Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Dev ; 21(3): 455-64, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-21933024

ABSTRACT

Multipotent mesenchymal stem cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. However, there is a lack of methods to quickly and efficiently isolate, characterize, and ex vivo expand desired cell populations for therapeutic purposes. Single markers to identify cell populations have not been characterized; instead, all characterizations rely on panels of functional and phenotypical properties. Glycan epitopes can be used for identifying and isolating specific cell types from heterogeneous populations, on the basis of their cell-type specific expression and prominent cell surface localization. We have now studied in detail the cell surface expression of the blood group i epitope (linear poly-N-acetyllactosamine chain) in umbilical cord blood (UCB)-derived MSCs. We used flow cytometry and mass spectrometric glycan analysis and discovered that linear poly-N-acetyllactosamine structures are expressed in UCB-derived MSCs, but not in cells differentiated from them. We further verified the findings by mass spectrometric glycan analysis. Gene expression analysis indicated that the stem-cell specific expression of the i antigen is determined by ß3-N-acetylglucosaminyltransferase 5. The i antigen is a ligand for the galectin family of soluble lectins. We found concomitant cell surface expression of galectin-3, which has been reported to mediate the immunosuppressive effects exerted by MSCs. The i antigen may serve as an endogenous ligand for this immunosuppressive agent in the MSC microenvironment. Based on these findings, we suggest that linear poly-N-acetyllactosamine could be used as a novel UCB-MSC marker either alone or within an array of MSC markers.


Subject(s)
Fetal Blood/cytology , Galectin 3/metabolism , I Blood-Group System/metabolism , Mesenchymal Stem Cells/cytology , Amino Sugars/metabolism , Biomarkers/analysis , Cell Differentiation , Epitopes/chemistry , Fetal Blood/metabolism , Flow Cytometry , Galectin 3/genetics , Gene Expression Profiling , Humans , Ligands , Mass Spectrometry , Mesenchymal Stem Cells/metabolism , N-Acetylglucosaminyltransferases/genetics , Stem Cell Niche
2.
Blood ; 115(12): 2491-9, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20101026

ABSTRACT

The cell-surface straight and branched repeats of N-acetyllactosamine (LacNAc) units, called poly-LacNAc chains, characterize the histo-blood group i and I antigens, respectively. The transition of straight to branched poly-LacNAc chain (i to I) is determined by the I locus, which expresses 3 IGnT transcripts, IGnTA, IGnTB, and IGnTC. Our previous investigation demonstrated that the i-to-I transition in erythroid differentiation is regulated by the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha). In the present investigation, the K-562 cell line was used as a model to show that the i-to-I transition is determined by the phosphorylation status of the C/EBPalpha Ser-21 residue, with dephosphorylated C/EBPalpha Ser-21 stimulating the transcription of the IGnTC gene, consequently resulting in I branching. Results from studies using adult erythropoietic and granulopoietic progenitor cells agreed with those derived using the K-562 cell model, with lentiviral expression of C/EBPalpha in CD34(+) hematopoietic cells demonstrating that the dephosphorylated form of C/EBPalpha Ser-21 induced the expression of I antigen, granulocytic CD15, and also erythroid CD71 antigens. Taken together, these results demonstrate that the regulation of poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis share a common mechanism, with dephosphorylation of the Ser-21 residue on C/EBPalpha playing the critical role.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/metabolism , Erythropoiesis/physiology , Granulocytes/metabolism , I Blood-Group System/metabolism , Polysaccharides/metabolism , Antigens, CD34/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Carbohydrate Sequence , Cell Differentiation/physiology , Granulocytes/cytology , Humans , K562 Cells , Membrane Proteins/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Phosphorylation/physiology , Promoter Regions, Genetic/physiology , Serine/genetics
3.
Blood ; 110(13): 4526-34, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17855628

ABSTRACT

The histo-blood group i and I antigens have been characterized as straight and branched repeats of N-acetyllactosamine, respectively, and the conversion of the straight-chain i to the branched-chain I structure on red cells is regulated to occur after birth. It has been demonstrated that the human I locus expresses 3 IGnT transcripts, IGnTA, IGnTB, and IGnTC, and that the last of these is responsible for the I branching formation on red cells. In the present investigation, the K-562 cell line was used as a model to show that the i-to-I transition in erythroid differentiation is determined by the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha), which enhances transcription of the IGnTC gene, consequently leading to formation of the I antigen. Further investigation suggested that C/EBPalpha IGnTC-activation activity is modulated at a posttranslational level, and that the phosphorylation status of C/EBPalpha may have a crucial effect. Results from studies using adult and cord erythropoietic cells agreed with those derived using the K-562 cell model, with lentiviral expression of C/EBPalpha in CD34(+) hemopoietic cells demonstrating the determining role of C/EBPalpha in the induction of the IGnTC gene as well as in I antigen expression.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/physiology , Cell Differentiation , Erythrocytes/cytology , I Blood-Group System/metabolism , N-Acetylglucosaminyltransferases/genetics , Adult , Fetal Blood , Gene Expression Regulation, Enzymologic , Hematopoietic Stem Cells , Humans , K562 Cells , N-Acetylglucosaminyltransferases/metabolism , Phosphorylation
4.
Immunohematology ; 20(4): 249-52, 2004.
Article in English | MEDLINE | ID: mdl-15679458

ABSTRACT

Unlike most blood group antigen pairs, the I and i antigens are not antithetical (produced by allelic pairs) but, rather, they are reciprocal. The I antigen is formed by the action of an enzyme (a glycosyltransferase), which adds branches onto the i antigen. Thus, branched I antigen is formed at the expense of its precursor, the linear i antigen. The antigens are present on all blood cells and have a wide tissue distribution. Soluble I antigen is found in milk, saliva, and amniotic fluid, and a small amount is in plasma. The function of these antigens is unknown but the I antigen has a decreased expression and the i antigen has a concomitant increased expression in conditions that result in increased hematopoiesis. The gene encoding the branching transferase has been cloned and sequenced, and the mechanism underlying the i adult phenotype with and without association with cataracts has been elucidated.


Subject(s)
Cataract/immunology , I Blood-Group System/genetics , Carbohydrate Sequence , Cataract/congenital , Cataract/etiology , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Glycosyltransferases/physiology , Humans , I Blood-Group System/biosynthesis , I Blood-Group System/metabolism , Phenotype , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...