Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.260
Filter
1.
Hum Genomics ; 18(1): 52, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790075

ABSTRACT

The recent article by Harit et al. in Human Genomics reported a novel association of the C allele of rs479200 in the human EGLN1 gene with severe COVID-19 in Indian patients. The gene in context is an oxygen-sensor gene whose T allele has been reported to contribute to the inability to cope with hypoxia due to increased expression of the EGLN1 gene and therefore persons with TT genotype of EGLN1 rs479200 are more susceptible to severe manifestations of hypoxia. In contrast to this dogma, Harit et al. showed that the C allele is associated with the worsening of COVID-19 hypoxia without suggesting or even discussing the scientific plausibility of the association. The article also suffers from certain epidemiological, statistical, and mathematical issues that need to be critically elaborated and discussed. In this context, the findings of Harit et al. may be re-evaluated.


Subject(s)
Alleles , COVID-19 , Genetic Predisposition to Disease , Hypoxia-Inducible Factor-Proline Dioxygenases , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/epidemiology , COVID-19/virology , India/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Polymorphism, Single Nucleotide/genetics , Severity of Illness Index , Hypoxia/genetics , Genotype
2.
PLoS One ; 19(5): e0295094, 2024.
Article in English | MEDLINE | ID: mdl-38743782

ABSTRACT

Oxygen is essential to all the aerobic organisms. However, during normal development, disease and homeostasis, organisms are often challenged by hypoxia (oxygen deprivation). Hypoxia-inducible transcription factors (HIFs) are master regulators of hypoxia response and are evolutionarily conserved in metazoans. The homolog of HIF in the genetic model organism C. elegans is HIF-1. In this study, we aimed to understand short-term hypoxia response to identify HIF-1 downstream genes and identify HIF-1 direct targets in C. elegans. The central research questions were: (1) which genes are differentially expressed in response to short-term hypoxia? (2) Which of these changes in gene expression are dependent upon HIF-1 function? (3) Are any of these hif-1-dependent genes essential to survival in hypoxia? (4) Which genes are the direct targets of HIF-1? We combine whole genome gene expression analyses and chromatin immunoprecipitation sequencing (ChIP-seq) experiments to address these questions. In agreement with other published studies, we report that HIF-1-dependent hypoxia-responsive genes are involved in metabolism and stress response. Some HIF-1-dependent hypoxia-responsive genes like efk-1 and phy-2 dramatically impact survival in hypoxic conditions. Genes regulated by HIF-1 and hypoxia overlap with genes responsive to hydrogen sulfide, also overlap with genes regulated by DAF-16. The genomic regions that co-immunoprecipitate with HIF-1 are strongly enriched for genes involved in stress response. Further, some of these potential HIF-1 direct targets are differentially expressed under short-term hypoxia or are differentially regulated by mutations that enhance HIF-1 activity.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Hypoxia , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Binding Sites , Gene Expression Profiling , Gene Expression Regulation , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor 1/genetics
3.
Nat Commun ; 15(1): 3970, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730227

ABSTRACT

High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.


Subject(s)
Altitude Sickness , Altitude , Gene Expression Regulation , Hypoxia , Animals , Altitude Sickness/genetics , Altitude Sickness/metabolism , Sheep , Hypoxia/genetics , Hypoxia/metabolism , Humans , Acclimatization/genetics , Transcription, Genetic , Single-Cell Analysis , Female , Multiomics
4.
Function (Oxf) ; 5(3): zqae010, 2024.
Article in English | MEDLINE | ID: mdl-38706960

ABSTRACT

The Olfr78 gene encodes a G-protein-coupled olfactory receptor that is expressed in several ectopic sites. Olfr78 is one of the most abundant mRNA species in carotid body (CB) glomus cells. These cells are the prototypical oxygen (O2) sensitive arterial chemoreceptors, which, in response to lowered O2 tension (hypoxia), activate the respiratory centers to induce hyperventilation. It has been proposed that Olfr78 is a lactate receptor and that glomus cell activation by the increase in blood lactate mediates the hypoxic ventilatory response (HVR). However, this proposal has been challenged by several groups showing that Olfr78 is not a physiologically relevant lactate receptor and that the O2-based regulation of breathing is not affected in constitutive Olfr78 knockout mice. In another study, constitutive Olfr78 knockout mice were reported to have altered systemic and CB responses to mild hypoxia. To further characterize the functional role of Olfr78 in CB glomus cells, we here generated a conditional Olfr78 knockout mouse strain and then restricted the knockout to glomus cells and other catecholaminergic cells by crossing with a tyrosine hydroxylase-specific Cre driver strain (TH-Olfr78 KO mice). We find that TH-Olfr78 KO mice have a normal HVR. Interestingly, glomus cells of TH-Olfr78 KO mice exhibit molecular and electrophysiological alterations as well as a reduced dopamine content in secretory vesicles and neurosecretory activity. These functional characteristics resemble those of CB neuroblasts in wild-type mice. We suggest that, although Olfr78 is not essential for CB O2 sensing, activation of Olfr78-dependent pathways is required for maturation of glomus cells.


Subject(s)
Carotid Body , Receptors, Odorant , Tyrosine 3-Monooxygenase , Animals , Male , Mice , Carotid Body/metabolism , Hypoxia/metabolism , Hypoxia/genetics , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/genetics
5.
Bull Exp Biol Med ; 176(5): 680-686, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38733478

ABSTRACT

Morphological, molecular, and biological features of the systemic inflammatory response induced by LPS administration were assessed in adult and old male Wistar rats with high and low resistance to hypoxia. In 6 h after LPS administration, mRNA expression levels of Hif1a, Vegf, Nfkb, and level of IL-1ß protein in old rats were higher than in adult rats regardless of hypoxia tolerance. The morphometric study showed that the number of neutrophils in the interalveolar septa of the lungs was significantly higher in low-resistant adult and old rats 6 h after LPS administration. Thus, in old male Wistar rats, systemic inflammatory response is more pronounced than in adult rats and depends on the initial tolerance to hypoxia, which should be considered when developing new approaches to the therapy of systemic inflammatory response in individuals of different ages.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Interleukin-1beta , Rats, Wistar , Animals , Male , Rats , Hypoxia/metabolism , Hypoxia/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lipopolysaccharides/pharmacology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Lung/pathology , Lung/metabolism , Lung/drug effects , Lung/immunology , Neutrophils/metabolism , Neutrophils/immunology , Inflammation/metabolism , Inflammation/pathology , Age Factors , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767703

ABSTRACT

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Subject(s)
Exosomes , Integrin beta1 , MicroRNAs , Telocytes , rac1 GTP-Binding Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Exosomes/metabolism , Exosomes/genetics , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Integrin beta1/metabolism , Integrin beta1/genetics , Mice , Telocytes/metabolism , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice, Inbred C57BL , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Hypoxia/metabolism , Hypoxia/genetics , Hypoxia/complications , Cell Proliferation/genetics , Cell Movement/genetics , Humans , Vascular Remodeling/genetics , Neuropeptides
7.
Respir Med ; 227: 107658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704051

ABSTRACT

Pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) is associated with worse clinical outcomes and decreased survival rates. In absence of disease specific diagnostic/therapeutic targets and unclear pathophysiology, there is an urgent need for the identification of potential genetic/molecular markers and disease associated pathways. The present study aims to use a bioinformatics approach to identify and validate hypoxia-associated gene signatures in COPD-PH patients. Additionally, hypoxia-related inflammatory profile is also explored in these patients. Microarray dataset obtained from the Gene Expression Omnibus repository was used to identify differentially expressed genes (DEGs) in a hypoxic PH mice model. The top three hub genes identified were further validated in COPD-PH patients, with chemokine (C-X-C motif) ligand 9 (CXCL9) and CXCL12 showing significant changes in comparison to healthy controls. Furthermore, multiplexed analysis of 10 inflammatory cytokines, tumor necrosis factor alpha (TNF-α), transforming growth factor ß (TGF-ß), interleukin 1-beta (IL-1ß), IL-4, IL-5, IL-6, IL-13, IL-17, IL-18 and IL-21 was also performed. These markers showed significant changes in COPD-PH patients as compared to controls. They also exhibited the ability to differentially diagnose COPD-PH patients in comparison to COPD. Additionally, IL-6 and IL-17 showed significant positive correlation with systolic pulmonary artery pressure (sPAP). This study is the first report to assess the levels of CXCL9 and CXCL12 in COPD-PH patients and also explores their link with the inflammatory profile of these patients. Our findings could be extended to better understand the underlying disease mechanism and possibly used for tailoring therapies exclusive for the disease.


Subject(s)
Chemokine CXCL12 , Computational Biology , Cytokines , Hypertension, Pulmonary , Hypoxia , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , Cytokines/metabolism , Cytokines/genetics , Computational Biology/methods , Humans , Hypoxia/genetics , Hypoxia/metabolism , Animals , Mice , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Hypertension, Pulmonary/genetics , Chemokine CXCL9/genetics , Gene Expression Profiling , Male , Female , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Middle Aged
8.
BMC Cancer ; 24(1): 402, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561760

ABSTRACT

BACKGROUND: Among the most common forms of cancer worldwide, breast cancer posed a serious threat to women. Recent research revealed a lack of oxygen, known as hypoxia, was crucial in forming breast cancer. This research aimed to create a robust signature with hypoxia-related genes to predict the prognosis of breast cancer patients. The function of hypoxia genes was further studied through cell line experiments. MATERIALS AND METHODS: In the bioinformatic part, transcriptome and clinical information of breast cancer were obtained from The Cancer Genome Atlas(TCGA). Hypoxia-related genes were downloaded from the Genecards Platform. Differentially expressed hypoxia-related genes (DEHRGs) were identified. The TCGA filtered data was evenly split, ensuring a 1:1 distribution between the training and testing sets. Prognostic-related DEHRGs were identified through Cox regression. The signature was established through the training set. Then, it was validated using the test set and external validation set GSE131769 from Gene Expression Omnibus (GEO). The nomogram was created by incorporating the signature and clinicopathological characteristics. The predictive value of the nomogram was evaluated by C-index and receiver operating characteristiccurve. Immune microenvironment and mutation burden were also examined. In the experiment part, the function of the two most significant hypoxia-related genes were further explored by cell-line experiments. RESULTS: In the bioinformatic part, 141 up-regulated and 157 down-regulated DEHRGs were screened out. A prognostic signature was constructed containing nine hypoxia genes (ALOX15B, CA9, CD24, CHEK1, FOXM1, HOTAIR, KCNJ11, NEDD9, PSME2) in the training set. Low-risk patients exhibited a much more favorable prognosis than higher-risk ones (P < 0.001). The signature was double-validated in the test set and GSE131769 (P = 0.006 and P = 0.001). The nomogram showed excellent predictive value with 1-year OS AUC: 0.788, 3-year OS AUC: 0.783, and 5-year OS AUC: 0.817. Patients in the high-risk group had a higher tumor mutation burden when compared to the low-risk group. In the experiment part, the down-regulation of PSME2 inhibited cell growth ability and clone formation capability of breast cancer cells, while the down-regulation of KCNJ11 did not have any functions. CONCLUSION: Based on 9 DEHRGs, a reliable signature was established through the bioinformatic method. It could accurately predict the prognosis of breast cancer patients. Cell line experiment indicated that PSME2 played a protective role. Summarily, we provided a new insight to predict the prognosis of breast cancer by hypoxia-related genes.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Prognosis , Nomograms , Hypoxia/genetics , Oxygen , Tumor Microenvironment/genetics , Adaptor Proteins, Signal Transducing , Proteasome Endopeptidase Complex
9.
J Environ Pathol Toxicol Oncol ; 43(3): 81-93, 2024.
Article in English | MEDLINE | ID: mdl-38608147

ABSTRACT

Gastric cancer (GC) is the fifth most prevalent malignancy worldwide, characterized by poor prognosis. Apoptosis is interacted with hypoxia in tumorigenesis. This study attempted to delineate potential value of apoptosis and hypoxia-related genes (AHRGs) in prognosis of gastric cancer. Differential expression analysis was performed on GC transcriptomic data from TCGA. Apoptosis-related genes (ARGs) and hypoxia-related genes (HRGs) were obtained from MSigDB, followed by intersecting them with differentially expressed genes (DEGs) in GC. A prognostic model was constructed using univariate, LASSO, and multivariate regression analyses. The model was validated using a Gene Expression Omnibus dataset. DEGs between risk groups were subjected to enrichment analysis. A nomogram was plotted by incorporating clinical information. Non-negative matrix factorization based on core prognostic genes from the multifactorial model was employed to cluster tumor samples. The subsequent analyses involved immunophenoscore, immune landscape, Tumor Immune Dysfunction and Exclusion (TIDE) score, and chemosensitivity for distinct subtypes. A prognostic model based on AHRGs was established, and its predictive capability was verified in external cohorts. Riskscore was determined as an independent prognostic factor, and it was used, combined with other clinical features, to plot a prognostic nomogram. Patients were clustered into cluster1 and cluster2 based on prognostic model genes. Cluster2 showed poorer prognosis and IPS scores, higher immune cell infiltration, immune function and TIDE scores than cluster1. Distinct therapeutic potential for various chemotherapeutic agents was observed between the two clusters. The developed AHRG scoring introduced a novel and effective avenue for predicting GC prognosis and identifying potential targets for further investigation.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Prognosis , Apoptosis/genetics , Hypoxia/genetics , Carcinogenesis
10.
Sci Rep ; 14(1): 8670, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622371

ABSTRACT

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Humans , Animals , Hypertension, Pulmonary/drug therapy , Osteopontin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Pulmonary Artery/metabolism , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Pulmonary Arterial Hypertension/metabolism , RNA, Small Interfering/metabolism , Autophagy/genetics , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Vascular Remodeling
11.
Article in English | MEDLINE | ID: mdl-38608489

ABSTRACT

Oxygen is essential to fuel aerobic metabolism. Some species evolved mechanisms to tolerate periods of severe hypoxia and even anoxia in their environment. Among them, goldfish (Carassius auratus) are unique, in that they do not enter a comatose state under severely hypoxic conditions. There is thus significant interest in the field of comparative physiology to uncover the mechanistic basis underlying hypoxia tolerance in goldfish, with a particular focus on the brain. Taking advantage of the recently published and annotated goldfish genome, we profile the transcriptomic response of the goldfish brain under normoxic (21 kPa oxygen saturation) and, following gradual reduction, constant hypoxic conditions after 1 and 4 weeks (2.1 kPa oxygen saturation). In addition to analyzing differentially expressed protein-coding genes and enriched pathways, we also profile differentially expressed microRNAs (miRs). Using in silico approaches, we identify possible miR-mRNA relationships. Differentially expressed transcripts compared to normoxia were either common to both timepoints of hypoxia exposure (n = 174 mRNAs; n = 6 miRs), or exclusive to 1-week (n = 441 mRNAs; n = 23 miRs) or 4-week hypoxia exposure (n = 491 mRNAs; n = 34 miRs). Under chronic hypoxia, an increasing number of transcripts, including those of paralogous genes, was downregulated over time, suggesting a decrease in transcription. GO-terms related to the vascular system, oxidative stress, stress signalling, oxidoreductase activity, nucleotide- and intermediary metabolism, and mRNA posttranscriptional regulation were found to be enriched under chronic hypoxia. Known 'hypoxamiRs', such as miR-210-3p/5p, and miRs such as miR-29b-3p likely contribute to posttranscriptional regulation of these pathways under chronic hypoxia in the goldfish brain.


Subject(s)
Brain , Goldfish , Hypoxia , MicroRNAs , Transcriptome , Animals , Goldfish/genetics , Brain/metabolism , Hypoxia/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling
12.
Int Immunopharmacol ; 132: 111925, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38579562

ABSTRACT

Noncoding RNAs have been shown to play essential roles in hypoxic pulmonary hypertension (HPH). Our preliminary data showed that HPH is attenuated by fibroblast growth factor 21 (FGF21) administration. Therefore, we further investigated the whole transcriptome RNA expression patterns and interactions in a mice HPH model treated with FGF21. By whole-transcriptome sequencing, differentially expressed mRNAs, miRNAs, lncRNAs, and circRNAs were successfully identified in normoxia (Nx) vs. hypoxia (Hx) and Hx vs. hypoxia + FGF21 (Hx + F21). Differentially expressed mRNAs, miRNAs, lncRNAs, and circRNAs regulated by hypoxia and FGF21 were selected through intersection analysis. Based on prediction databases and sequencing data, differentially co-expressed mRNAs, miRNAs, lncRNAs, and circRNAs were further screened, followed by functional enrichment analysis. MAPK signaling pathway and epigenetic modification were enriched and may play fundamental roles in the therapeutic effects of FGF21. The ceRNA regulatory network of lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA was constructed with miR-7a-5p, miR-449c-5p, miR-676-3p and miR-674-3p as the core. In addition, quantitative real-time PCR experiments were employed to verify the whole-transcriptome sequencing data. The results of luciferase reporter assays highlighted the relationship between miR-449c-5p and XR_878320.1, miR-449c-5p and Stab2, miR-449c-5p and circ_mtcp1, which suggesting that miR-449c-5p may be a key regulator of FGF21 in the treatment of PH. Taken together, this study provides potential biomarkers, pathways, and ceRNA regulatory networks in HPH treated with FGF21 and will provide an experimental basis for the clinical application of FGF21 in PH.


Subject(s)
Fibroblast Growth Factors , Gene Regulatory Networks , Hypertension, Pulmonary , MicroRNAs , RNA, Long Noncoding , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/therapeutic use , Animals , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/drug therapy , MicroRNAs/genetics , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice, Inbred C57BL , Male , Transcriptome , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Hypoxia/genetics , Gene Expression Profiling , Disease Models, Animal , RNA, Circular/genetics , RNA, Competitive Endogenous
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167188, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657913

ABSTRACT

The incidence of gallbladder cholesterol stones (GCS) increases rapidly among people living in high-altitude hypoxic environments compared to those in normoxic areas. Upregulation of hepatic hypoxia inducible factor 1α (Hif-1α) plays a key role in the formation of GCS. High plasma trimethylamine-N-oxide (TMAO) levels are positively correlated with the occurrence of GCS. We hypothesized that HIF-1α may upregulate TMAO levels by promoting the transcription of flavin-containing monooxygenase 3 (Fmo3), which eventually leads to GCS formation. Our study shows that in women, high plasma total cholesterol and apolipoprotein B were positively correlated with cholecystolithiasis and hypoxia. Hif-1α binds to the Fmo3 promoter and promotes Fmo3 expression. Hypoxia and lithogenic diet induce the expression of Hif-1α, Fmo3, TMAO and cholesterol tube transporters in the livers of mice, disturb the proportion of bile and plasma components, and induce the formation of GCS. In cell experiments, silencing Hif-1α downregulates the expression of Fmo3, TMAO and cholesterol tube transporters. In a mouse model of hypoxic cholecystolithiasis, silencing Hif-1α downregulates the expression of related genes, restores the proportion of bile and plasma lipid components, and reduces the formation of GCS. Our study shows that Hif-1α binds to the promoter region of Fmo3 and promotes Fmo3 transcription. Thus, it mediates the transcriptional activation of the TMA/Fmo3/TMAO pathway, upregulates the expression of ATP-binding cassettes (Abc) g5 and g8, and participates in the regulation of the occurrence of GCS in the plateau region.


Subject(s)
Cholesterol , Gallstones , Hypoxia-Inducible Factor 1, alpha Subunit , Methylamines , Oxygenases , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Animals , Humans , Female , Mice , Cholesterol/metabolism , Gallstones/metabolism , Gallstones/genetics , Gallstones/pathology , Oxygenases/metabolism , Oxygenases/genetics , Methylamines/metabolism , Male , Gallbladder/metabolism , Gallbladder/pathology , Middle Aged , Promoter Regions, Genetic , Hypoxia/metabolism , Hypoxia/genetics , Adult , Mice, Inbred C57BL , Cholecystolithiasis/metabolism , Cholecystolithiasis/genetics
14.
Sci Rep ; 14(1): 8388, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600177

ABSTRACT

MicroRNAs (miRNAs) may play a crucial regulatory role in the process of muscle atrophy induced by high-altitude hypoxia and its amelioration through resistance training. However, research in this aspect is still lacking. Therefore, this study aimed to employ miRNA microarray analysis to investigate the expression profile of miRNAs in skeletal muscle from an animal model of hypoxia-induced muscle atrophy and resistance training aimed at mitigating muscle atrophy. The study utilized a simulated hypoxic environment (oxygen concentration at 11.2%) to induce muscle atrophy and established a rat model of resistance training using ladder climbing, with a total intervention period of 4 weeks. The miRNA expression profile revealed 9 differentially expressed miRNAs influenced by hypoxia (e.g., miR-341, miR-32-5p, miR-465-5p) and 14 differentially expressed miRNAs influenced by resistance training under hypoxic conditions (e.g., miR-338-5p, miR-203a-3p, miR-92b-3p) (∣log2(FC)∣ ≥ 1.5, p < 0.05). The differentially expressed miRNAs were found to target genes involved in muscle protein synthesis and degradation (such as Utrn, mdm2, eIF4E), biological processes (such as negative regulation of transcription from RNA polymerase II promoter, regulation of transcription, DNA-dependent), and signaling pathways (such as Wnt signaling pathway, MAPK signaling pathway, ubiquitin-mediated proteolysis, mTOR signaling pathway). This study provides a foundation for understanding and further exploring the molecular mechanisms underlying hypoxia-induced rats muscle atrophy and the mitigation of atrophy through resistance training.


Subject(s)
MicroRNAs , Resistance Training , Humans , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Gene Expression Profiling
15.
Int J Biol Macromol ; 268(Pt 2): 130853, 2024 May.
Article in English | MEDLINE | ID: mdl-38570000

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a complex vascular disorder, characterized by pulmonary vessel remodeling and perivascular inflammation. Pulmonary arterial smooth muscle cells (PASMCs) pyroptosis is a novel pathological mechanism implicated of pulmonary vessel remodeling. However, the involvement of circRNAs in the process of pyroptosis and the underlying regulatory mechanisms remain inadequately understood. METHODS: Western blotting, PI staining and LDH release were used to explore the role of circLrch3 in PASMCs pyroptosis. Moreover, S9.6 dot blot and DRIP-PCR were used to assess the formation of R-loop between circLrch3 and its host gene Lrch3. Chip-qPCR were used to evaluate the mechanism of super enhancer-associated circLrh3, which is transcriptionally activated by the transcription factor Tbx2. RESULTS: CircLrch3 was markedly upregulated in hypoxic PASMCs. CircLrch3 knockdown inhibited hypoxia induced PASMCs pyroptosis in vivo and in vitro. Mechanistically, circLrch3 can form R-loop with host gene to upregulate the protein and mRNA expression of Lrch3. Furthermore, super enhancer interacted with the Tbx2 at the Lrch3 promoter locus, mediating the augmented transcription of circLrch3. CONCLUSION: Our findings clarify the role of a super enhancer-associated circLrch3 in the formation of R-loop with the host gene Lrch3 to modulate pyroptosis in PASMCs, ultimately promoting the development of PH.


Subject(s)
Myocytes, Smooth Muscle , Pulmonary Artery , Pyroptosis , RNA, Circular , Pyroptosis/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Myocytes, Smooth Muscle/metabolism , Rats , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Cell Hypoxia/genetics , Muscle, Smooth, Vascular/metabolism , Male , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Gene Expression Regulation , Enhancer Elements, Genetic/genetics , Hypoxia/genetics , Hypoxia/metabolism , Super Enhancers
16.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L698-L712, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38591125

ABSTRACT

Chronic intermittent hypoxia (CIH) is a prevalent condition characterized by recurrent episodes of oxygen deprivation, linked to respiratory and neurological disorders. Prolonged CIH is known to have adverse effects, including endothelial dysfunction, chronic inflammation, oxidative stress, and impaired neuronal function. These factors can contribute to serious comorbidities, including metabolic disorders and cardiovascular diseases. To investigate the molecular impact of CIH, we examined male C57BL/6J mice exposed to CIH for 21 days, comparing with normoxic controls. We used single-nucleus RNA sequencing to comprehensively examine the transcriptomic impact of CIH on key cell classes within the brainstem, specifically excitatory neurons, inhibitory neurons, and oligodendrocytes. These cell classes regulate essential physiological functions, including autonomic tone, cardiovascular control, and respiration. Through analysis of 10,995 nuclei isolated from pontine-medullary tissue, we identified seven major cell classes, further subdivided into 24 clusters. Our findings among these cell classes, revealed significant differential gene expression, underscoring their distinct responses to CIH. Notably, neurons exhibited transcriptional dysregulation of genes associated with synaptic transmission, and structural remodeling. In addition, we found dysregulated genes encoding ion channels and inflammatory response. Concurrently, oligodendrocytes exhibited dysregulated genes associated with oxidative phosphorylation and oxidative stress. Utilizing CellChat network analysis, we uncovered CIH-dependent altered patterns of diffusible intercellular signaling. These insights offer a comprehensive transcriptomic cellular atlas of the pons-medulla and provide a fundamental resource for the analysis of molecular adaptations triggered by CIH.NEW & NOTEWORTHY This study on chronic intermittent hypoxia (CIH) from pons-medulla provides initial insights into the molecular effects on excitatory neurons, inhibitory neurons, and oligodendrocytes, highlighting our unbiased approach, in comparison with earlier studies focusing on single target genes. Our findings reveal that CIH affects cell classes distinctly, and the dysregulated genes in distinct cell classes are associated with synaptic transmission, ion channels, inflammation, oxidative stress, and intercellular signaling, advancing our understanding of CIH-induced molecular responses.


Subject(s)
Hypoxia , Mice, Inbred C57BL , Neurons , Oligodendroglia , Transcriptome , Animals , Oligodendroglia/metabolism , Mice , Male , Hypoxia/metabolism , Hypoxia/genetics , Neurons/metabolism , Neurons/pathology , Brain Stem/metabolism
17.
Mol Biol Rep ; 51(1): 507, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622406

ABSTRACT

BACKGROUND: Our previous research has demonstrated that hypoxic preconditioning (HPC) can improve spatial learning and memory abilities in adult mice. Adult hippocampal neurogenesis has been associated with learning and memory. The Neurogenic locus notch homolog protein (Notch) was involved in adult hippocampal neurogenesis, as well as in learning and memory. It is currently unclear whether the Notch pathway regulates hippocampal neuroregeneration by modifying the DNA methylation status of the Notch gene following HPC. METHOD: The HPC animal model and cell model were established through repeated hypoxia exposure using mice and the mouse hippocampal neuronal cell line HT22. Step-down test was conducted on HPC mice. Real-time PCR and Western blot analysis were used to assess the mRNA and protein expression levels of Notch1 and hairy and enhancer of split1 (HES1). The presence of BrdU-positive cells and Notch1 expression in the hippocampal dental gyrus (DG) were examined with confocal microscopy. The methylation status of the Notch1 was analyzed using methylation-specific PCR (MS-PCR). HT22 cells were employed to elucidate the impact of HPC on Notch1 in vitro. RESULTS: HPC significantly improved the step-down test performance of mice with elevated levels of mRNA and protein expression of Notch1 and HES1 (P < 0.05). The intensities of the Notch1 signal in the control group, the H group and the HPC group were 2.62 ± 0.57 × 107, 2.87 ± 0.84 × 107, and 3.32 ± 0.14 × 107, respectively, and the number of BrdU (+) cells in the hippocampal DG were 1.83 ± 0.54, 3.71 ± 0.64, and 7.29 ± 0.68 respectively. Compared with that in C and H group, the intensity of the Notch1 signal and the number of BrdU (+) cells increased significantly in HPC group (P < 0.05). The methylation levels of the Notch1 promoter 0.82 ± 0.03, 0.65 ± 0.03, and 0.60 ± 0.02 in the C, H, and HPC groups, respectively. The methylation levels of Notch1 decreased significantly (P < 0.05). The effect of HPC on HT22 cells exhibited similarities to that observed in the hippocampus. CONCLUSION: HPC may confer neuroprotection by activating the Notch1 signaling pathway and regulating its methylation level, resulting in the regeneration of hippocampal neurons.


Subject(s)
DNA Methylation , Hippocampus , Mice , Animals , DNA Methylation/genetics , Bromodeoxyuridine/metabolism , Hippocampus/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Receptors, Notch/metabolism , RNA, Messenger/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
18.
Endocr Regul ; 58(1): 47-56, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38563293

ABSTRACT

OBJECTIVE.: Homeobox genes play an important role in health and disease including oncogenesis. The present investigation aimed to study ERN1-dependent hypoxic regulation of the expression of genes encoding homeobox proteins MEIS (zinc finger E-box binding homeobox 2) and LIM homeobox 1 family, SPAG4 (sperm associated antigen 4) and NKX3-1 (NK3 homeobox 1) in U87MG glioblastoma cells in response to inhibition of ERN1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of glioblastoma growth. METHODS.: The expression level of homeobox genes was studied in control (transfected by vector) and ERN1 knockdown U87MG glioblastoma cells under hypoxia induced by dimethyloxalylglycine (0.5 mM for 4 h) by quantitative polymerase chain reaction and normalized to ACTB. RESULTS.: It was found that hypoxia down-regulated the expression level of LHX2, LHX6, MEIS2, and NKX3-1 genes but up-regulated the expression level of MEIS1, LHX1, MEIS3, and SPAG4 genes in control glioblastoma cells. At the same time, ERN1 knockdown of glioblastoma cells significantly modified the sensitivity of all studied genes to a hypoxic condition. Thus, ERN1 knockdown of glioblastoma cells removed the effect of hypoxia on the expression of MEIS1 and LHX1 genes, but increased the sensitivity of MEIS2, LHX2, and LHX6 genes to hypoxia. However, the expression of MEIS3, NKX3-1, and SPAG4 genes had decreased sensitivity to hypoxia in ERN1 knockdown glioblastoma cells. Moreover, more pronounced changes under the conditions of ERN1 inhibition were detected for the pro-oncogenic gene SPAG4. CONCLUSION.: The results of the present study demonstrate that hypoxia affected the expression of homeobox genes MEIS1, MEIS2, MEIS3, LHX1, LHX2, LHX6, SPAG4, and NKX3-1 in U87MG glioblastoma cells in gene-specific manner and that the sensitivity of all studied genes to hypoxia condition is mediated by ERN1, the major pathway of the endoplasmic reticulum stress signaling, and possibly contributed to the control of glioblastoma growth. A fundamentally new results of this work is the establishment of the fact regarding the dependence of hypoxic regulation of SPAG4 gene expression on ER stress, in particular ERN1, which is associated with suppression of cell proliferation and tumor growth.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Genes, Homeobox , Protein Serine-Threonine Kinases/genetics , LIM-Homeodomain Proteins/genetics , Cell Hypoxia/genetics , Gene Expression Regulation, Neoplastic/genetics , Hypoxia/genetics , Transcription Factors/genetics , Gene Expression , Cell Line, Tumor , Gene Knockdown Techniques , Endoribonucleases/genetics
19.
Clin Cancer Res ; 30(11): 2609-2618, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38564595

ABSTRACT

PURPOSE: Black women experience the highest breast cancer mortality rate compared with women of other racial/ethnic groups. To gain a deeper understanding of breast cancer heterogeneity across diverse populations, we examined a VEGF-hypoxia gene expression signature in breast tumors from women of diverse ancestry. EXPERIMENTAL DESIGN: We developed a NanoString nCounter gene expression panel and applied it to breast tumors from Nigeria (n = 182) and the University of Chicago (Chicago, IL; n = 161). We also analyzed RNA sequencing data from Nigeria (n = 84) and The Cancer Genome Atlas (TCGA) datasets (n = 863). Patient prognosis was analyzed using multiple datasets. RESULTS: The VEGF-hypoxia signature was highest in the basal-like subtype compared with other subtypes, with greater expression in Black women compared with White women. In TCGA dataset, necrotic breast tumors had higher scores for the VEGF-hypoxia signature compared with non-necrosis tumors (P < 0.001), with the highest proportion in the basal-like subtype. Furthermore, necrotic breast tumors have higher scores for the proliferation signature, suggesting an interaction between the VEGF-hypoxia signature, proliferation, and necrosis. T-cell gene expression signatures also correlated with the VEGF-hypoxia signature when testing all tumors in TCGA dataset. Finally, we found a significant association of the VEGF-hypoxia profile with poor outcomes when using all patients in the METABRIC (P < 0.0001) and SCAN-B datasets (P = 0.002). CONCLUSIONS: These data provide further evidence for breast cancer heterogeneity across diverse populations and molecular subtypes. Interventions selectively targeting VEGF-hypoxia and the immune microenvironment have the potential to improve overall survival in aggressive breast cancers that disproportionately impact Black women in the African Diaspora.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Vascular Endothelial Growth Factor A , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Breast Neoplasms/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Prognosis , Middle Aged , Biomarkers, Tumor/genetics , Gene Expression Profiling , Black People/genetics , Transcriptome , Adult , Aged , Hypoxia/genetics , Tumor Microenvironment/genetics , Up-Regulation
20.
J Hepatol ; 80(2): 293-308, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38450598

ABSTRACT

BACKGROUND & AIMS: The role of solute carrier family 25 member 15 (SLC25A15), a critical component of the urea cycle, in hepatocellular carcinoma (HCC) progression remains poorly understood. This study investigated the impact of SLC25A15 on HCC progression and its mechanisms. METHODS: We systematically investigated the function of SLC25A15 in HCC progression using large-scale data mining and cell, animal, and organoid models. Furthermore, we analyzed its involvement in reprogramming glutamine metabolism. RESULTS: SLC25A15 expression was significantly decreased in HCC tissues, and patients with low SLC25A15 levels had a poorer prognosis. Hypoxia-exposed HCC cells or tissues had lower SLC25A15 expression. A positive correlation between HNF4A, a transcription factor suppressed by hypoxia, and SLC25A15 was observed in both HCC tissues and cells. Modulating HNF4A levels altered SLC25A15 mRNA levels. SLC25A15 upregulated SLC1A5, increasing glutamine uptake. The reactive metabolic pathway of glutamine was increased in SLC25A15-deficient HCC cells, providing energy for HCC progression through additional lipid synthesis. Ammonia accumulation due to low SLC25A15 levels suppressed the expression of OGDHL (oxoglutarate dehydrogenase L), a switch gene that mediates SLC25A15 deficiency-induced reprogramming of glutamine metabolism. SLC25A15-deficient HCC cells were more susceptible to glutamine deprivation and glutaminase inhibitors. Intervening in glutamine metabolism increased SLC25A15-deficient HCC cells' response to anti-PD-L1 treatment. CONCLUSION: SLC25A15 is hypoxia-responsive in HCC, and low SLC25A15 levels result in glutamine reprogramming through SLC1A5 and OGDHL regulation, promoting HCC progression and regulating cell sensitivity to anti-PD-L1. Interrupting the glutamine-derived energy supply is a potential therapeutic strategy for treating SLC25A15-deficient HCC. IMPACT AND IMPLICATIONS: We first demonstrated the tumor suppressor role of solute carrier family 25 member 15 (SLC25A15) in hepatocellular carcinoma (HCC) and showed that its deficiency leads to reprogramming of glutamine metabolism to promote HCC development. SLC25A15 can serve as a potential biomarker to guide the development of precision therapeutic strategies aimed at targeting glutamine deprivation. Furthermore, we highlight that the use of an inhibitor of glutamine utilization can enhance the sensitivity of low SLC25A15 HCC to anti-PD-L1 therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Carcinoma, Hepatocellular/genetics , Glutamine , Liver Neoplasms/genetics , Hypoxia/genetics , Biological Transport , Minor Histocompatibility Antigens , Amino Acid Transport System ASC/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...