Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 490
Filter
1.
Protein J ; 43(3): 592-602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733555

ABSTRACT

The main structural difference between the mutation-susceptible retinal isoforms of inosine 5´-monophosphate dehydrogenase-1 (IMPDH-1) with the canonical form resides in the C- and N-terminal peptide extensions with unknown structural/functional impacts. In this report, we aimed to experimentally evaluate the functional impact of these extensions on the specific/non-specific single-stranded DNA (ssDNA)-binding activities relative to those of the canonical form. Our in silico findings indicated the possible contribution of the C-terminal segment to the reduced flexibility of the Bateman domain of the enzyme. In addition, the in silico data indicated that the N-terminal tail acts by altering the distance between the tetramers in the concave octamer complex (the native form) of the enzyme. The overall impact of these predicted structural variations became evident, first, through higher Km values with respect to either of the substrates relative to the canonical isoform, as reported previously (Andashti et al. in Mol Cell Biochem 465(1):155-164, 2020). Secondary, the binding of the recombinant mouse retinal isoform IMPDH1 (603) to its specific Rhodopsin target gene was significantly augmented while its binding to non-specific ssDNA was lower than that of the canonical isoform. The DNA-binding activity of the other mouse retinal isoform, IMPDH1(546), to specific and non-specific ssDNA was lower than that of the canonical form most probably due to the in silico predicted rigidity created in the Bateman domain by the C-terminal peptide extension. Furthermore, the DNA binding to the Rhodopsin target gene by each of the IMPDH isoforms influenced in the presence of GTP (Guanosine triphosphate) and ATP (Adenosine triphosphate).


Subject(s)
IMP Dehydrogenase , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/chemistry , IMP Dehydrogenase/genetics , Animals , Mice , Isoenzymes/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Retina/metabolism , Retina/enzymology , Protein Binding , Humans
2.
Cell Mol Life Sci ; 81(1): 210, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717553

ABSTRACT

The cytoophidium is an evolutionarily conserved subcellular structure formed by filamentous polymers of metabolic enzymes. In vertebrates, inosine monophosphate dehydrogenase (IMPDH), which catalyses the rate-limiting step in guanosine triphosphate (GTP) biosynthesis, is one of the best-known cytoophidium-forming enzymes. Formation of the cytoophidium has been proposed to alleviate the inhibition of IMPDH, thereby facilitating GTP production to support the rapid proliferation of certain cell types such as lymphocytes, cancer cells and pluripotent stem cells (PSCs). However, past studies lacked appropriate models to elucidate the significance of IMPDH cytoophidium under normal physiological conditions. In this study, we demonstrate that the presence of IMPDH cytoophidium in mouse PSCs correlates with their metabolic status rather than pluripotency. By introducing IMPDH2 Y12C point mutation through genome editing, we established mouse embryonic stem cell (ESC) lines incapable of forming IMPDH polymers and the cytoophidium. Our data indicate an important role of IMPDH cytoophidium in sustaining a positive feedback loop that couples nucleotide biosynthesis with upstream metabolic pathways. Additionally, we find that IMPDH2 Y12C mutation leads to decreased cell proliferation and increased DNA damage in teratomas, as well as impaired embryo development following blastocoel injection. Further analysis shows that IMPDH cytoophidium assembly in mouse embryonic development begins after implantation and gradually increases throughout fetal development. These findings provide insights into the regulation of IMPDH polymerisation in embryogenesis and its significance in coordinating cell metabolism and development.


Subject(s)
Cell Proliferation , IMP Dehydrogenase , Animals , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , Mice , Fetal Development/genetics , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Female , Guanosine Triphosphate/metabolism , DNA Damage , Mice, Inbred C57BL
3.
J Transl Med ; 22(1): 133, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310229

ABSTRACT

BACKGROUND: Oxaliplatin resistance usually leads to therapeutic failure and poor prognosis in colorectal cancer (CRC), while the underlying mechanisms are not yet fully understood. Metabolic reprogramming is strongly linked to drug resistance, however, the role and mechanism of metabolic reprogramming in oxaliplatin resistance remain unclear. Here, we aim to explore the functions and mechanisms of purine metabolism on the oxaliplatin-induced apoptosis of CRC. METHODS: An oxaliplatin-resistant CRC cell line was generated, and untargeted metabolomics analysis was conducted. The inosine 5'-monophosphate dehydrogenase type II (IMPDH2) expression in CRC cell lines was determined by quantitative real-time polymerase chain reaction (qPCR) and western blotting analysis. The effects of IMPDH2 overexpression, knockdown and pharmacological inhibition on oxaliplatin resistance in CRC were assessed by flow cytometry analysis of cell apoptosis in vivo and in vitro. RESULTS: Metabolic analysis revealed that the levels of purine metabolites, especially guanosine monophosphate (GMP), were markedly elevated in oxaliplatin-resistant CRC cells. The accumulation of purine metabolites mainly arose from the upregulation of IMPDH2 expression. Gene set enrichment analysis (GSEA) indicated high IMPDH2 expression in CRC correlates with PURINE_METABOLISM and MULTIPLE-DRUG-RESISTANCE pathways. CRC cells with higher IMPDH2 expression were more resistant to oxaliplatin-induced apoptosis. Overexpression of IMPDH2 in CRC cells resulted in reduced cell death upon treatment with oxaliplatin, whereas knockdown of IMPDH2 led to increased sensitivity to oxaliplatin through influencing the activation of the Caspase 7/8/9 and PARP1 proteins on cell apoptosis. Targeted inhibition of IMPDH2 by mycophenolic acid (MPA) or mycophenolate mofetil (MMF) enhanced cell apoptosis in vitro and decreased in vivo tumour burden when combined with oxaliplatin treatment. Mechanistically, the Wnt/ß-catenin signalling was hyperactivated in oxaliplatin-resistant CRC cells, and a reciprocal positive regulatory mechanism existed between Wnt/ß-catenin and IMPDH2. Blocking the Wnt/ß-catenin pathway could resensitize resistant cells to oxaliplatin, which could be restored by the addition of GMP. CONCLUSIONS: IMPDH2 is a predictive biomarker and therapeutic target for oxaliplatin resistance in CRC.


Subject(s)
Colorectal Neoplasms , beta Catenin , Humans , Apoptosis , beta Catenin/metabolism , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Oxidoreductases/genetics , Oxidoreductases/metabolism , Wnt Signaling Pathway
4.
J Cell Biol ; 223(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38323936

ABSTRACT

Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in guanosine triphosphate (GTP) synthesis and assembles into filaments in cells, which desensitizes the enzyme to feedback inhibition and boosts nucleotide production. The vertebrate retina expresses two splice variants IMPDH1(546) and IMPDH1(595). In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of S477 phosphorylation. The S477D mutation resensitized both variants to GTP inhibition but only blocked assembly of IMPDH1(595) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of a high-activity assembly interface, still allowing assembly of low-activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, S477 phosphorylation acts as a mechanism for downregulating retinal GTP synthesis in the dark when nucleotide turnover is decreased.


Subject(s)
Cytoskeleton , Guanosine Triphosphate , IMP Dehydrogenase , Retina , Animals , Cattle , Guanosine Triphosphate/biosynthesis , Nucleotides , Phosphorylation , Retina/enzymology , IMP Dehydrogenase/metabolism
5.
Genes Cells ; 29(2): 150-158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009721

ABSTRACT

Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in the de novo GTP biosynthesis pathway. Recent studies suggest that IMPDH2, an isoform of IMPDH, can localize to specific subcellular compartments under certain conditions and regulate site-specific GTP availability and small GTPase activity in invasive cancer cells. However, it is unclear whether IMPDH2 plays a site-specific regulatory role in subcellular functions in healthy cells. In this study, we focused on brain cells and examined the localization pattern of IMPDH2. We discovered that IMPDH2 forms localized spots in the astrocytes of the adult mouse hippocampus. Further analysis of spot distribution in primary astrocyte cultures revealed that IMPDH2 spots are predominantly localized on branching sites and distal ends of astrocyte stem processes. Our findings suggest a potential unidentified role for IMPDH2 and GTP synthesis specifically at specialized nodes of astrocyte branches.


Subject(s)
Astrocytes , IMP Dehydrogenase , Animals , Mice , Astrocytes/metabolism , Guanosine Triphosphate , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/ultrastructure , Protein Isoforms
6.
Int Immunopharmacol ; 125(Pt A): 111125, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37907047

ABSTRACT

BACKGROUND: IMPDH2 is the rate-limiting enzyme of the de novo GTP synthesis pathway and has a key role in tumors; however, the specific mechanism underlying IMPDH2 activity in diffuse large B cell lymphoma (DLBCL) is still undetermined. This study aims to explore the potential mechanism of IMPDH2 in DLBCL, and its possible involvement in double-hit lymphoma (DHL), i.e., cases with translocations involving MYC and BCL2 and/or BCL6. METHODS: Using single-cell sequencing and bioinformatics analysis to screen for IMPDH2. Exploring the differential expression of IMPDH2 and its correlation with prognosis through multiplexed immunofluorescence analysis. Using CCK8, EdU, clone formation assay, and animal model to analyze biological behavior changes after inhibiting IMPDH2. Explaining the potential mechanism of IMPDH2 in DLBCL by Western blot and multiplexed immunofluorescence. RESULTS: Prognostic risk model was constructed by single-cell sequencing, which identified IMPDH2 as a DHL-related gene. IMPDH2 was highly expressed in cell lines and tissues, associated with poor patient prognosis and an independent prognostic factor. In vitro and in vivo experiments showed that IMPDH2 inhibition significantly inhibited DHL cell proliferation. Flow cytometry showed apoptosis and cycle arrest. Western blot results suggested that c-Myc regulated the activation of PI3K/AKT/mTOR signaling pathway by IMPDH2 to promote tumor development in DHL. Moreover, multiplex immunofluorescence revealed decreased T-cell infiltration within the tumor microenvironment exhibiting concurrent high expression of IMPDH2 and PD-L1. CONCLUSIONS: Our results suggest that IMPDH2 functions as a tumor-promoting factor in DHL. This finding is expected to generate novel insights into the pathogenesis of these patients, thereby identifying potential therapeutic targets.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Proto-Oncogene Proteins c-akt , Animals , Humans , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Sequence Analysis, RNA , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment
7.
Structure ; 31(12): 1526-1534.e4, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37875114

ABSTRACT

IMP dehydrogenase and GMP reductase are enzymes from the same protein family with analogous structures and catalytic mechanisms that have gained attention because of their essential roles in nucleotide metabolism and as potential drug targets. This study focusses on GuaB3, a less-explored enzyme within this family. Phylogenetic analysis uncovers GuaB3's independent evolution from other members of the family and it predominantly occurs in Cyanobacteria. Within this group, GuaB3 functions as a unique IMP dehydrogenase, while its counterpart in Actinobacteria has a yet unknown function. Synechocystis sp. PCC6803 GuaB3 structures demonstrate differences in the active site compared to canonical IMP dehydrogenases, despite shared catalytic mechanisms. These findings highlight the essential role of GuaB3 in Cyanobacteria, provide insights into the diversity and evolution of the IMP dehydrogenase protein family, and reveal a distinctive characteristic in nucleotide metabolism, potentially aiding in combating harmful cyanobacterial blooms-a growing concern for humans and wildlife.


Subject(s)
Cyanobacteria , IMP Dehydrogenase , Humans , IMP Dehydrogenase/chemistry , IMP Dehydrogenase/metabolism , Phylogeny , Catalysis , Nucleotides/metabolism , Cyanobacteria/genetics
8.
Microbiol Spectr ; 11(4): e0056623, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37409948

ABSTRACT

Mpox virus (formerly monkeypox virus [MPXV]) is a neglected zoonotic pathogen that caused a worldwide outbreak in May 2022. Given the lack of an established therapy, the development of an anti-MPXV strategy is of vital importance. To identify drug targets for the development of anti-MPXV agents, we screened a chemical library using an MPXV infection cell assay and found that gemcitabine, trifluridine, and mycophenolic acid (MPA) inhibited MPXV propagation. These compounds showed broad-spectrum anti-orthopoxvirus activities and presented lower 90% inhibitory concentrations (0.026 to 0.89 µM) than brincidofovir, an approved anti-smallpox agent. These three compounds have been suggested to target the postentry step to reduce the intracellular production of virions. Knockdown of IMP dehydrogenase (IMPDH), the rate-limiting enzyme of guanosine biosynthesis and a target of MPA, dramatically reduced MPXV DNA production. Moreover, supplementation with guanosine recovered the anti-MPXV effect of MPA, suggesting that IMPDH and its guanosine biosynthetic pathway regulate MPXV replication. By targeting IMPDH, we identified a series of compounds with stronger anti-MPXV activity than MPA. This evidence shows that IMPDH is a potential target for the development of anti-MPXV agents. IMPORTANCE Mpox is a zoonotic disease caused by infection with the mpox virus, and a worldwide outbreak occurred in May 2022. The smallpox vaccine has recently been approved for clinical use against mpox in the United States. Although brincidofovir and tecovirimat are drugs approved for the treatment of smallpox by the U.S. Food and Drug Administration, their efficacy against mpox has not been established. Moreover, these drugs may present negative side effects. Therefore, new anti-mpox virus agents are needed. This study revealed that gemcitabine, trifluridine, and mycophenolic acid inhibited mpox virus propagation and exhibited broad-spectrum anti-orthopoxvirus activities. We also suggested IMP dehydrogenase as a potential target for the development of anti-mpox virus agents. By targeting this molecule, we identified a series of compounds with stronger anti-mpox virus activity than mycophenolic acid.


Subject(s)
Monkeypox virus , Mycophenolic Acid , Guanosine/pharmacology , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Mycophenolic Acid/pharmacology , Trifluridine , Monkeypox virus/drug effects
9.
J Biol Chem ; 299(8): 105012, 2023 08.
Article in English | MEDLINE | ID: mdl-37414152

ABSTRACT

Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report the identification of two additional missense variants in IMPDH2 from affected individuals and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.


Subject(s)
IMP Dehydrogenase , Purines , Humans , Allosteric Regulation , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Mutation , Guanosine Triphosphate
10.
Protein Sci ; 32(8): e4703, 2023 08.
Article in English | MEDLINE | ID: mdl-37338125

ABSTRACT

Inosine 5'-monophosphate (IMP) dehydrogenase (IMPDH) is an ubiquitous enzyme that catalyzes the NAD+ -dependent oxidation of inosine 5'-monophosphate into xanthosine 5'-monophosphate. This enzyme is formed of two distinct domains, a core domain where the catalytic reaction occurs, and a less-conserved Bateman domain. Our previous studies gave rise to the classification of bacterial IMPDHs into two classes, according to their oligomeric and kinetic properties. MgATP is a common effector but cause to different effects when it binds within the Bateman domain: it is either an allosteric activator for Class I IMPDHs or a modulator of the oligomeric state for Class II IMPDHs. To get insight into the role of the Bateman domain in the dissimilar properties of the two classes, deleted variants of the Bateman domain and chimeras issued from the interchange of the Bateman domain between the three selected IMPDHs have been generated and characterized using an integrative structural biology approach. Biochemical, biophysical, structural, and physiological studies of these variants unveil the Bateman domain as being the carrier of the molecular behaviors of both classes.


Subject(s)
Adenosine Triphosphate , IMP Dehydrogenase , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Bacteria/metabolism , Inosine
11.
Int J Biol Sci ; 19(8): 2599-2612, 2023.
Article in English | MEDLINE | ID: mdl-37215997

ABSTRACT

Metabolic dysregulation has been identified as one of the hallmarks of cancer biology. Based on metabolic heterogeneity between bladder cancer tissues and adjacent tissues, we discovered several potential driving factors for the bladder cancer occurrence and development. Metabolic genomics showed purine metabolism pathway was mainly accumulated in bladder cancer. Long noncoding RNA urothelial carcinoma-associated 1 (LncRNA UCA1) is a potential tumor biomarker for bladder cancer diagnosis and prognosis, and it increases bladder cancer cell proliferation, migration, and invasion via the glycolysis pathway. However, whether UCA1 plays a role in purine metabolism in bladder cancer is unknown. Our findings showed that UCA1 could increase the transcription activity of guanine nucleotide de novo synthesis rate limiting enzyme inosine monophosphate dehydrogenase 1 (IMPDH1) and inosine monophosphate dehydrogenase 2 (IMPDH2), triggering in guanine nucleotide metabolic reprogramming. This process was achieved by UCA1 recruiting the transcription factor TWIST1 which binds to the IMPDH1and IMPDH2 promoter region. Increased guanine nucleotide synthesis pathway products stimulate RNA polymerase-dependent production of pre-ribosomal RNA and GTPase activity in bladder cancer cells, hence increasing bladder cancer cell proliferation, migration, and invasion. We have demonstrated that UCA1 regulates IMPDH1/2-mediated guanine nucleotide production via TWIST1, providing additional evidence of metabolic reprogramming.


Subject(s)
Carcinoma, Transitional Cell , RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Guanine Nucleotides , Inosine Monophosphate , Cell Line, Tumor , Oxidoreductases/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Nuclear Proteins/genetics , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism
12.
J Biomol Struct Dyn ; 41(24): 14832-14848, 2023.
Article in English | MEDLINE | ID: mdl-36866624

ABSTRACT

Onchocerciasis is a vector-borne disease caused by the filarial nematode Onchocerca volvulus, which is responsible for most of the visual impairments recorded in Africa, Asia and the Americas. It is known that O. volvulus has similar molecular and biological characteristics as Onchocerca ochengi in cattle. This study was designed to screen for immunogenic epitopes and binding pockets of O. ochengi IMPDH and GMPR ligands using immunoinformatic approaches. In this study, a total of 23 B cell epitopes for IMPDH and 7 B cell epitopes for GMPR were predicted using ABCpred tool, Bepipred 2.0 and Kolaskar and Tongaonkar methods. The CD4+ Th computational results showed 16 antigenic epitopes from IMPDH with strong binding affinity for DRB1_0301, DRB3_0101, DRB1_0103 and DRB1_1501 MHC II alleles while 8 antigenic epitopes from GMPR were predicted to bind DRB1_0101 and DRB1_0401 MHC II alleles, respectively. For the CD8+ CTLs analysis, 8 antigenic epitopes from IMPDH showed strong binding affinity to human leukocyte antigen HLA-A*26:01, HLA-A*03:01, HLA-A*24:02 and HLA-A*01:01 MHC I alleles while 2 antigenic epitopes from GMPR showed strong binding affinity to HLA-A*01:01 allele, respectively. The immunogenic B cell and T cell epitopes were further evaluated for antigenicity, non-alllergernicity, toxicity, IFN-gamma, IL4 and IL10. The docking score revealed favorable binding free energy with IMP and MYD scoring the highest binding affinity at -6.6 kcal/mol with IMPDH and -8.3 kcal/mol with GMPR. This study provides valuable insight on IMPDH and GMPR as potential drug targets and for the development of multiple epitope vaccine candidates.Communicated by Ramaswamy H. Sarma.


Subject(s)
Onchocerca , Vaccines , Humans , Animals , Cattle , Onchocerca/metabolism , Immunoinformatics , GMP Reductase/chemistry , GMP Reductase/metabolism , IMP Dehydrogenase/chemistry , IMP Dehydrogenase/metabolism , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Guanosine , Inosine , HLA-A Antigens
13.
BMC Cancer ; 22(1): 1290, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494680

ABSTRACT

BACKGROUND: Metabolic reprogramming is a hallmark of cancer, alteration of nucleotide metabolism of hepatocellular carcinoma (HCC) is not well-understood. MYBL2 regulates cell cycle progression and hepatocarcinogenesis, its role in metabolic regulation remains elusive. PATIENTS AND METHODS: Copy number, mRNA and protein level of MYBL2 and IMPDH1 were analyzed in HCC, and correlated with patient survival. Chromatin Immunoprecipitation sequencing (Chip-seq) and Chromatin Immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) were used to explore the relationship between MYBL2 and IMPDH1. Metabolomics were used to analyze how MYBL2 affected purine metabolism. The regulating effect of MYBL2 in HCC was further validated in vivo using xenograft models. RESULTS: The Results showed that copy-number alterations of MYBL2 occur in about 10% of human HCC. Expression of MYBL2, IMPDH1, or combination of both were significantly upregulated and associated with poor prognosis in HCC. Correlation, ChIP-seq and ChIP-qPCR analysis revealed that MYBL2 activates transcription of IMPDH1, while knock-out of MYBL2 retarded IMPDH1 expression and inhibited proliferation of HCC cells. Metabolomic analysis post knocking-out of MYBL2 demonstrated that it was essential in de novo purine synthesis, especially guanine nucleotides. In vivo analysis using xenograft tumors also revealed MYBL2 regulated purine synthesis by regulating IMPDH1, and thus, influencing tumor progression. CONCLUSION: MYBL2 is a key regulator of purine synthesis and promotes HCC progression by transcriptionally activating IMPDH1, it could be a potential candidate for targeted therapy for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Disease Progression , Purines , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Cell Line, Tumor , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Trans-Activators/metabolism , Cell Cycle Proteins/metabolism
14.
Bioessays ; 44(12): e2200128, 2022 12.
Article in English | MEDLINE | ID: mdl-36209393

ABSTRACT

Two enzymes involved in the synthesis of pyrimidine and purine nucleotides, CTP synthase (CTPS) and IMP dehydrogenase (IMPDH), can assemble into a single or very few large filaments called rods and rings (RR) or cytoophidia. Most recently, asymmetric cytoplasmic distribution of organelles during cell division has been described as a decisive event in hematopoietic stem cell fate. We propose that cytoophidia, which could be considered as membrane-less organelles, may also be distributed asymmetrically during mammalian cell division as previously described for Schizosaccharomyces pombe. Furthermore, because each type of nucleotide intervenes in distinct processes (e.g., membrane synthesis, glycosylation, and G protein-signaling), alterations in the rate of synthesis of specific nucleotide types could influence cell differentiation in multiple ways. Therefore, we hypothesize that whether a daughter cell inherits or not CTPS or IMPDH filaments determines its fate and that this asymmetric inheritance, together with the dynamic nature of these structures enables plasticity in a cell population.


Subject(s)
Carbon-Nitrogen Ligases , Schizosaccharomyces , Animals , IMP Dehydrogenase/metabolism , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Cell Differentiation , Schizosaccharomyces/genetics , Nucleotides/metabolism , Mammals/metabolism
15.
Front Immunol ; 13: 1007089, 2022.
Article in English | MEDLINE | ID: mdl-36177032

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and identified that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14- mediated NF-κB activation and cytokine induction. Furthermore, IMPDH2 inhibitors (RIB, MPA) or NF-κB inhibitors (bortezomib, BAY 11-7082) restricted SARS-CoV-2 infection, indicating that IMPDH2-mediated activation of NF-κB signaling is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in inducing NF-κB activation through IMPDH2 to promote viral infection.


Subject(s)
COVID-19 , Exoribonucleases , IMP Dehydrogenase , NF-kappa B , Viral Nonstructural Proteins , Bortezomib , Cytokines/metabolism , Exoribonucleases/metabolism , Humans , IMP Dehydrogenase/metabolism , Inosine , Interleukin-6 , Interleukin-8 , Mycophenolic Acid , NF-kappa B/metabolism , Oxidoreductases , Proteomics , Ribavirin , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
16.
Protein Sci ; 31(9): e4399, 2022 09.
Article in English | MEDLINE | ID: mdl-36040265

ABSTRACT

Inosine 5'-monophosphate dehydrogenase (IMPDH) is an evolutionarily conserved enzyme that mediates the first committed step in de novo guanine nucleotide biosynthetic pathway. It is an essential enzyme in purine nucleotide biosynthesis that modulates the metabolic flux at the branch point between adenine and guanine nucleotides. IMPDH plays key roles in cell homeostasis, proliferation, and the immune response, and is the cellular target of several drugs that are widely used for antiviral and immunosuppressive chemotherapy. IMPDH enzyme is tightly regulated at multiple levels, from transcriptional control to allosteric modulation, enzyme filamentation, and posttranslational modifications. Herein, we review recent developments in our understanding of the mechanisms of IMPDH regulation, including all layers of allosteric control that fine-tune the enzyme activity.


Subject(s)
Guanine Nucleotides , IMP Dehydrogenase , Allosteric Regulation , Enzyme Inhibitors , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Inosine Monophosphate
17.
Cell Mol Life Sci ; 79(8): 420, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35833994

ABSTRACT

The cytoophidium is a unique type of membraneless compartment comprising of filamentous protein polymers. Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step of de novo GTP biosynthesis and plays critical roles in active cell metabolism. However, the molecular regulation of cytoophidium formation is poorly understood. Here we show that human IMPDH2 polymers bundle up to form cytoophidium-like aggregates in vitro when macromolecular crowders are present. The self-association of IMPDH polymers is suggested to rely on electrostatic interactions. In cells, the increase of molecular crowding with hyperosmotic medium induces cytoophidia, while the decrease of that by the inhibition of RNA synthesis perturbs cytoophidium assembly. In addition to IMPDH, CTPS and PRPS cytoophidium could be also induced by hyperosmolality, suggesting a universal phenomenon of cytoophidium-forming proteins. Finally, our results indicate that the cytoophidium can prolong the half-life of IMPDH, which is proposed to be one of conserved functions of this subcellular compartment.


Subject(s)
IMP Dehydrogenase , Intracellular Space , Polymers , Cell Compartmentation/physiology , Humans , IMP Dehydrogenase/metabolism , Intracellular Space/metabolism , Polymers/metabolism
18.
Protein Sci ; 31(5): e4314, 2022 05.
Article in English | MEDLINE | ID: mdl-35481629

ABSTRACT

IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate-limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine-tuned by post-translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide-controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis.


Subject(s)
Guanine Nucleotides , IMP Dehydrogenase , Adenine , Adenosine Triphosphate , Guanosine Pentaphosphate , Guanosine Triphosphate/metabolism , Homeostasis , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Models, Molecular
19.
J Clin Lab Anal ; 36(5): e24416, 2022 May.
Article in English | MEDLINE | ID: mdl-35403278

ABSTRACT

BACKGROUND: Inosine monophosphate dehydrogenase (IMPDH) is the key enzyme in the biosynthesis of purine nucleotides. IMPDH1 and IMPDH2 are the two isoforms of IMPDH and they share 84% amino acid similarity and virtually indistinguishable catalytic activity. Although high expression of IMPDH2 has been reported in various cancers, the roles of IMPDH1 in hepatocellular carcinoma (HCC) are largely unknown. METHODS: The expression and the clinical relevance of IMPDH1 in 154 HCC patients were detected by immunohistochemistry analysis. The stable IMPDH1 knockdown HuH7 cells were established by lentiviral RNAi approach. The single cell proliferation was detected by colony-forming unit assay. The tumor initiation and growth ability were measured by using xenograft tumor model in immunodeficient mice. The effect of IMPDH1 on cellular signaling pathways was analyzed by genome-wide transcriptomic profiling. RESULTS: The expression of IMPDH1 is upregulated in tumor tissue compared with adjacent liver tissue, and higher expression of IMPDH1 is associated with better patient cumulative survival. In experimental models, loss of IMPDH1 in HCC cells inhibits the ability of single cell colony formation in vitro, and reduces the efficiency of tumor initiation and growth in immunodeficient mice. Consistently, loss of IMPDH1 results in distinct alterations of signaling pathways revealed by genome-wide transcriptomic profiling. CONCLUSION: IMPDH1 sustains HCC growth and progression.


Subject(s)
Carcinoma, Hepatocellular , IMP Dehydrogenase , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Cell Line , Humans , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Liver Neoplasms/genetics , Mice
20.
Drug Deliv ; 29(1): 1243-1256, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35416106

ABSTRACT

The present study aimed to evaluate the anti-tumor efficacy of the epidermal growth factor receptor (EGFR)-targeting recombinant fusion protein Fv-LDP-D3 and its antibody-drug conjugate Fv-LDP-D3-AE against esophageal cancer. Fv-LDP-D3, consisting of the fragment variable (Fv) of an anti-EGFR antibody, the apoprotein of lidamycin (LDP), and the third domain of human serum albumin (D3), exhibited a high binding affinity for EGFR-overexpressing esophageal cancer cells, inhibited EGFR phosphorylation and down-regulated inosine monophosphate dehydrogenase type II (IMPDH2) expression. Fv-LDP-D3 was taken up by cancer cells through intensive macropinocytosis; it inhibited the proliferation and induced the apoptosis of esophageal cancer cells. In vivo imaging revealed that Fv-LDP-D3 displayed specific tumor-site accumulation and a long-lasting retention over a 26-day period. Furthermore, Fv-LDP-D3-AE, a pertinent antibody-drug conjugate prepared by integrating the enediyne chromophore of lidamycin into the Fv-LDP-D3 molecule, displayed highly potent cytotoxicity, inhibited migration and invasion, induced apoptosis and DNA damage, arrested cells at G2/M phase, and caused mitochondrial damage in esophageal cancer cells. More importantly, both of Fv-LDP-D3 and Fv-LDP-D3-AE markedly inhibited the growth of esophageal cancer xenografts in athymic mice at well tolerated doses. The present results indicate that Fv-LDP-D3, and Fv-LDP-D3-AE exert prominent antitumor efficacy associated with targeting EGFR, suggesting their potential as promising candidates for targeted therapy against esophageal cancer.


Subject(s)
Esophageal Neoplasms , Immunoconjugates , Animals , Cell Line, Tumor , Down-Regulation , Enediynes/chemistry , Enediynes/pharmacology , ErbB Receptors/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Humans , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/therapeutic use , Immunoconjugates/metabolism , Immunoconjugates/pharmacology , Mice , Mice, Nude , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...