the shared genetic factors underlying this association remain unclear. This study aims to investigate the common genetic architecture between hypothyroidism and RA. METHODS: Genome-wide association study (GWAS) summary statistics from recently published studies were utilized to examine the genetic correlation, shared genetic loci, and potential causal relationship between hypothyroidism and RA. Statistical methods included linkage disequilibrium score regression (LDSC), high-definition likelihood (HDL), cross-trait meta-analyses, colocalization analysis, multi-marker analysis of genomic annotation (MAGMA), tissue-specific enrichment analysis (TSEA), functional enrichment analysis, and latent causal variable method (LCV). RESULTS: Our study demonstrated a significant genetic correlation between hypothyroidism and RA(LDSC:rg=0.3803,p=7.23e-11;HDL:rg=0.3849,p=1.02e-21). Through cross-trait meta-analysis, we identified 1035 loci, including 43 novel genetic loci. By integrating colocalization analysis and the MAGMA algorithm, we found a substantial number of genes, such as PTPN22, TYK2, and CTLA-4, shared between the two diseases, which showed significant enrichment across 14 tissues. These genes were primarily associated with the regulation of alpha-beta T cell proliferation, positive regulation of T cell activation, positive regulation of leukocyte cell-cell adhesion, T cell receptor signaling pathway, and JAK-STAT signaling pathway. However, our study did not reveal a significant causal association between the two diseases using the LCV approach. CONCLUSION: Based on these findings, there is a significant genetic correlation between hypothyroidism and RA, suggesting a shared genetic basis for these conditions.


Subject(s)
Arthritis, Rheumatoid , Hypothyroidism , Humans , Genetic Predisposition to Disease , Genome-Wide Association Study , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Genetic Loci , Hypothyroidism/genetics , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
14.
Front Endocrinol (Lausanne) ; 15: 1254793, 2024.
Article in English | MEDLINE | ID: mdl-38375193

ABSTRACT

Objective: To determine whether there is a causal relationship between thyroid dysfunction and the risk of age-related cataract (ARC) in the European population. Design: A two-sample Mendelian randomization (MR) study. Methods: Hypothyroidism, hyperthyroidism, free thyroxine (fT4), and thyrotropin (TSH) were selected as exposures. The single nucleotide polymorphisms (SNP) of hypothyroidism and hyperthyroidism were obtained from the genome-wide association studies (GWAS) of the IEU database, including 337,159 subjects. Data for fT4 and TSH (72,167 subjects) were extracted from the ThyroidOmics Consortium. ARC was used as the outcome. The SNPs associated with ARC were selected from a GWAS of 216,362 individuals in the FinnGen database. The main method used was the inverse variance-weighted method, together with four complementary methods. Sensitivity analyses were performed using Cochran's Q test, MR-PRESSO, MR-Egger regression and leave-one-out test. MR pleiotropy was used to test for pleiotropy. MR Steiger test was used to test for the directionality. Results: Two-sample MR analysis revealed a positive association between genetically predicted hypothyroidism and risk of ARC (OR = 2.501, 95% CI: 1.325-4.720; P = 0.004). Hyperthyroidism, circulating fT4 and TSH levels did not have a significant causal effect on ARC (P > 0.05). The results were robust and reliable, and no horizontal pleiotropy was found after sensitivity analyses. In the MR Steiger test, we found no reverse causal effects of hypothyroidism on the ARC (P <0.001). Conclusions: Our study provides strong evidence that hypothyroidism is a causal determinant of ARC risk.


Subject(s)
Hyperthyroidism , Hypothyroidism , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Hypothyroidism/epidemiology , Hypothyroidism/genetics , Hyperthyroidism/epidemiology , Hyperthyroidism/genetics , Thyrotropin
15.
J Affect Disord ; 351: 843-852, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38341154

ABSTRACT

BACKGROUND: The causal relationship between different hypothyroidism subtypes and the risk of major depression (MD) is yet to be fully elucidated. This study aimed to determine if there's a causal relationship between various hypothyroidism subtypes (and related factors) and the risk of MD. METHODS: This genetic association study utilized a two-sample Mendelian Randomization (MR) approach to explore the causal relationships between various hypothyroidism subtypes and MD risk. Genome-Wide Association Study (GWAS) summary statistics were obtained from the FinnGen and the UK Biobank. Instrumental variables (IVs) were chosen based on single nucleotide polymorphisms (SNPs). RESULTS: Among the analyzed hypothyroidism subtypes and related factors, "Hypothyroidism, strict autoimmune" (HTCBSA) and "Hypothyroidism, levothyroxin purchases" (HT/LP) demonstrated a statistically significant positive causal relationship with MD, with odds ratios of 1.020 (95 % CI: 1.004-1.037) and 1.022 (95 % CI: 1.005-1.040), respectively. The sensitivity analysis supported the robustness of these findings, showing no significant horizontal pleiotropy and confirming the stability of results when individual SNPs were removed. "Congenital iodine-deficiency syndrome/hypothyroidism" (CIDS/HT), "Postinfectious hypothyroidism" (PHT), "Hypothyroidism due to medicaments and other exogenous substances" (HDTDM and OES), "Thyroid Stimulating Hormone" (TSH), "Thyrotropin-releasing hormone" (THRH), and "Hypothyroidism, strict autoimmune, 3 medication purchases required" (HTCBSA/3MPR) showed no significant causal relationship with MD. LIMITATIONS: The study population was limited to individuals of European ancestry, and there may be certain genetic differences between different ethnic groups. CONCLUSIONS: This MR study suggests a potential causal relationship between certain hypothyroidism subtypes (specifically HTCBSA and HT/LP) and an increased risk of MD.


Subject(s)
Depressive Disorder, Major , Hypothyroidism , Humans , Depressive Disorder, Major/genetics , Depression , Genome-Wide Association Study , Mendelian Randomization Analysis , Hypothyroidism/genetics , Thyroxine
16.
Clin Endocrinol (Oxf) ; 100(3): 294-303, 2024 03.
Article in English | MEDLINE | ID: mdl-38214116

ABSTRACT

This study aimed to evaluate whether there is a causal relationship between autoimmune thyroid disorders (AITDs) and telomere length (TL) in the European population and whether there is reverse causality. In this study, Mendelian randomization (MR) and colocalization analysis were conducted to assess the potential causal relationship between AITDs and TL using summary statistics from large-scale genome-wide association studies, followed by analysis of the relationship between TL and thyroid stimulating hormone and free thyroxine (FT4) to help interpret the findings. The inverse variance weighted (IVW) method was used to estimate the causal estimates. The weighted median, MR-Egger and leave-one-out methods were used as sensitivity analyses. The IVW method results showed a significant causal relationship between autoimmune hyperthyroidism and TL (ß = -1.93 × 10-2 ; p = 4.54 × 10-5 ). There was no causal relationship between autoimmune hypothyroidism and TL (ß = -3.99 × 10-3 ; p = 0.324). The results of the reverse MR analysis showed that genetically TL had a significant causal relationship on autoimmune hyperthyroidism (IVW: odds ratio (OR) = 0.49; p = 2.83 × 10-4 ) and autoimmune hypothyroidism (IVW: OR = 0.86; p = 7.46 × 10-3 ). Both horizontal pleiotropy and heterogeneity tests indicated the validity of our bidirectional MR study. Finally, colocalization analysis suggested that there were shared causal variants between autoimmune hyperthyroidism and TL, further highlighting the robustness of the results. In conclusion, autoimmune hyperthyroidism may accelerate telomere attrition, and telomere attrition is a causal factor for AITDs.


Subject(s)
Graves Disease , Hashimoto Disease , Hypothyroidism , Thyroiditis, Autoimmune , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Telomere/genetics , Hypothyroidism/genetics
17.
J Periodontal Res ; 59(3): 491-499, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38193661

ABSTRACT

BACKGROUND AND OBJECTIVE: Previous studies suggest interaction between periodontitis and thyroid function, while the causality has not yet been established. We applied the Mendelian randomization (MR) method to assess bidirectional causal association between periodontitis and thyroid-related traits, including free thyroxine (FT4), thyroid stimulating hormone (TSH), hypothyroidism, hyperthyroidism and autoimmune thyroid disease (AITD). METHODS: Genetic instruments were extracted from large-scale genome-wide association studies on normal-range FT4 (N = 49 269) and TSH (N = 54 288) levels, TSH in full range (N = 119 715); hypothyroidism (discovery/replication cohorts: N = 53 423/334 316), hyperthyroidism (discovery/replication cohorts: N = 51 823/257 552), AITD (N = 755 406) and periodontitis (N = 45 563). Here, the inverse variance weighted (IVW) method was applied as the primary analysis, and robustness of results were assessed by several pleiotropic-robust methods. Results were adjusted for Bonferroni correction thresholds with significant p < .004 (0.05/13) and suggestive p between .004 and .05. RESULTS: The IVW analysis revealed a suggestively causal linkage between genetic predisposition to periodontitis and the increased risk of hypothyroidism (discovery cohort: odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.05-1.46, p = .012; replication cohort: OR = 1.06, 95% CI = 1.01-1.11, p = .011). No evidence was found for supporting the impact of periodontitis on hyperthyroidism and AITD risks (associated p ≥ .209), as well as thyroid-related traits on periodontitis risk (associated p ≥ .105). These findings were robust and consistent through sensitivity analysis with other MR models. CONCLUSION: This bidirectional MR reveals periodontitis should not be attributed to variations in thyroid function but it has potential causal effect on hypothyroidism risk, which provides a better understanding of the relationship between periodontitis and thyroid function, and potential evidence for the clinical intervention of hypothyroidism. Further investigations are warranted to elucidate the nature and underlying mechanisms of this finding.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Hyperthyroidism , Hypothyroidism , Mendelian Randomization Analysis , Periodontitis , Thyrotropin , Humans , Periodontitis/genetics , Periodontitis/complications , Thyrotropin/blood , Hypothyroidism/genetics , Hypothyroidism/complications , Hyperthyroidism/genetics , Hyperthyroidism/complications , Thyroxine/blood , Thyroid Gland , Polymorphism, Single Nucleotide
18.
Neurol Sci ; 45(4): 1481-1487, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37940749

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is the second most prevalent degenerative disease globally. While observational studies have demonstrated a correlation between thyroid function and PD, the causal relationship between these two factors remains uncertain. METHODS: A bidirectional Mendelian randomization (MR) analysis was performed to explore the causal relationship between thyroid function (free thyroxine [FT4], thyroid-stimulating hormone [TSH], hyperthyroidism, and hypothyroidism) and PD. GWAS summary-level statistics of thyroid function and PD were obtained from publicly available GWAS databases. The inverse variance weighted method was the main MR approach to assess causal associations. In addition, two additional MR methods (MR-Egger regression and weighted median) were performed to supplement the IVW. Furthermore, various sensitivity tests were performed to verify the reliability of the MR findings: (i) Heterogeneity was examined by Cochrane's Q test. (ii) Horizontal pleiotropy was assessed by the MR-Egger intercept test and MR-PRESSO global test. (iii) The robustness of MR results was estimated using the leave-one-out method. RESULTS: Various MR results showed that FT4, TSH, hyperthyroidism, and hypothyroidism did not causally affect PD (P > 0.05). Likewise, PD did not causally affect FT4, TSH, hyperthyroidism, and hypothyroidism (P > 0.05). Cochrane's Q test indicated that MR analysis was not affected by significant heterogeneity (P > 0.05). MR-Egger intercept test and MR-PRESSO global test indicated that MR analysis was not affected by a remarkable horizontal pleiotropy (P > 0.05). The leave-one-out method demonstrated the stability of MR results. CONCLUSION: MR analysis did not support a causal relationship between thyroid function and PD.


Subject(s)
Hyperthyroidism , Hypothyroidism , Parkinson Disease , Humans , Genome-Wide Association Study , Hyperthyroidism/genetics , Hypothyroidism/genetics , Mendelian Randomization Analysis , Nonoxynol , Parkinson Disease/genetics , Reproducibility of Results , Thyrotropin
19.
Endocrine ; 83(3): 708-718, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37736821

ABSTRACT

BACKGROUND: Previous studies have shown that the gut microbiota plays an important role in the maintenance of thyroid homeostasis. We aimed to evaluate the causal relationships between gut microbiota and hypothyroidism. METHODS: Summary statistics for 211 gut microbiota taxa were obtained from the largest available genome-wide association study (GWAS) meta-analysis conducted by the MiBioGen consortium. Summary statistics for hypothyroidism were obtained from two distinct sources: the FinnGen consortium R9 release data (40,926 cases and 274,069 controls) and the UK Biobank data (22,687 cases and 440,246 controls), respectively. A two-sample Mendelian randomization (MR) design was employed, and thorough sensitivity analyses were carried out to ensure the reliability of the results. RESULTS: Based on the FinnGen consortium, we found increased levels of Intestinimonas (OR = 1.09; 95%CI = 1.02-1.16; P = 0.01) and Ruminiclostridium5 (OR = 1.11; 95%CI = 1.02-1.22; P = 0.02) may be associated with a higher risk of hypothyroidism, while increased levels of Butyrivibrio (OR = 0.95; 95%CI = 0.92-0.99; P = 0.02), Eggerthella (OR = 0.93; 95%CI = 0.88-0.98; P = 0.01), Lachnospiraceae UCG008 (OR = 0.92; 95%CI = 0.85-0.99; P = 0.02), Ruminococcaceae UCG011 (OR = 0.95; 95%CI = 0.90-0.99; P = 0.02), and Actinobacteria (OR = 0.88; 95%CI = 0.80-0.97; P = 0.01) may be associated with a lower risk. According to the UK Biobank data, Eggerthella and Ruminiclostridium5 remain causally associated with hypothyroidism. The sensitivity analysis demonstrates consistent results without evidence of heterogeneity or pleiotropy. CONCLUSION: This study highlights the impact of specific gut microbiota on hypothyroidism. Strategies to change composition of gut microbiota may hold promise as potential interventions.


Subject(s)
Gastrointestinal Microbiome , Hypothyroidism , Humans , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Reproducibility of Results , Hypothyroidism/genetics
20.
J Clin Endocrinol Metab ; 109(2): e613-e622, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37740545

ABSTRACT

CONTEXT: Some evidence suggests gene-treatment interactions might cause persistent symptoms in individuals receiving levothyroxine (LT4) treatment. OBJECTIVE: We investigated, as previously hypothesized, if single-nucleotide variations (SNVs; formerly single-nucleotide polymorphisms) in rs225014 (Thr92Ala), rs225015, or rs12885300 (ORFa-Gly3Asp) in the deiodinase 2 gene (DIO2), or rs17606253 in the monocarboxylate transporter 10 gene (MCT10) were associated with outcomes indicative of local tissue hypothyroidism in LT4-treated patients and controls. METHODS: We included 18 761 LT4-treated patients and 360 534 controls in a population-based cross-sectional study in the UK Biobank. LT4 treatment was defined as a diagnosis of hypothyroidism and self-reported use of LT4 without use of 3,5,3'-triiodothyronine. Outcomes were psychological well-being, cognitive function, and cardiovascular risk factors. Associations were evaluated by linear, logistic, or ordinal logistic multiple regression. Adjustments included sex, age, sex-age interaction, and genetic principal components 1 to 10. RESULTS: Compared to controls, LT4 treatment was adversely associated with almost all outcomes, most noteworthy: Increased frequency of tiredness (P < .001), decreased well-being factor score (P < .001), increased reaction-time (P < .001), and increased body mass index (P < .001). Except for a significant association between the minor rs225015 A allele and financial dissatisfaction, there was no association of rs225014, rs225015, rs12885300, or rs17606253 with any outcomes in LT4-treated patients. For all outcomes, carrying the risk allele at these 4 SNVs did not amplify symptoms associated with LT4 treatment compared to controls. CONCLUSION: rs225014, rs225015, rs12885300, and rs17606253 could not explain changed psychological well-being, cognitive function, or cardiovascular risk factors in LT4-treated patients. Our findings do not support a gene-treatment interaction between these SNVs and LT4 treatment.


Subject(s)
Hypothyroidism , Thyroxine , Humans , Thyroxine/therapeutic use , Thyroxine/genetics , Iodide Peroxidase/genetics , Iodothyronine Deiodinase Type II , UK Biobank , Biological Specimen Banks , Cross-Sectional Studies , Hypothyroidism/drug therapy , Hypothyroidism/genetics , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...