Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 394
Filter
1.
Commun Biol ; 7(1): 1100, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244636

ABSTRACT

PHD2 is essential in modulating HIF-1α levels upon oxygen fluctuations. Hypoxia, a hallmark of uterus, and HIF-1α have recently emerged as opposing regulators of mesendoderm specification, suggesting a role for PHD2 therein. We found that PHD2 expression initially covered the epiblast and gradually receded from the primitive streak, which was identical to hypoxia and exclusive to HIF-1α. The investigations performed in mESCs, embryoids, and mouse embryos together demonstrated that PHD2 negatively regulated mesendoderm specification. Single-cell RNA sequencing revealed that PHD2 governed the transition from epiblast to mesendoderm. The downstream effect of PHD2 relied on the HIF-1α regulated Wnt/ß-catenin pathway, while it was regulated upstream by miR-429. In summary, our research highlights PHD2's essential role in mesendoderm specification and its interactions with hypoxia and HIF-1α.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases , Animals , Mice , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mesoderm/metabolism , Mesoderm/embryology , Gene Expression Regulation, Developmental , Wnt Signaling Pathway , Endoderm/metabolism , Endoderm/embryology , MicroRNAs/metabolism , MicroRNAs/genetics
2.
Nat Commun ; 15(1): 7789, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242595

ABSTRACT

While adoptive cell therapy has shown success in hematological malignancies, its potential against solid tumors is hindered by an immunosuppressive tumor microenvironment (TME). In recent years, members of the hypoxia-inducible factor (HIF) family have gained recognition as important regulators of T-cell metabolism and function. The role of HIF signalling in activated CD8 T cell function in the context of adoptive cell transfer, however, has not been explored in full depth. Here we utilize CRISPR-Cas9 technology to delete prolyl hydroxylase domain-containing enzymes (PHD) 2 and 3, thereby stabilizing HIF-1 signalling, in CD8 T cells that have already undergone differentiation and activation, modelling the T cell phenotype utilized in clinical settings. We observe a significant boost in T-cell activation and effector functions following PHD2/3 deletion, which is dependent on HIF-1α, and is accompanied by an increased glycolytic flux. This improvement in CD8 T cell performance translates into an enhancement in tumor response to adoptive T cell therapy in mice, across various tumor models, even including those reported to be extremely resistant to immunotherapeutic interventions. These findings hold promise for advancing CD8 T-cell based therapies and overcoming the immune suppression barriers within challenging tumor microenvironments.


Subject(s)
CD8-Positive T-Lymphocytes , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases , Immunotherapy, Adoptive , Tumor Microenvironment , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Immunotherapy, Adoptive/methods , Mice , Tumor Microenvironment/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice, Inbred C57BL , Cell Line, Tumor , Lymphocyte Activation/immunology , CRISPR-Cas Systems , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Female , Procollagen-Proline Dioxygenase
3.
Nat Commun ; 15(1): 7483, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209825

ABSTRACT

Enhancing thermogenic brown adipose tissue (BAT) function is a promising therapeutic strategy for metabolic disease. However, predominantly thermoneutral modern human living conditions deactivate BAT. We demonstrate that selective adipocyte deficiency of the oxygen-sensor HIF-prolyl hydroxylase (PHD2) gene overcomes BAT dormancy at thermoneutrality. Adipocyte-PHD2-deficient mice maintain higher energy expenditure having greater BAT thermogenic capacity. In human and murine adipocytes, a PHD inhibitor increases Ucp1 levels. In murine brown adipocytes, antagonising the major PHD2 target, hypoxia-inducible factor-(HIF)-2a abolishes Ucp1 that cannot be rescued by PHD inhibition. Mechanistically, PHD2 deficiency leads to HIF2 stabilisation and binding of HIF2 to the Ucp1 promoter, thus enhancing its expression in brown adipocytes. Serum proteomics analysis of 5457 participants in the deeply phenotyped Age, Gene and Environment Study reveal that serum PHD2 associates with increased risk of metabolic disease. Here we show that adipose-PHD2-inhibition is a therapeutic strategy for metabolic disease and identify serum PHD2 as a disease biomarker.


Subject(s)
Adipose Tissue, Brown , Energy Metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases , Thermogenesis , Uncoupling Protein 1 , Animals , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Humans , Mice , Adipose Tissue, Brown/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Mice, Knockout , Female , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Adipocytes/metabolism , Oxygen/metabolism , Mice, Inbred C57BL , Adipocytes, Brown/metabolism , Adult , Promoter Regions, Genetic , Middle Aged
4.
Genome Biol Evol ; 16(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39165136

ABSTRACT

Low dissolved oxygen (hypoxia) is recognized as a major threat to aquatic ecosystems worldwide. Because oxygen is paramount for the energy metabolism of animals, understanding the functional and genetic drivers of whole-animal hypoxia tolerance is critical to predicting the impacts of aquatic hypoxia. In this study, we investigate the molecular evolution of key genes involved in the detection of and response to hypoxia in ray-finned fishes: the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) oxygen-sensing system, also known as the EGLN (egg-laying nine)-HIF oxygen-sensing system. We searched fish genomes for HIFA and EGLN genes, discovered new paralogs from both gene families, and analyzed protein-coding sites under positive selection. The physicochemical properties of these positively selected amino acid sites were summarized using linear discriminants for each gene. We employed phylogenetic generalized least squares to assess the relationship between these linear discriminants for each HIFA and EGLN and hypoxia tolerance as reflected by the critical oxygen tension (Pcrit) of the corresponding species. Our results demonstrate that Pcrit in ray-finned fishes correlates with the physicochemical variation of positively selected sites in specific HIFA and EGLN genes. For HIF2A, two linear discriminants captured more than 90% of the physicochemical variation of these sites and explained between 20% and 39% of the variation in Pcrit. Thus, variation in HIF2A among fishes may contribute to their capacity to cope with aquatic hypoxia, similar to its proposed role in conferring tolerance to high-altitude hypoxia in certain lineages of terrestrial vertebrates.


Subject(s)
Evolution, Molecular , Fishes , Hypoxia , Oxygen , Animals , Fishes/genetics , Oxygen/metabolism , Hypoxia/genetics , Phylogeny , Selection, Genetic , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism
5.
J Am Heart Assoc ; 13(16): e035769, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39056332

ABSTRACT

BACKGROUND: Endothelial prolyl hydroxylase-2 (PHD2) is essential for pulmonary remodeling and hypertension. In the present study, we investigated the role of endothelial PHD2 in angiotensin II-mediated arterial stiffness, pericyte recruitment, and cardiac fibrosis. METHODS AND RESULTS: Chondroitin sulfate proteoglycan 4 tracing reporter chondroitin sulfate proteoglycan 4- red fluorescent protein (DsRed) transgenic mice were crossed with PHD2flox/flox (PHD2f/f) mice and endothelial-specific knockout of PHD2 (PHD2ECKO) mice. Transgenic PHD2f/f (TgPHD2f/f) mice and TgPHD2ECKO mice were infused with angiotensin II for 4 weeks. Arterial thickness, stiffness, and histological and immunofluorescence of pericytes and fibrosis were measured. Infusion of TgPHD2f/f mice with angiotensin II resulted in a time-dependent increase in pulse-wave velocity. Angiotensin II-induced pulse-wave velocity was further elevated in the TgPHD2ECKO mice. TgPHD2ECKO also reduced coronary flow reserve compared with TgPHD2f/f mice infused with angiotensin II. Mechanistically, knockout of endothelial PHD2 promoted aortic arginase activity and angiotensin II-induced aortic thickness together with increased transforming growth factor-ß1 and ICAM-1/VCAM-1 expression in coronary arteries. TgPHD2f/f mice infused with angiotensin II for 4 weeks exhibited a significant increase in cardiac fibrosis and hypertrophy, which was further developed in the TgPHD2ECKO mice. Chondroitin sulfate proteoglycan 4 pericyte was traced by DsRed+ staining and angiotensin II infusion displayed a significant increase of DsRed+ pericytes in the heart, as well as a deficiency of endothelial PHD2, which further promoted angiotensin II-induced pericyte increase. DsRed+ pericytes were costained with fibroblast-specific protein 1 and α-smooth muscle actin for measuring pericyte-myofibroblast cell transition. The knockout of endothelial PHD2 increased the amount of DsRed+/fibroblast-specific protein 1+ and DsRed+/α-smooth muscle actin+ cells induced by angiotensin II infusion. CONCLUSIONS: Knockout of endothelial PHD2 enhanced angiotensin II-induced cardiac fibrosis by mechanisms involving increasing arterial stiffness and pericyte-myofibroblast cell transitions.


Subject(s)
Angiotensin II , Endothelial Cells , Fibrosis , Mice, Knockout , Pericytes , Vascular Stiffness , Animals , Pericytes/pathology , Pericytes/metabolism , Angiotensin II/pharmacology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/deficiency , Myocardium/pathology , Myocardium/metabolism , Disease Models, Animal , Male , Mice, Inbred C57BL
6.
Bioorg Med Chem Lett ; 111: 129891, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39019240

ABSTRACT

Inhibition of the hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) represents a promising strategy for discovering next-generation treatments for renal anemia. We discovered DS44470011 in our previous study, which showed potent in vitro activity and in vivo efficacy based on HIF-PHD inhibition. However, DS44470011 was also found to exert genotoxic effects. By converting the biphenyl structure, which is suspected to be the cause of this genotoxicity, to a 1-phenylpiperidine structure, we were able to avoid genotoxicity and further improve the in vitro activity and in vivo efficacy. Furthermore, through the optimization of pyrimidine derivatives, we discovered DS-1093a, which has a wide safety margin with potent in vitro activity and an optimal pharmacokinetic profile. DS-1093a achieved an increase in hemoglobin levels in an adenine-induced rat model of chronic kidney disease after its continuous administration for 4 days.


Subject(s)
Anemia , Hypoxia-Inducible Factor-Proline Dioxygenases , Prolyl-Hydroxylase Inhibitors , Animals , Rats , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Anemia/drug therapy , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/chemistry , Humans , Administration, Oral , Structure-Activity Relationship , Renal Insufficiency, Chronic/drug therapy , Drug Discovery , Molecular Structure , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Dose-Response Relationship, Drug
7.
Proc Natl Acad Sci U S A ; 121(26): e2402538121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38905240

ABSTRACT

Intracellular sensors detect changes in levels of essential metals to initiate homeostatic responses. But, a mammalian manganese (Mn) sensor is unknown, representing a major gap in understanding of Mn homeostasis. Using human-relevant models, we recently reported that: 1) the primary homeostatic response to elevated Mn is upregulation of hypoxia-inducible factors (HIFs), which increases expression of the Mn efflux transporter SLC30A10; and 2) elevated Mn blocks the prolyl hydroxylation of HIFs by prolyl hydroxylase domain (PHD) enzymes, which otherwise targets HIFs for degradation. Thus, the mammalian mechanism for sensing elevated Mn likely relates to PHD inhibition. Moreover, 1) Mn substitutes for a catalytic iron (Fe) in PHD structures; and 2) exchangeable cellular levels of Fe and Mn are comparable. Therefore, we hypothesized that elevated Mn directly inhibits PHD by replacing its catalytic Fe. In vitro assays using catalytically active PHD2, the primary PHD isoform, revealed that Mn inhibited, and Fe supplementation rescued, PHD2 activity. However, a mutation in PHD2 (D315E) that selectively reduced Mn binding without substantially impacting Fe binding or enzymatic activity resulted in complete insensitivity of PHD2 to Mn in vitro. Additionally, hepatic cells expressing full-length PHD2D315E were less sensitive to Mn-induced HIF activation and SLC30A10 upregulation than PHD2wild-type. These results: 1) define a fundamental Mn sensing mechanism for controlling Mn homeostasis-elevated Mn inhibits PHD2, which functions as a Mn sensor, by outcompeting its catalytic Fe, and PHD2 inhibition activates HIF signaling to up-regulate SLC30A10; and 2) identify a unique mode of metal sensing that may have wide applicability.


Subject(s)
Homeostasis , Hypoxia-Inducible Factor-Proline Dioxygenases , Manganese , Humans , Manganese/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , HEK293 Cells , Iron/metabolism
8.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928200

ABSTRACT

Hypoxia-inducible factor 1-alpha (HIF1A) is a key transcription factor aiding tumor cells' adaptation to hypoxia, regulated by the prolyl hydroxylase family (EGLN1-3) by directing toward degradation pathways. DNA methylation potentially influences EGLN and HIF1A levels, impacting cellular responses to hypoxia. We examined 96 HNSCC patients and three cell lines, analyzing gene expression of EGLN1-3, HIF1A, CA9, VEGF, and GLUT1 at the mRNA level and EGLN1 protein levels. Methylation levels of EGLNs and HIF1A were assessed through high-resolution melting analysis. Bioinformatics tools were employed to characterize associations between EGLN1-3 and HIF1A expression and methylation. We found significantly higher mRNA levels of EGLN3, HIF1A, GLUT1, VEGF, and CA9 (p = 0.021; p < 0.0001; p < 0.0001; p = 0.004, and p < 0.0001, respectively) genes in tumor tissues compared to normal ones and downregulation of the EGLN1 mRNA level in tumor tissues (p = 0.0013). In HNSCC patients with hypermethylation of HIF1A in normal tissue, we noted a reduction in HIF1A mRNA levels compared to tumor tissue (p = 0.04). In conclusion, the differential expression of EGLN and HIF1A genes in HNSCC tumors compared to normal tissues influences patients' overall survival, highlighting their role in tumor development. Moreover, DNA methylation could be responsible for HIF1A suppression in the normal tissues of HNSCC patients.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases , Squamous Cell Carcinoma of Head and Neck , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Female , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Male , Cell Line, Tumor , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Middle Aged , Prolyl Hydroxylases/metabolism , Prolyl Hydroxylases/genetics , Aged , Carcinogenesis/genetics , Adult
9.
J Therm Biol ; 122: 103881, 2024 May.
Article in English | MEDLINE | ID: mdl-38870755

ABSTRACT

Heat stress (HS) poses a substantial threat to animal growth and development, resulting in declining performance and economic losses. The intestinal system is susceptible to HS and undergoes intestinal hyperthermia and pathological hypoxia. Hypoxia-inducible factor-1α (HIF-1α), a key player in cellular hypoxic adaptation, is influenced by prolyl-4-hydroxylase 2 (PHD2) and heat shock protein 90 (HSP90). However, the comprehensive regulation of HIF-1α in the HS intestine remains unclear. This study aims to explore the impact of HS on pig intestinal mucosa and the regulatory mechanism of HIF-1α. Twenty-four Congjiang Xiang pigs were divided into the control and five HS-treated groups (6, 12, 24, 48, and 72 h). Ambient temperature and humidity were maintained in a thermally-neutral state (temperature-humidity index (THI) < 74) in the control group, whereas the HS group experienced moderate HS (78 < THI <84). Histological examination revealed villus exfoliation after 12 h of HS in the duodenum, jejunum, and ileum, with increasing damage as HS duration extended. The villus height to crypt depth ratio (V/C) decreased and goblet cell number increased with prolonged HS. Quantitative real-time PCR, Western blot, and immunohistochemistry analysis indicated increased expression of HIF-1α and HSP90 in the small intestine with prolonged HS, whereas PHD2 expression decreased. Further investigation in IPEC-J2 cells subjected to HS revealed that overexpressing PHD2 increased PHD2 mRNA and protein expression, while it decreases HIF-1α. Conversely, interfering with HSP90 expression substantially decreased both HSP90 and HIF-1α mRNA and protein levels. These results suggest that HS induces intestinal hypoxia with concomitant small intestinal mucosal damage. The expression of HIF-1α in HS-treated intestinal epithelial cells may be co-regulated by HSP90 and PHD2 and is possibly linked to intestinal hyperthermia and hypoxia.


Subject(s)
Epithelial Cells , HSP90 Heat-Shock Proteins , Heat-Shock Response , Hypoxia-Inducible Factor 1, alpha Subunit , Intestine, Small , Animals , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Swine , Intestine, Small/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Cell Line
10.
Fluids Barriers CNS ; 21(1): 42, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755642

ABSTRACT

BACKGROUND: Most subarachnoid hemorrhage (SAH) patients have no obvious hematoma lesions but exhibit blood-brain barrier dysfunction and vasogenic brain edema. However, there is a few days between blood‒brain barrier dysfunction and vasogenic brain edema. The present study sought to investigate whether this phenomenon is caused by endothelial injury induced by the acute astrocytic barrier, also known as the glial limitans. METHODS: Bioinformatics analyses of human endothelial cells and astrocytes under hypoxia were performed based on the GEO database. Wild-type, EGLN3 and PKM2 conditional knock-in mice were used to confirm glial limitan formation after SAH. Then, the effect of endothelial EGLN3-PKM2 signaling on temporal and spatial changes in glial limitans was evaluated in both in vivo and in vitro models of SAH. RESULTS: The data indicate that in the acute phase after SAH, astrocytes can form a temporary protective barrier, the glia limitans, around blood vessels that helps maintain barrier function and improve neurological prognosis. Molecular docking studies have shown that endothelial cells and astrocytes can promote glial limitans-based protection against early brain injury through EGLN3/PKM2 signaling and further activation of the PKC/ERK/MAPK signaling pathway in astrocytes after SAH. CONCLUSION: Improving the ability to maintain glial limitans may be a new therapeutic strategy for improving the prognosis of SAH patients.


Subject(s)
Astrocytes , Blood-Brain Barrier , Endothelial Cells , Hypoxia-Inducible Factor-Proline Dioxygenases , Pyruvate Kinase , Signal Transduction , Subarachnoid Hemorrhage , Animals , Humans , Mice , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain Edema/metabolism , Endothelial Cells/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Pyruvate Kinase/metabolism , Signal Transduction/physiology , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/immunology , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
11.
Diabetologia ; 67(9): 1943-1954, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38814443

ABSTRACT

AIMS/HYPOTHESIS: Hypoxia-inducible factor prolyl 4-hydroxylase (HIF-P4H) enzymes regulate adaptive cellular responses to low oxygen concentrations. Inhibition of HIF-P4Hs leads to stabilisation of hypoxia-inducible factors (HIFs) and activation of the HIF pathway affecting multiple biological processes to rescue cells from hypoxia. As evidence from animal models suggests that HIF-P4H inhibitors could be used to treat metabolic disorders associated with insulin resistance, we examined whether roxadustat, an HIF-P4H inhibitor approved for the treatment of renal anaemia, would have an effect on glucose metabolism in primary human myotubes. METHODS: Primary skeletal muscle cell cultures, established from biopsies of vastus lateralis muscle from men with normal glucose tolerance (NGT) (n=5) or type 2 diabetes (n=8), were treated with roxadustat. Induction of HIF target gene expression was detected with quantitative real-time PCR. Glucose uptake and glycogen synthesis were investigated with radioactive tracers. Glycolysis and mitochondrial respiration rates were measured with a Seahorse analyser. RESULTS: Exposure to roxadustat stabilised nuclear HIF1α protein expression in human myotubes. Treatment with roxadustat led to induction of HIF target gene mRNAs for GLUT1 (also known as SLC2A1), HK2, MCT4 (also known as SLC16A4) and HIF-P4H-2 (also known as PHD2 or EGLN1) in myotubes from donors with NGT, with a blunted response in myotubes from donors with type 2 diabetes. mRNAs for LDHA, PDK1 and GBE1 were induced to a similar degree in myotubes from donors with NGT or type 2 diabetes. Exposure of myotubes to roxadustat led to a 1.4-fold increase in glycolytic rate in myotubes from men with NGT (p=0.0370) and a 1.7-fold increase in myotubes from donors with type 2 diabetes (p=0.0044), with no difference between the groups (p=0.1391). Exposure to roxadustat led to a reduction in basal mitochondrial respiration in both groups (p<0.01). Basal glucose uptake rates were similar in myotubes from donors with NGT (20.2 ± 2.7 pmol mg-1 min-1) and type 2 diabetes (25.3 ± 4.4 pmol mg-1 min-1, p=0.4205). Treatment with roxadustat enhanced insulin-stimulated glucose uptake in myotubes from donors with NGT (1.4-fold vs insulin-only condition, p=0.0023). The basal rate of glucose incorporation into glycogen was lower in myotubes from donors with NGT (233 ± 12.4 nmol g-1 h-1) than in myotubes from donors with type 2 diabetes (360 ± 40.3 nmol g-1 h-1, p=0.0344). Insulin increased glycogen synthesis by 1.9-fold (p=0.0025) in myotubes from donors with NGT, whereas roxadustat did not affect their basal or insulin-stimulated glycogen synthesis. Insulin increased glycogen synthesis by 1.7-fold (p=0.0031) in myotubes from donors with type 2 diabetes. While basal glycogen synthesis was unaffected by roxadustat, pretreatment with roxadustat enhanced insulin-stimulated glycogen synthesis in myotubes from donors with type 2 diabetes (p=0.0345). CONCLUSIONS/INTERPRETATION: Roxadustat increases glycolysis and inhibits mitochondrial respiration in primary human myotubes regardless of diabetes status. Roxadustat may also improve insulin action on glycogen synthesis in myotubes from donors with type 2 diabetes.


Subject(s)
Glucose , Glycine , Isoquinolines , Muscle Fibers, Skeletal , Humans , Male , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Glucose/metabolism , Glycine/analogs & derivatives , Glycine/pharmacology , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Cells, Cultured , Middle Aged , Glycolysis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Adult
12.
Theranostics ; 14(7): 2856-2880, 2024.
Article in English | MEDLINE | ID: mdl-38773968

ABSTRACT

Cell metabolism reprogramming to sustain energy production, while reducing oxygen and energy consuming processes is crucially important for the adaptation to hypoxia/ischemia. Adaptive metabolic rewiring is controlled by hypoxia-inducible factors (HIFs). Accumulating experimental evidence indicates that timely activation of HIF in brain-resident cells improves the outcome from acute ischemic stroke. However, the underlying molecular mechanisms are still incompletely understood. Thus, we investigated whether HIF-dependent metabolic reprogramming affects the vulnerability of brain-resident cells towards ischemic stress. Methods: We used genetic and pharmacological approaches to activate HIF in the murine brain in vivo and in primary neurons and astrocytes in vitro. Numerous metabolomic approaches and molecular biological techniques were applied to elucidate potential HIF-dependent effects on the central carbon metabolism of brain cells. In animal and cell models of ischemic stroke, we analysed whether HIF-dependent metabolic reprogramming influences the susceptibility to ischemic injury. Results: Neuron-specific gene ablation of prolyl-4-hydroxylase domain 2 (PHD2) protein, negatively regulating the protein stability of HIF-α in an oxygen dependent manner, reduced brain injury and functional impairment of mice after acute stroke in a HIF-dependent manner. Accordingly, PHD2 deficient neurons showed an improved tolerance towards ischemic stress in vitro, which was accompanied by enhanced HIF-1-mediated glycolytic lactate production through pyruvate dehydrogenase kinase-mediated inhibition of the pyruvate dehydrogenase. Systemic treatment of mice with roxadustat, a low-molecular weight pan-PHD inhibitor, not only increased the abundance of numerous metabolites of the central carbon and amino acid metabolism in murine brain, but also ameliorated cerebral tissue damage and sensorimotor dysfunction after acute ischemic stroke. In neurons and astrocytes roxadustat provoked a HIF-1-dependent glucose metabolism reprogramming including elevation of glucose uptake, glycogen synthesis, glycolytic capacity, lactate production and lactate release, which enhanced the ischemic tolerance of astrocytes, but not neurons. We found that strong activation of HIF-1 in neurons by non-selective inhibition of all PHD isoenzymes caused a HIF-1-dependent upregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 redirecting glucose-6-phosphate from pentose phosphate pathway (PPP) to the glycolysis pathway. This was accompanied by a reduction of NADPH production in the PPP, which further decreased the low intrinsic antioxidant reserve of neurons, making them more susceptible to ischemic stress. Nonetheless, in organotypic hippocampal cultures with preserved neuronal-glial interactions roxadustat decreased the neuronal susceptibility to ischemic stress, which was largely prevented by restricting glycolytic energy production through lactate transport blockade. Conclusion: Collectively, our results indicate that HIF-1-mediated metabolic reprogramming alleviates the intrinsic vulnerability of brain-resident cells to ischemic stress.


Subject(s)
Astrocytes , Carbon , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases , Ischemic Stroke , Neurons , Animals , Female , Male , Mice , Astrocytes/metabolism , Astrocytes/drug effects , Brain/metabolism , Brain Ischemia/metabolism , Carbon/metabolism , Cellular Reprogramming/drug effects , Disease Models, Animal , Glycolysis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Ischemic Stroke/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics
13.
Bioorg Med Chem Lett ; 108: 129799, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38754564

ABSTRACT

Inhibition of the hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) represents a promising strategy for discovering next-generation treatments for renal anemia. We identified a pyrimidine core with HIF-PHD inhibitory activity based on scaffold hopping of FG-2216 using crystal structures of HIF-PHD2 in complex with compound. By optimizing the substituents at the 2- and 6- positions of the pyrimidine core, we discovered DS44470011, which improves the effectiveness of erythropoietin (EPO) release in cells. Oral administration of DS44470011 to cynomolgus monkeys increased plasma EPO levels.


Subject(s)
Anemia , Hypoxia-Inducible Factor-Proline Dioxygenases , Macaca fascicularis , Prolyl-Hydroxylase Inhibitors , Animals , Anemia/drug therapy , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Administration, Oral , Humans , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/chemistry , Prolyl-Hydroxylase Inhibitors/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Erythropoietin , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
14.
Nihon Yakurigaku Zasshi ; 159(3): 157-159, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692879

ABSTRACT

Anemia in chronic kidney disease (CKD) occurs due to insufficient production of erythropoietin to compensate for the decrease in hemoglobin. Anemia in CKD has traditionally been treated with periodic injections of erythropoiesis-stimulating agents (ESAs), which are recombinant human erythropoietin preparations. Although ESA improved anemia in CKD and dramatically improved the quality of life of patients, there are some patients who are hyporesponsive to ESA, and the use of large doses of ESA in these patients may have a negative impact on patient prognosis. Currently, HIF prolyl hydroxylase (HIF-PH) inhibitors have been approved in Japan as a new treatment for anemia in CKD. HIF-PH inhibitors activate HIF and promote the production of endogenous erythropoietin. The 2019 Nobel Prize in Physiology or Medicine was awarded for groundbreaking research that uncovered the HIF pathway. Because HIF-PH inhibitors improve both erythropoietin production and iron metabolism, they are expected to be effective in treating ESA hyporesponsiveness and solve the inconvenience of injectable preparations. On the other hand, its effects are systemic and multifaceted, and long-term effects must be closely monitored.


Subject(s)
Anemia , Humans , Anemia/drug therapy , Anemia/etiology , Erythropoietin/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism
15.
Nihon Yakurigaku Zasshi ; 159(3): 169-172, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692882

ABSTRACT

Since the approval of HIF-PH inhibitors, HIF-PH inhibitors have been used clinically, and many studies and clinical case reports have been reported in Japan. A lot of information has been accumulated on clinical usage. However, HIF-PH inhibitors require careful administration for cancer patients due to their action mechanism through upregulating hypoxia-inducible factors (HIFs) level. In cancer cells, HIFs affect tumor progression and contribute to chemo- and radio-resistance. On the other hand, upregulation of HIFs in immune cells is associated with inflammation and suppress tumor progression. However, these controversial effects are not clear in in vivo model. It is needed to reveal whether upregulating HIFs level is beneficial for cancer therapy or not. We have previously reported that HIF-PH inhibitor treatment in tumor bearing mice model led to reconstitute tumor blood vessel and inhibit tumor growth. In addition, these phenomena were caused by tumor infiltrated macrophages and they altered these phenotypes. In this review, we will describe our findings on the mechanism of tumor growth suppression by HIF-PH inhibitors. We also want to mention the risks and benefits of future HIF-PH inhibitors.


Subject(s)
Neoplasms , Tumor Microenvironment , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Animals , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
16.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38770916

ABSTRACT

Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia-inducible factor (HIF) α proteins, routing them for polyubiquitylation and proteasomal degradation. Typically, HIFα accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here, we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 (Egln1) and Hif2alpha (Epas1). EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIFα accumulation and VEGFA upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif1alpha (Hif1a), Hif2alpha, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF2α. In PHD2-deficient retinal vasculature, delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.


Subject(s)
Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors , Endothelial Cells , Hypoxia-Inducible Factor-Proline Dioxygenases , Receptors, Notch , Retinal Neovascularization , Signal Transduction , Up-Regulation , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice , Receptors, Notch/metabolism , Receptors, Notch/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Retinal Neovascularization/metabolism , Retinal Neovascularization/genetics , Retinal Neovascularization/pathology , Endothelial Cells/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Retina/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Retinal Vessels/metabolism , Angiogenesis
17.
Chem Biol Drug Des ; 103(5): e14531, 2024 May.
Article in English | MEDLINE | ID: mdl-38726798

ABSTRACT

Inhibition of prolylhydroxylase-2 (PHD-2) in both normoxic and hypoxic cells is a critical component of solid tumours. The present study aimed to identify small molecules with PHD-2 activation potential. Virtually screening 4342 chemical compounds for structural similarity to R59949 and docking with PHD-2. To find the best drug candidate, hits were assessed for drug likeliness, antihypoxic and antineoplastic potential. The selected drug candidate's PHD-2 activation, cytotoxic and apoptotic potentials were assessed using 2-oxoglutarate, MTT, AO/EtBr and JC-1 staining. The drug candidate was also tested for its in-vivo chemopreventive efficacy against DMBA-induced mammary gland cancer alone and in combination with Tirapazamine (TPZ). Virtual screening and 2-oxoglutarate assay showed BBAP-6 as lead compound. BBAP-6 exhibited cytotoxic and apoptotic activity against ER+ MCF-7. In carmine staining and histology, BBAP-6 alone or in combination with TPZ restored normal surface morphology of the mammary gland after DMBA produced malignant alterations. Immunoblotting revealed that BBAP-6 reduced NF-κB expression, activated PHD-2 and induced intrinsic apoptotic pathway. Serum metabolomics conducted with 1H NMR confirmed that BBAP-6 prevented HIF-1α and NF-κB-induced metabolic changes in DMBA mammary gland cancer model. In a nutshell, it can be concluded that BBAP-6 activates PHD-2 and exhibits anticancer potential.


Subject(s)
Apoptosis , Breast Neoplasms , Hypoxia-Inducible Factor-Proline Dioxygenases , Humans , Female , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/prevention & control , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Apoptosis/drug effects , Mice , Cell Hypoxia/drug effects , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , Cell Line, Tumor , NF-kappa B/metabolism , Tirapazamine/pharmacology , Tirapazamine/chemistry , Tirapazamine/metabolism
18.
Nat Cancer ; 5(6): 916-937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38637657

ABSTRACT

Acute myeloid leukemia (AML) is a largely incurable disease, for which new treatments are urgently needed. While leukemogenesis occurs in the hypoxic bone marrow, the therapeutic tractability of the hypoxia-inducible factor (HIF) system remains undefined. Given that inactivation of HIF-1α/HIF-2α promotes AML, a possible clinical strategy is to target the HIF-prolyl hydroxylases (PHDs), which promote HIF-1α/HIF-2α degradation. Here, we reveal that genetic inactivation of Phd1/Phd2 hinders AML initiation and progression, without impacting normal hematopoiesis. We investigated clinically used PHD inhibitors and a new selective PHD inhibitor (IOX5), to stabilize HIF-α in AML cells. PHD inhibition compromises AML in a HIF-1α-dependent manner to disable pro-leukemogenic pathways, re-program metabolism and induce apoptosis, in part via upregulation of BNIP3. Notably, concurrent inhibition of BCL-2 by venetoclax potentiates the anti-leukemic effect of PHD inhibition. Thus, PHD inhibition, with consequent HIF-1α stabilization, is a promising nontoxic strategy for AML, including in combination with venetoclax.


Subject(s)
Disease Progression , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases , Leukemia, Myeloid, Acute , Prolyl-Hydroxylase Inhibitors , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/therapeutic use , Animals , Mice , Apoptosis/drug effects , Proto-Oncogene Proteins/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Proto-Oncogene Proteins c-bcl-2/metabolism , Protein Stability/drug effects , Bridged Bicyclo Compounds, Heterocyclic
19.
Mol Carcinog ; 63(7): 1303-1318, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38634741

ABSTRACT

The expression pattern of MUC1-C in tumors is closely linked to tumor progression; however, its specific mechanism remains unclear. The expression of MUC1-C in cancer and adjacent normal tissues was detected using immunohistochemistry and Western blot. The IC50 of cells to gemcitabine was determined using the CCK8 assay. The effects of hypoxia and MUC1-C on the behavioral and metabolic characteristics of bladder cancer cells were investigated. Gene expression was assessed through Western blot and polymerase chain reaction. The relationship between the genes was analyzed by co-immunoprecipitation, immunofluorescence and Western blot. Finally, the role of the EGLN2 and NF-κB signaling pathways in the interaction between MUC1-C and hypoxia-inducible factor-1α (HIF-1α) was investigated. MUC1-C expression is significantly higher in bladder cancer tissues than in adjacent normal tissues, particularly in large-volume tumors, and is closely correlated with clinical features such as tumor grade. Tumor volume-mediated hypoxia resulted in increased expression of MUC1-C and HIF-1α in bladder cancer cells. Under stimulation of hypoxia, the inhibitory effect of EGLN2 on the NF-κB signaling pathway was weakened, allowing NF-κB to promote the positive feedback formation of MUC1-C and HIF-1α. Simultaneously, EGLN2-mediated degradation of HIF-1α was reduced. This ultimately led to elevated HIF-1α-mediated downstream gene expression, promoting increased glucose uptake and glycolysis, and ultimately resulting in heightened chemotherapy resistance and malignancy.


Subject(s)
Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases , Mucin-1 , Signal Transduction , Urinary Bladder Neoplasms , Female , Humans , Male , Middle Aged , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Gemcitabine , Gene Expression Regulation, Neoplastic/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Mucin-1/metabolism , Mucin-1/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Signal Transduction/drug effects , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics
20.
Life Sci ; 346: 122641, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614299

ABSTRACT

AIMS: Kidney disease often leads to anemia due to a defect in the renal production of the erythroid growth factor erythropoietin (EPO), which is produced under the positive regulation of hypoxia-inducible transcription factors (HIFs). Chemical compounds that inhibit HIF-prolyl hydroxylases (HIF-PHs), which suppress HIFs, have been developed to reactivate renal EPO production in renal anemia patients. Currently, multiple HIF-PH inhibitors, in addition to conventional recombinant EPO reagents, are used for renal anemia treatment. This study aimed to elucidate the therapeutic mechanisms and drug-specific properties of HIF-PH inhibitors. METHODS AND KEY FINDINGS: Gene expression analyses and mass spectrometry revealed that HIF-PH inhibitors (daprodustat, enarodustat, molidustat, and vadadustat) alter Epo gene expression levels in the kidney and liver in a drug-specific manner, with different pharmacokinetics in the plasma and urine after oral administration to mice. The drug specificity revealed the dominant contribution of EPO induction in the kidneys rather than in the liver to plasma EPO levels after HIF-PH inhibitor administration. We also found that several HIF-PH inhibitors directly induce duodenal gene expression related to iron intake, while these drugs indirectly suppress hepatic hepcidin expression to mobilize stored iron for hemoglobin synthesis through induction of the EPO-erythroferrone axis. SIGNIFICANCE: Renal EPO induction is the major target of HIF-PH inhibitors for their therapeutic effects on erythropoiesis. Additionally, the drug-specific properties of HIF-PH inhibitors in EPO induction and iron metabolism have been shown in mice, providing useful information for selecting the proper HIF-PH inhibitor for each renal anemia patient.


Subject(s)
Erythropoietin , Hypoxia-Inducible Factor-Proline Dioxygenases , Kidney , Liver , Prolyl-Hydroxylase Inhibitors , Pyrazoles , Triazoles , Animals , Erythropoietin/metabolism , Mice , Kidney/metabolism , Kidney/drug effects , Liver/metabolism , Liver/drug effects , Prolyl-Hydroxylase Inhibitors/pharmacology , Male , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Anemia/drug therapy , Anemia/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL