Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
J Immunol ; 204(1): 137-146, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31801815

ABSTRACT

Dysregulation of monocyte and macrophage responses are often observed in children with systemic juvenile idiopathic arthritis (sJIA) and cytokine storm syndrome (CSS), a potentially fatal complication of chronic rheumatic diseases. Both conditions are associated with activation of TLR signaling in monocyte and macrophage lineage cells, leading to overwhelming inflammatory responses. Despite the importance of TLR engagement in activating proinflammatory macrophages, relatively little is known about activation of intrinsic negative regulatory pathways to attenuate excessive inflammatory responses. In this study, we demonstrate that loss of diacylglycerol (DAG) kinase (Dgk) ζ, an enzyme which converts DAG into phosphatidic acid, limits inflammatory cytokine production in an arthritic mouse model dependent on TLR2 signaling and in a CSS mouse model dependent on TLR9 signaling. In vitro, Dgkζ deficiency results in reduced production of TNF-α, IL-6, and IL-1ß and in limited M1 macrophage polarization. Mechanistically, Dgkζ deficiency decreases STAT1 and STAT3 phosphorylation. Moreover, Dgkζ levels are increased in macrophages derived from mice with CSS or exposed to plasma from sJIA patients with active disease. Our data suggest that Dgkζ induction in arthritic conditions perpetuates systemic inflammatory responses mediated by macrophages and highlight a potential role of Dgkζ-DAG/phosphatidic acid axis as a modulator of inflammatory cytokine production in sJIA and CSS.


Subject(s)
Arthritis, Juvenile/metabolism , Calcinosis/metabolism , Cytokines/metabolism , Diacylglycerol Kinase/metabolism , Disease Models, Animal , Heart Valve Diseases/metabolism , Hypotrichosis/metabolism , Macrophages/metabolism , Skin Diseases, Genetic/metabolism , Animals , Arthritis, Juvenile/immunology , Arthritis, Juvenile/pathology , Calcinosis/immunology , Calcinosis/pathology , Cell Wall/immunology , Cell Wall/metabolism , Cells, Cultured , Cytokines/immunology , Diacylglycerol Kinase/deficiency , Diacylglycerol Kinase/immunology , Heart Valve Diseases/immunology , Heart Valve Diseases/pathology , Hypotrichosis/immunology , Hypotrichosis/pathology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Knockout , Skin Diseases, Genetic/immunology , Skin Diseases, Genetic/pathology
3.
Blood ; 116(1): 27-35, 2010 Jul 08.
Article in English | MEDLINE | ID: mdl-20375313

ABSTRACT

Cartilage-hair hypoplasia (CHH) is a rare autosomal recessive disease caused by mutations in the RMRP gene. Beside dwarfism, CHH has a wide spectrum of clinical manifestations including variable grades of combined immunodeficiency, autoimmune complications, and malignancies. Previous reports in single CHH patients with significant immunodeficiencies have demonstrated that allogeneic hematopoietic stem cell transplantation (HSCT) is an effective treatment for the severe immunodeficiency, while growth failure remains unaffected. Because long-term experience in larger cohorts of CHH patients after HSCT is currently unreported, we performed a European collaborative survey reporting on 16 patients with CHH and immunodeficiency who underwent HSCT. Immune dysregulation, lymphoid malignancy, and autoimmunity were important features in this cohort. Thirteen patients were transplanted in early childhood ( approximately 2.5 years). The other 3 patients were transplanted at adolescent age. Of 16 patients, 10 (62.5%) were long-term survivors, with a median follow-up of 7 years. T-lymphocyte numbers and function have normalized, and autoimmunity has resolved in all survivors. HSCT should be considered in CHH patients with severe immunodeficiency/autoimmunity, before the development of severe infections, major organ damage, or malignancy might jeopardize the outcome of HSCT and the quality of life in these patients.


Subject(s)
Bone Diseases, Developmental/surgery , Cartilage/abnormalities , Hematopoietic Stem Cell Transplantation/methods , Hypotrichosis/surgery , Lymphocytes/immunology , Adolescent , Body Height , Body Weight , Bone Diseases, Developmental/genetics , Bone Diseases, Developmental/immunology , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Hypotrichosis/genetics , Hypotrichosis/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Lymphocyte Count , Lymphocyte Subsets/cytology , Lymphocyte Subsets/immunology , Lymphocytes/cytology , Male , Mutation , Outcome Assessment, Health Care , RNA, Long Noncoding , RNA, Untranslated/genetics
4.
Immunogenetics ; 60(10): 599-607, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18677469

ABSTRACT

Desmosomal cadherins are essential cell adhesion molecules expressed in the epidermis. We identified a mutation of a cadherin superfamily member, namely, desmoglein 4 (Dsg4), in early onset of death (EOD)( hage ) mice with hypotrichosis. The mutation was induced by the insertion of an early transposon II-beta into intron 8 of Dsg4. Mast cell hyperplasia was observed in the skin of EOD( hage ) mice. The abnormally expanded population of lpr T cells, i.e., CD4(-)CD8(-)B220(+)Thy1.2(+) alphabetaT cells, in the splenocytes of EOD mice was reduced in EOD( hage ) mice. Therefore, it was suspected that the long-living mutant EOD( hage ) mice were selected from lupus-prone EOD mice because of their immunological immaturity. These findings clearly indicate that Dsg4 is an important molecule for the formation of hair follicles and hypothesize that unorganized hyperplastic hair follicles in anagen due to the Dsg4 mutation provide niches for mast cell precursors in the skin.


Subject(s)
Desmogleins/physiology , Hypotrichosis/pathology , Lupus Vulgaris/pathology , Mast Cells/pathology , Mutation/genetics , Skin/pathology , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Flow Cytometry , Genetic Predisposition to Disease , Hair Follicle/immunology , Hair Follicle/pathology , Hyperplasia , Hypotrichosis/genetics , Hypotrichosis/immunology , Introns/genetics , Lupus Vulgaris/immunology , Mice , Mice, Inbred MRL lpr/genetics , Mice, Knockout , Mice, Mutant Strains/genetics , Molecular Sequence Data , Sequence Homology, Amino Acid , Skin/immunology , Skin/metabolism , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...