Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.279
Filter
2.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38752980

ABSTRACT

The effects of hypoxia on brain function remain largely unknown. This study aimed to clarify this issue by visual-stimulated functional magnetic resonance imaging design. Twenty-three college students with a 30-d high-altitude exposure were tested before, 1 week and 3 months after returning to sea level. Brain functional magnetic resonance imaging and retinal electroretinogram were acquired. One week after returning to sea level, decreased blood oxygenation level dependent in the right lingual gyrus accompanied with increased blood oxygenation level dependent in the frontal cortex and insular cortex, and decreased amplitude of electroretinogram a-wave in right eye; moreover, the bilateral lingual gyri showed increased functional connectivity within the dorsal visual stream pathway, and the blood oxygenation level dependent signals in the right lingual gyrus showed positive correlation with right retinal electroretinogram a-wave. Three months after returning to sea level, the blood oxygenation level dependent signals recovered to normal level, while intensively increased blood oxygenation level dependent signals in a broad of brain regions and decreased retinal electroretinogram were also existed. In conclusion, hypoxic exposure has long-term effects on visual cortex, and the impaired retinal electroretinogram may contribute to it. The increased functional connectivity of dorsal stream may compensate for the decreased function of retinal photoreceptor cells to maintain normal visual function.


Subject(s)
Electroretinography , Magnetic Resonance Imaging , Neuronal Plasticity , Visual Pathways , Humans , Male , Young Adult , Female , Neuronal Plasticity/physiology , Visual Pathways/physiology , Visual Pathways/diagnostic imaging , Hypoxia/physiopathology , Adult , Oxygen/blood , Visual Cortex/diagnostic imaging , Visual Cortex/physiology , Brain/physiology , Brain/diagnostic imaging , Photic Stimulation/methods , Retina/physiology , Retina/diagnostic imaging , Brain Mapping/methods
3.
Sleep Med Clin ; 19(2): 229-237, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692748

ABSTRACT

Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder. Its prevalence has increased due to increasing obesity and improved screening and diagnostic strategies. OSA overlaps with cardiopulmonary diseases to promote intermittent hypoxia and autonomic dysfunction. Intermittent hypoxia increases the risk for oxidative stress and inflammation, which promotes endothelial dysfunction and predisposes to atherosclerosis and other cardiovascular complications. OSA is associated with an increased sympathetic nervous system drive resulting in autonomic dysfunction leading to worsening of cardiopulmonary diseases. Cardiovascular diseases are observed in 40% to 80% of OSA patients. Therefore, it is essential to screen and treat cardiovascular diseases.


Subject(s)
Hypoxia , Sleep Apnea Syndromes , Humans , Hypoxia/physiopathology , Hypoxia/complications , Sleep Apnea Syndromes/physiopathology , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/therapy , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/complications , Autonomic Nervous System/physiopathology , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/therapy
4.
Neuropharmacology ; 253: 109968, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692453

ABSTRACT

Microglia are described as the immune cells of the brain, their immune properties have been extensively studied since first described, however, their neural functions have only been explored over the last decade. Microglia have an important role in maintaining homeostasis in the central nervous system by surveying their surroundings to detect pathogens or damage cells. While these are the classical functions described for microglia, more recently their neural functions have been defined; they are critical to the maturation of neurons during embryonic and postnatal development, phagocytic microglia remove excess synapses during development, a process called synaptic pruning, which is important to overall neural maturation. Furthermore, microglia can respond to neuronal activity and, together with astrocytes, can regulate neural activity, contributing to the equilibrium between excitation and inhibition through a feedback loop. Hypoxia at birth is a serious neurological condition that disrupts normal brain function resulting in seizures and epilepsy later in life. Evidence has shown that microglia may contribute to this hyperexcitability after neonatal hypoxia. This review will summarize the existing data on the role of microglia in the pathogenesis of neonatal hypoxia and the plausible mechanisms that contribute to the development of hyperexcitability after hypoxia in neonates. This article is part of the Special Issue on "Microglia".


Subject(s)
Epilepsy , Microglia , Microglia/physiology , Microglia/pathology , Humans , Animals , Epilepsy/physiopathology , Epilepsy/pathology , Infant, Newborn , Hypoxia/physiopathology , Brain/pathology , Brain/physiopathology
5.
Eur J Med Res ; 29(1): 298, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802976

ABSTRACT

Joint contracture is one of the common diseases clinically, and joint capsule fibrosis is considered to be one of the most important pathological changes of joint contracture. However, the underlying mechanism of joint capsule fibrosis is still controversial. The present study aims to establish an animal model of knee extending joint contracture in rats, and to investigate the role of hypoxia-mediated pyroptosis in the progression of joint contracture using this animal model. 36 male SD rats were selected, 6 of which were not immobilized and were used as control group, while 30 rats were divided into I-1 group (immobilized for 1 week following 7 weeks of free movement), I-2 group (immobilized for 2 weeks following 6 weeks of free movement), I-4 group (immobilized for 4 weeks following 4 weeks of free movement), I-6 group (immobilized for 6 weeks following 2 weeks of free movement) and I-8 group (immobilized for 8 weeks) according to different immobilizing time. The progression of joint contracture was assessed by the measurement of knee joint range of motion, collagen deposition in joint capsule was examined with Masson staining, protein expression levels of HIF-1α, NLRP3, Caspase-1, GSDMD-N, TGF-ß1, α-SMA and p-Smad3 in joint capsule were assessed using western blotting, and the morphological changes of fibroblasts were observed by transmission electron microscopy. The degree of total and arthrogenic contracture progressed from the first week and lasted until the first eight weeks after immobilization. The degree of total and arthrogenic contracture progressed rapidly in the first four weeks after immobilization and then progressed slowly. Masson staining indicated that collagen deposition in joint capsule gradually increased in the first 8 weeks following immobilization. Western blotting analysis showed that the protein levels of HIF-1α continued to increase during the first 8 weeks of immobilization, and the protein levels of pyroptosis-related proteins NLRP3, Caspase-1, GSDMD-N continued to increase in the first 4 weeks after immobilization and then decreased. The protein levels of fibrosis-related proteins TGF-ß1, p-Smad3 and α-SMA continued to increase in the first 8 weeks after immobilization. Transmission electron microscopy showed that 4 weeks of immobilization induced cell membrane rupture and cell contents overflow, which further indicated the activation of pyroptosis. Knee extending joint contracture animal model can be established by external immobilization orthosis in rats, and the activation of hypoxia-mediated pyroptosis may play a stimulating role in the process of joint capsule fibrosis and joint contracture.


Subject(s)
Contracture , Hypoxia-Inducible Factor 1, alpha Subunit , Knee Joint , Pyroptosis , Rats, Sprague-Dawley , Animals , Contracture/metabolism , Contracture/physiopathology , Contracture/pathology , Pyroptosis/physiology , Rats , Male , Knee Joint/pathology , Knee Joint/metabolism , Knee Joint/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hypoxia/metabolism , Hypoxia/physiopathology , Disease Models, Animal , Transforming Growth Factor beta1/metabolism , Joint Capsule/metabolism , Joint Capsule/pathology , Joint Capsule/physiopathology , Range of Motion, Articular , Smad3 Protein/metabolism
6.
Crit Care ; 28(1): 174, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783367

ABSTRACT

BACKGROUND: Dyspnea is a key symptom of de novo acute hypoxemic respiratory failure. This study explores dyspnea and its association with intubation and mortality in this population. METHODS: This was a secondary analysis of a multicenter, randomized, controlled trial. Dyspnea was quantified by a visual analog scale (dyspnea-VAS) from zero to 100 mm. Dyspnea was measured in 259 of the 310 patients included. Factors associated with intubation were assessed with a competing risks model taking into account ICU discharge. The Cox model was used to evaluate factors associated with 90-day mortality. RESULTS: At baseline (randomization in the parent trial), median dyspnea-VAS was 46 (interquartile range, 16-65) mm and was ≥ 40 mm in 146 patients (56%). The intubation rate was 45%. Baseline variables independently associated with intubation were moderate (dyspnea-VAS 40-64 mm) and severe (dyspnea-VAS ≥ 65 mm) dyspnea at baseline (sHR 1.96 and 2.61, p = 0.023), systolic arterial pressure (sHR 2.56, p < 0.001), heart rate (sHR 1.94, p = 0.02) and PaO2/FiO2 (sHR 0.34, p = 0.028). 90-day mortality was 20%. The cumulative probability of survival was lower in patients with baseline dyspnea-VAS ≥ 40 mm (logrank test, p = 0.049). Variables independently associated with mortality were SAPS 2 ≥ 25 (p < 0.001), moderate-to-severe dyspnea at baseline (p = 0.073), PaO2/FiO2 (p = 0.118), and treatment arm (p = 0.046). CONCLUSIONS: In patients admitted to the ICU for de novo acute hypoxemic respiratory failure, dyspnea is associated with a higher risk of intubation and with a higher mortality. TRIAL REGISTRATION: clinicaltrials.gov Identifier # NCT01320384.


Subject(s)
Dyspnea , Respiratory Insufficiency , Humans , Dyspnea/etiology , Male , Female , Middle Aged , Aged , Respiratory Insufficiency/therapy , Respiratory Insufficiency/mortality , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology , Intubation, Intratracheal/statistics & numerical data , Intubation, Intratracheal/methods , Hypoxia/therapy , Hypoxia/physiopathology , Hypoxia/complications , Intensive Care Units/statistics & numerical data , Intensive Care Units/organization & administration , Proportional Hazards Models
7.
Clinics (Sao Paulo) ; 79: 100368, 2024.
Article in English | MEDLINE | ID: mdl-38703717

ABSTRACT

OBJECTIVE: The purpose of this study is to develop an animal model of Chronic Intermittent Hypoxia (CIH) and investigate the role of the TRPC5 channel in cardiac damage in OSAHS rats. METHODS: Twelve male Sprague Dawley rats were randomly divided into the CIH group and the Normoxic Control (NC) group. Changes in structure, function, and pathology of heart tissue were observed through echocardiography, transmission electron microscopy, HE-staining, and TUNEL staining. RESULTS: The Interventricular Septum thickness at diastole (IVSd) and End-Diastolic Volume (EDV) of rats in the CIH group significantly increased, whereas the LV ejection fraction and LV fraction shortening significantly decreased. TEM showed that the myofilaments in the CIH group were loosely arranged, the sarcomere length varied, the cell matrix dissolved, the mitochondrial cristae were partly flocculent, the mitochondrial outer membrane dissolved and disappeared, and some mitochondria were swollen and vacuolated. The histopathological examination showed that the cardiomyocytes in the CIH group were swollen with granular degeneration, some of the myocardial fibers were broken and disorganized, and most of the nuclei were vacuolar and hypochromic. CONCLUSION: CIH promoted oxidative stress, the influx of Ca2+, and the activation of the CaN/NFATc signaling pathway, which led to pathological changes in the morphology and ultrastructure of cardiomyocytes, the increase of myocardial apoptosis, and the decrease of myocardial contractility. These changes may be associated with the upregulation of TRPC5.


Subject(s)
Disease Models, Animal , Hypoxia , Rats, Sprague-Dawley , TRPC Cation Channels , Animals , Male , Hypoxia/physiopathology , Hypoxia/metabolism , TRPC Cation Channels/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocardium/ultrastructure , Oxidative Stress/physiology , Random Allocation , Apoptosis/physiology , Myocytes, Cardiac/ultrastructure , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Chronic Disease , Echocardiography , Microscopy, Electron, Transmission , In Situ Nick-End Labeling
8.
Sci Rep ; 14(1): 12262, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806563

ABSTRACT

Exercise elicits physiological adaptations, including hyperpnea. However, the mechanisms underlying exercise-induced hyperpnea remain unresolved. Skeletal muscle acts as a secretory organ, releasing irisin (IR) during exercise. Irisin can cross the blood-brain barrier, influencing muscle and tissue metabolism, as well as signaling in the central nervous system (CNS). We evaluated the effect of intracerebroventricular or intraperitoneal injection of IR in adult male rats on the cardiorespiratory and metabolic function during sleep-wake cycle under room air, hypercapnia and hypoxia. Central IR injection caused an inhibition on ventilation (VE) during wakefulness under normoxia, while peripheral IR reduced VE during sleep. Additionally, central IR exacerbates hypercapnic hyperventilation by increasing VE and reducing oxygen consumption. As to cardiovascular regulation, central IR caused an increase in heart rate (HR) across all conditions, while no change was observed following peripheral administration. Finally, central IR attenuated the hypoxia-induced regulated hypothermia and increase sleep episodes, while peripheral IR augmented CO2-induced hypothermia, during wakefulness. Overall, our results suggest that IR act mostly on CNS exerting an inhibitory effect on breathing under resting conditions, while stimulating the hypercapnic ventilatory response and increasing HR. Therefore, IR seems not to be responsible for the exercise-induced hyperpnea, but contributes to the increase in HR.


Subject(s)
Fibronectins , Physical Conditioning, Animal , Animals , Male , Rats , Fibronectins/metabolism , Hypercapnia/metabolism , Hypercapnia/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , Heart Rate , Sleep/physiology , Wakefulness/physiology , Oxygen Consumption , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Respiration , Myokines
9.
Sci Rep ; 14(1): 10206, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702334

ABSTRACT

Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.


Subject(s)
Altitude , Hypoxia , Leptin , Signal Transduction , Leptin/metabolism , Leptin/blood , Animals , Rats , Male , Hypoxia/metabolism , Hypoxia/physiopathology , Humans , Altitude Sickness/metabolism , Altitude Sickness/physiopathology , Myocardium/metabolism , Myocardium/pathology , Adult , Heart/physiopathology
10.
BMC Pulm Med ; 24(1): 262, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816826

ABSTRACT

BACKGROUND: Chronic obstructive lung disease (COPD) has diverse molecular pathomechanisms and clinical courses which, however, are not fully mirrored by current therapy. Intermittent hypoxemia is a driver of lung function decline and poor outcome, e.g., in patients with concomitant obstructive sleep apnea. Transient hypoxemia during physical exercise has been suggested to act in a similar manner. The PROSA study is designed to prospectively assess whether the clinical course of COPD patients with or without exertional desaturation differs, and to address potential pathophysiological mechanisms and biomarkers. METHODS: 148 COPD patients (GOLD stage 2-3, groups B or C) will undergo exercise testing with continuous pulse oximetry. They will be followed for 36 months by spirometry, echocardiography, endothelial function testing, and biomarker analyses. Exercise testing will be performed by comparing the 6-min walk test (6MWT), bicycle ergometry, and a 15-sec breath-hold test. Exertional desaturation will be defined as SpO2 < 90% or delta-SpO2 ≥ 4% during the 6MWT. The primary endpoint will be the rate of decline of FEV1(LLN) between COPD patients with and without exertional desaturation. DISCUSSION: The PROSA Study is an investigator-initiated prospective study that was designed to prove or dismiss the hypothesis that COPD patients with exertional desaturation have a significantly more rapid rate of decline of lung function as compared to non-desaturators. A 20% difference in the primary endpoint was considered clinically significant; it can be detected with a power of 90%. If the primary endpoint will be met, exercise testing with continuous pulse oximetry can be used as a ubiquitously available, easy screening tool to prospectively assess the risk of rapid lung function decline in COPD patients at an early disease stage. This will allow to introduce personalized, risk-adapted therapy to improve COPD outcome in the long run. PROSA is exclusively funded by public funds provided by the European Research Council through an ERC Advanced Grant. Patient recruitment is ongoing; the PROSA results are expected to be available in 2028. TRIAL REGISTRATION: The PROSA Study has been prospectively registered at clinicaltrials.gov (register no. NCT06265623, dated 09.02.2024).


Subject(s)
Hypoxia , Oximetry , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/complications , Hypoxia/physiopathology , Prospective Studies , Vasoconstriction , Walk Test , Exercise Test , Male , Female , Lung/physiopathology , Middle Aged , Aged , Forced Expiratory Volume , Spirometry
11.
Article in English | MEDLINE | ID: mdl-38643961

ABSTRACT

In fish, thermal and hypoxia tolerances may be functionally related, as suggested by the oxygen- and capacity-limited thermal tolerance (OCLTT) concept, which explains performance failure at high temperatures due to limitations in oxygen delivery. In this study the interrelatedness of hyperthermia and hypoxia tolerances in the Nile tilapia (Oreochromis niloticus), and their links to cardiorespiratory traits were examined. Different groups of O. niloticus (n = 51) were subjected to hypoxia and hyperthermia challenges and the O2 tension for aquatic surface respiration (ASR pO2) and critical thermal maximum (CTmax) were assessed as measurement endpoints. Gill filament length, total filament number, ventricle mass, length and width were also measured. Tolerance to hypoxia, as evidenced by ASR pO2 thresholds of the individual fish, was highly variable and varied between 0.26 and 3.39 kPa. ASR events increased more profoundly as O2 tensions decreased below 2 kPa. The CTmax values recorded for the O. niloticus individuals ranged from 43.1 to 44.8 °C (Mean: 44.2 ± 0.4 °C). Remarkably, there was a highly significant correlation between ASR pO2 and CTmax in O. niloticus (r = -0.76, p < 0.0001) with ASR pO2 increasing linearly with decreasing CTmax. There were, however, no discernible relationships between the measured cardiorespiratory properties and hypoxia or hyperthermia tolerances. The strong relationship between hypoxia and hyperthermia tolerances in this study may be related to the ability of the cardiorespiratory system to provide oxygen to respiring tissues under thermal stress, and thus provides some support for the OCLTT concept in this species, at least at the level of the entire organism.


Subject(s)
Cichlids , Gills , Hypoxia , Animals , Gills/metabolism , Cichlids/physiology , Hypoxia/physiopathology , Thermotolerance , Oxygen/metabolism , Heart/physiopathology , Heart/physiology , Hyperthermia/physiopathology
12.
Elife ; 122024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655918

ABSTRACT

Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.


Subject(s)
Deglutition , Hypoxia , Animals , Mice , Deglutition/physiology , Hypoxia/metabolism , Hypoxia/physiopathology , Male , Optogenetics , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/metabolism , Cholinergic Neurons/physiology , Cholinergic Neurons/metabolism , Interneurons/physiology , Interneurons/metabolism , Respiration , Female
13.
BMC Cardiovasc Disord ; 24(1): 223, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658849

ABSTRACT

BACKGROUND: Long-term exposure to a high altitude environment with low pressure and low oxygen could cause abnormalities in the structure and function of the heart. Myocardial strain is a sensitive indicator for assessing myocardial dysfunction, monitoring myocardial strain is of great significance for the early diagnosis and treatment of high altitude heart-related diseases. This study applies cardiac magnetic resonance tissue tracking technology (CMR-TT) to evaluate the changes in left ventricular myocardial function and structure in rats in high altitude environment. METHODS: 6-week-old male rats were randomized into plateau hypoxia rats (plateau group, n = 21) as the experimental group and plain rats (plain group, n = 10) as the control group. plateau group rats were transported from Chengdu (altitude: 360 m), a city in a plateau located in southwestern China, to the Qinghai-Tibet Plateau (altitude: 3850 m), Yushu, China, and then fed for 12 weeks there, while plain group rats were fed in Chengdu(altitude: 360 m), China. Using 7.0 T cardiac magnetic resonance (CMR) to evaluate the left ventricular ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV) and stroke volume (SV), as well as myocardial strain parameters including the peak global longitudinal (GLS), radial (GRS), and circumferential strain (GCS). The rats were euthanized and a myocardial biopsy was obtained after the magnetic resonance imaging scan. RESULTS: The plateau rats showed more lower left ventricular GLS and GRS (P < 0.05) than the plain rats. However, there was no statistically significant difference in left ventricular EDV, ESV, SV, EF and GCS compared to the plain rats (P > 0.05). CONCLUSIONS: After 12 weeks of exposure to high altitude low-pressure hypoxia environment, the left ventricular global strain was partially decreased and myocardium is damaged, while the whole heart ejection fraction was still preserved, the myocardial strain was more sensitive than the ejection fraction in monitoring cardiac function.


Subject(s)
Altitude , Stroke Volume , Ventricular Function, Left , Animals , Male , Rats, Sprague-Dawley , Altitude Sickness/physiopathology , Altitude Sickness/diagnostic imaging , Predictive Value of Tests , Magnetic Resonance Imaging, Cine , Magnetic Resonance Imaging , Time Factors , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Rats , Hypoxia/physiopathology
14.
Physiol Meas ; 45(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38688301

ABSTRACT

Objective.Intermittent hypoxia, the primary pathology of obstructive sleep apnea (OSA), causes cardiovascular responses resulting in changes in hemodynamic parameters such as stroke volume (SV), blood pressure (BP), and heart rate (HR). However, previous studies have produced very different conclusions, such as suggesting that SV increases or decreases during apnea. A key reason for drawing contrary conclusions from similar measurements may be due to ignoring the time delay in acquiring response signals. By analyzing the signals collected during hypoxia, we aim to establish criteria for determining the delay time between the onset of apnea and the onset of physiological parameter response.Approach.We monitored oxygen saturation (SpO2), transcutaneous oxygen pressure (TcPO2), and hemodynamic parameters SV, HR, and BP, during sleep in 66 patients with different OSA severity to observe body's response to hypoxia and determine the delay time of above parameters. Data were analyzed using the Kruskal-Wallis test, Quade test, and Spearman test.Main results.We found that simultaneous acquisition of various parameters inevitably involved varying degrees of response delay (7.12-25.60 s). The delay time of hemodynamic parameters was significantly shorter than that of SpO2and TcPO2(p< 0.01). OSA severity affected the response delay of SpO2, TcPO2, SV, mean BP, and HR (p< 0.05). SV delay time was negatively correlated with the apnea-hypopnea index (r= -0.4831,p< 0.0001).Significance.The real body response should be determined after removing the effect of delay time, which is the key to solve the problem of drawing contradictory conclusions from similar studies. The methods and important findings presented in this study provide key information for revealing the true response of the cardiovascular system during hypoxia, indicating the importance of proper signal analysis for correctly interpreting the cardiovascular hemodynamic response phenomena and exploring their physiological and pathophysiological mechanisms.


Subject(s)
Hypoxia , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/physiopathology , Hypoxia/physiopathology , Male , Time Factors , Female , Middle Aged , Adult , Hemodynamics , Heart Rate , Oxygen Saturation , Blood Pressure/physiology , Signal Processing, Computer-Assisted
15.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38639105

ABSTRACT

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Subject(s)
Hypertension, Pulmonary , Vascular Remodeling , Zinc Finger Protein GLI1 , Animals , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Mice , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice, Inbred C57BL , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Mice, Transgenic , Male , Humans , Hypoxia/metabolism , Hypoxia/physiopathology
17.
Sleep Med Rev ; 75: 101928, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614049

ABSTRACT

The sleep quality of lowlanders in hypoxic environments has become increasingly important with an increase in highland and alpine activities. This study aimed to identify the effects of acute exposure to hypoxia on the sleep structure of lowlanders and to analyze the changes in sleep indicators at varying levels of hypoxia. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Twenty-three studies were screened and included in the quantitative analysis. The results showed that acute exposure to hypoxia reduced sleep quality in lowlanders. Post-sleep arousal events and the percentage of N1 were significantly increased, whereas total sleep time, sleep efficiency, and the percentage of N3 and rapid eye movement sleep were significantly decreased in hypoxic environments. Acute exposure to hypoxia had the greatest negative impact on wakefulness after sleep onset (WASO). In addition, a larger decrease in sleep efficiency and higher increase in the percentages of N1 and WASO were observed when lowlanders were exposed to higher levels of hypoxia. This study clarifies the quantitative effects of acute hypoxic exposure on sleep in lowlanders based on original studies and explains the sleep disorders faced by lowlanders in hypoxic environments.


Subject(s)
Hypoxia , Adult , Humans , Altitude , Arousal/physiology , Hypoxia/physiopathology , Sleep/physiology , Sleep Quality , Sleep Stages/physiology , Sleep, REM/physiology , Wakefulness/physiology
19.
J Appl Physiol (1985) ; 136(6): 1400-1409, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38660723

ABSTRACT

This study tested the hypothesis that acute moderate normobaric hypoxia augments circulating thyroid hormone concentrations during and following 1 h of cold head-out water immersion (HOWI), compared with when cold HOWI is completed during normobaric normoxia. In a randomized crossover single-blind design, 12 healthy adults (27 ± 2 yr, 2 women) completed 1 h of cold (22.0 ± 0.1°C) HOWI breathing either normobaric normoxia ([Formula: see text] = 0.21) or normobaric hypoxia ([Formula: see text] = 0.14). Free and total thyroxine (T3) and triiodothyronine (T4), and thyroid-stimulating hormone (TSH) concentrations were measured in venous blood samples obtained before (baseline), during (15-, 30-, and 60 min), and 15 min following HOWI (post-), and were corrected for changes in plasma volume. Arterial oxyhemoglobin saturation and core (rectal) temperature were measured continuously. Arterial oxyhemoglobin saturation was lower during hypoxia (90 ± 3%) compared with normoxia (98 ± 1%, P < 0.001). Core temperature fell from baseline (normoxia: 37.2 ± 0.4°C, hypoxia: 37.2 ± 0.4°C) to post-cold HOWI (normoxia: 36.4 ± 0.5°C, hypoxia: 36.3 ± 0.5°C, P < 0.001) in both conditions but did not change differently between conditions (condition × time: P = 0.552). Circulating TSH, total T3, free T4, total T3, and free T4 concentrations demonstrated significant main effects of time (all P ≤ 0.024), but these changes did not differ between normoxic and hypoxic conditions (condition × time: all P ≥ 0.163). These data indicate that acute moderate normobaric hypoxia does not modify the circulating thyroid hormone response during 1 h of cold HOWI.NEW & NOTEWORTHY Acute head-out cold (22°C) water immersion (HOWI) decreased core temperature and increased thermogenesis. This thermogenic response was paralleled by the activation of the hypothalamic-pituitary-thyroid axis, as evidenced by changes in thyroid hormones. However, cold HOWI in combination with moderate normobaric hypoxia did not modify the thermogenic nor the circulating thyroid hormone response. This finding suggests that hypoxia-induced alterations in thyroid hormone concentrations are unlikely to acutely contribute to adaptations resulting from repeated cold-water exposures.


Subject(s)
Cold Temperature , Cross-Over Studies , Hypoxia , Immersion , Humans , Adult , Male , Female , Hypoxia/physiopathology , Hypoxia/blood , Immersion/physiopathology , Thyroxine/blood , Triiodothyronine/blood , Single-Blind Method , Thyroid Hormones/blood , Thyrotropin/blood , Body Temperature/physiology
20.
J Therm Biol ; 121: 103837, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552447

ABSTRACT

Hypoxic aquatic environments occur more frequently as a result of climate change, thereby exerting challenges on the physiological and metabolic functions of aquatic animals. In this study, a model fish, zebrafish (Danio rerio) was used to observe the climate-induced hypoxic effect on the upper thermal limit (critical thermal maximum; CTmax), hemoglobin, and blood glucose levels, and abnormalities of erythrocytes at cellular and nuclear level. The value of CTmax decreased significantly under hypoxia (39.10 ± 0.96 °C) compared to normoxia (43.70 ± 0.91 °C). At CTmax, hemoglobin levels were much lower (9.33 ± 0.60 g/dL) and blood glucose levels were significantly higher (194.20 ± 11.33 mg/L) under hypoxia than they were under normoxia and at the beginning of the experiment. Increased frequencies of abnormalities in the erythrocytes at both cellular (fusion, twin, elongated, spindle and tear drop shaped) and nuclear (micronucleus, karyopyknosis, binuclei, nuclear degeneration and notched nuclei) levels were also found under hypoxia compared to normoxia. These results suggest that hypoxic conditions significantly alter the temperature tolerance and subsequent physiology in zebrafish. Our findings will aid in the development of effective management techniques for aquatic environments with minimum oxygen availability.


Subject(s)
Blood Glucose , Erythrocytes , Hemoglobins , Zebrafish , Animals , Zebrafish/physiology , Hemoglobins/metabolism , Erythrocytes/metabolism , Erythrocytes/physiology , Blood Glucose/metabolism , Blood Glucose/analysis , Hypoxia/physiopathology , Thermotolerance , Oxygen/metabolism , Oxygen/blood , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...