Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.280
Filter
1.
Medicina (Kaunas) ; 60(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792973

ABSTRACT

Background and Objectives: Stem cell-based regeneration strategies have shown therapeutic efficacy in various fields of regenerative medicine. These include bone healing after bone augmentation, often complicated by pain, which is managed by using nonsteroidal anti-inflammatory drugs (NSAIDs). However, information is limited about how NSAIDs affect the therapeutic potential of stem cells. Materials and Methods: We investigated the effects of ibuprofen and diclofenac on the characteristics, morphology, and immunophenotype of human mesenchymal stromal cells isolated from the dental pulp (DPSCs) and cultured in vitro, as well as their effects on the expression of angiogenic growth factors (VEGFA and HGF) and selected genes in apoptosis signalling pathways (BAX, BAK, CASP3, CASP9, and BCL2). Results: Ibuprofen and diclofenac significantly reduced the viability of DPSCs, while the expression of mesenchymal stem cell surface markers was unaffected. Both ibuprofen and diclofenac treatment significantly upregulated the expression of HGF, while the expression of VEGFA remained unchanged. Ibuprofen significantly altered the expression of several apoptosis-related genes, including the upregulation of CASP9 and BCL2, with decreased CASP3 expression. BAK, CASP3, CASP9, and BCL2 expressions were significantly increased in the diclofenac-treated DPSCs, while no difference was demonstrated in BAX expression. Conclusions: Our results suggest that concomitant use of the NSAIDs ibuprofen or diclofenac with stem cell therapy may negatively impact cell viability and alter the expression of apoptosis-related genes, affecting the efficacy of stem cell therapy.


Subject(s)
Apoptosis , Cell Survival , Dental Pulp , Diclofenac , Ibuprofen , Humans , Dental Pulp/drug effects , Dental Pulp/cytology , Diclofenac/pharmacology , Apoptosis/drug effects , Ibuprofen/pharmacology , Cell Survival/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Stem Cells/drug effects , Mesenchymal Stem Cells/drug effects , Cells, Cultured
2.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791172

ABSTRACT

The main focus of in vitro toxicity assessment methods is to assess the viability of the cells, which is usually based on metabolism changes. Yet, when exposed to toxic substances, the cell triggers multiple signals in response. With this in mind, we have developed a promising cell-based toxicity method that observes various cell responses when exposed to toxic substances (either death, division, or remain viable). Based on the collective cell response, we observed and predicted the dynamics of the cell population to determine the toxicity of the toxicant. The method was tested with two different conformations: In the first conformation, we exposed a monoculture model of blood macrophages to UV light, hydrogen peroxide, nutrient deprivation, tetrabromobisphenol A, fatty acids, and 5-fluorouracil. In the second, we exposed a coculture liver model consisting of hepatocytes, hepatic stellate cells, Kupffer cells, and liver sinusoidal endothelial cells to rifampicin, ibuprofen, and 5-fluorouracil. The method showed good accuracy compared to established toxicity assessment methods. In addition, this approach provided more representative information on the toxic effects of the compounds, as it considers the different cellular responses induced by toxic agents.


Subject(s)
Fluorouracil , Humans , Fluorouracil/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Toxicity Tests/methods , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Animals , Coculture Techniques/methods , Ultraviolet Rays , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Liver/drug effects , Liver/metabolism , Liver/cytology , Ibuprofen/pharmacology , Cells, Cultured , Rifampin/pharmacology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects
3.
Biochim Biophys Acta Biomembr ; 1866(5): 184334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744417

ABSTRACT

The interaction between chiral drugs and biomimetic membranes is of interest in biophysical research and biotechnological applications. There is a belief that the membrane composition, particularly the presence of cholesterol, could play a pivotal role in determining enantiospecific effects of pharmaceuticals. Our study explores this topic focusing on the interaction of ibuprofen enantiomers (S- and R-IBP) with cholesterol-containing model membranes. The effects of S- and R-IBP at 20 mol% on bilayer mixtures of dipalmitoylphosphatidylcholine (DPPC) with 0, 10, 20 and 50 mol% cholesterol were investigated using circular dichroism and spin-label electron spin resonance. Morphological changes due to IBP enantiomers were studied with atomic force microscopy on supported cholesterol-containing DPPC monolayers. The results reveal that IBP isoforms significantly and equally interact with pure DPPC lipid assemblies. Cholesterol content, besides modifying the structure and the morphology of the membranes, triggers the drug enantioselectivity at 10 and 20 mol%, with the enantiomers differently adsorbing on membranes and perturbing them. The spectroscopic and the microscopic data indicate that IBP stereospecificity is markedly reduced at equimolar content of Chol mixed with DPPC. This study provides new insights into the role of cholesterol in modulating enantiospecific effects of IBP in lipid membranes.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine , Cholesterol , Ibuprofen , Lipid Bilayers , Ibuprofen/chemistry , Ibuprofen/pharmacology , Cholesterol/chemistry , Cholesterol/metabolism , Stereoisomerism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Circular Dichroism , Microscopy, Atomic Force , Biomimetics , Membranes, Artificial
4.
Bioorg Chem ; 147: 107393, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691908

ABSTRACT

Cyclooxygenase-2 plays a vital role in inflammation by catalyzing arachidonic acid conversion toward prostaglandins, making it a prime therapeutic objective. Selective COX-2 inhibitors represent significant progress in anti-inflammatory therapy, offering improved efficacy and fewer side effects. This study describes the synthesis of novel anti-inflammatory compounds from established pharmaceutically marketed agents like fenamates III-V and ibuprofen VI. Through rigorous in vitro testing, compounds 7b-c, and 12a-b demonstrated substantial in vitro selective inhibition, with IC50 values of 0.07 to 0.09 µM, indicating potent pharmacological activity. In vivo assessment, particularly focusing on compound 7c, revealed significant anti-inflammatory effects. Markedly, it demonstrated the highest inhibition of paw thickness (58.62 %) at the 5-hr mark compared to the carrageenan group, indicating its potency in mitigating inflammation. Furthermore, it exhibited a rapid onset of action, with a 54.88 % inhibition observed at the 1-hr mark. Subsequent comprehensive evaluations encompassing analgesic efficacy, histological characteristics, and toxicological properties indicated that compound 7c did not induce gastric ulcers, in contrast to the ulcerogenic tendency associated with mefenamic acid. Moreover, compound 7c underwent additional investigations through in silico methodologies such as molecular modelling, field alignment, and density functional theory. These analyses underscored the therapeutic potential and safety profile of this novel compound, warranting further exploration and development in the realm of pharmaceutical research.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Carrageenan , Cyclooxygenase 2 Inhibitors , Cyclooxygenase 2 , Fenamates , Ibuprofen , Ibuprofen/pharmacology , Ibuprofen/chemistry , Ibuprofen/chemical synthesis , Cyclooxygenase 2/metabolism , Animals , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Molecular Structure , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Structure-Activity Relationship , Fenamates/pharmacology , Fenamates/chemistry , Fenamates/chemical synthesis , Dose-Response Relationship, Drug , Humans , Mice , Edema/drug therapy , Edema/chemically induced , Molecular Docking Simulation , Rats , Male
5.
Drug Dev Ind Pharm ; 50(5): 446-459, 2024 May.
Article in English | MEDLINE | ID: mdl-38622817

ABSTRACT

OBJECTIVE: The aim of the present study was to develop and optimize a wound dressing film loaded with chloramphenicol (CAM) and ibuprofen (IBU) using a Quality by Design (QbD) approach. SIGNIFICANCE: The two drugs have been combined in the same dressing as they address two critical aspects of the wound healing process, namely prevention of bacterial infection and reduction of inflammation and pain related to injury. METHODS: Three critical formulation variables were identified, namely the ratios of Kollicoat SR 30D, polyethylene glycol 400 and polyvinyl alcohol. These variables were further considered as factors of an experimental design, and 17 formulations loaded with CAM and IBU were prepared via solvent casting. The films were characterized in terms of dimensions, mechanical properties and bioadhesion. Additionally, the optimal formulation was characterized regarding tensile properties, swelling behavior, water vapor transmission rate, surface morphology, thermal behavior, goniometry, in vitro drug release, cell viability, and antibacterial activity. RESULTS: The film was optimized by setting minimal values for the folding endurance, adhesive force and hardness. The optimally formulated film showed good fluid handling properties in terms of swelling behavior and water vapor transmission rate. IBU and CAM were released from the film up to 80.9% and 82.5% for 8 h. The film was nontoxic, and the antibacterial activity was prominent against Micrococcus spp. and Streptococcus pyogenes. CONCLUSIONS: The QbD approach was successfully implemented to develop and optimize a novel film dressing promising for the treatment of low-exuding acute wounds prone to infection and inflammation.


Subject(s)
Anti-Bacterial Agents , Bandages , Chloramphenicol , Ibuprofen , Wound Healing , Ibuprofen/administration & dosage , Ibuprofen/chemistry , Ibuprofen/pharmacology , Wound Healing/drug effects , Chloramphenicol/administration & dosage , Chloramphenicol/pharmacology , Chloramphenicol/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Liberation , Humans , Polyvinyl Alcohol/chemistry , Polyethylene Glycols/chemistry , Animals , Cell Survival/drug effects , Chemistry, Pharmaceutical/methods
6.
Int J Pharm ; 657: 124126, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38626845

ABSTRACT

As the monotherapy of available analgesics is usually accompanied by serious side effects or limited efficacy in the management of chronic pain, multimodal analgesia is widely used to achieve improved benefit-to-risk ratios in clinic. Drug-drug salts are extensively researched to optimize the physicochemical properties of active pharmaceutical ingredients (APIs) and achieve clinical benefits compared with individual APIs or their combination. New drug-drug salt crystals metformin-ibuprofen (MET-IBU) and metformin-naproxen (MET-NAP) were prepared from metformin (MET) and two poorly water-soluble anti-inflammatory drugs (IBU and NAP) by the solvent evaporation method. The structures of these crystals were confirmed by single crystal and powder X-ray diffraction, Hirshfeld surface, Fourier transform infrared spectroscopy and thermal analysis. Both MET-IBU and MET-NAP showed significantly improved solubility and intrinsic dissolution rate than the pure IBU or NAP. The stability test indicated that MET-IBU and MET-NAP have excellent physical stability under stressing test (10 days) and accelerated conditions (3 months). Moreover, isobolographic analysis suggested that MET-IBU and MET-NAP exerted potent and synergistic antinociceptive effects in λ-Carrageenan-induced inflammatory pain in mice, and both of them had an advantage in rapid pain relief. These results demonstrated the potential of MET-IBU and MET-NAP to achieve synergistic antinociceptive effects by developing drug-drug salt crystals.


Subject(s)
Analgesics , Crystallization , Drug Synergism , Ibuprofen , Metformin , Naproxen , Solubility , Metformin/chemistry , Metformin/administration & dosage , Metformin/pharmacology , Animals , Naproxen/chemistry , Naproxen/administration & dosage , Ibuprofen/chemistry , Ibuprofen/administration & dosage , Ibuprofen/pharmacology , Analgesics/chemistry , Analgesics/administration & dosage , Analgesics/pharmacology , Mice , Male , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Pain/drug therapy , Drug Stability , Carrageenan , Drug Liberation , Salts/chemistry
7.
AAPS PharmSciTech ; 25(5): 89, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641711

ABSTRACT

Oral candidiasis is a fungal infection affecting the oral mucous membrane, and this research specifically addresses on a localized treatment through fluconazole-loaded ibuprofen in situ gel-based oral spray. The low solubility of ibuprofen is advantageous for forming a gel when exposed to an aqueous phase. The 1% w/w fluconazole-loaded in situ gel oral sprays were developed utilizing various concentrations of ibuprofen in N-methyl pyrrolidone. The prepared solutions underwent evaluation for viscosity, surface tension, contact angle, water tolerance, gel formation, interface interaction, drug permeation, and antimicrobial studies. The higher amount of ibuprofen reduced the surface tension and retarded solvent exchange. The use of 50% ibuprofen as a gelling agent demonstrated prolonged drug permeation for up to 24 h. The incorporation of Cremophor EL in the formulations resulted in increased drug permeation and exhibited effective inhibition against Candida albicans, Candida krusei, Candida lusitaniae, and Candida tropicalis. While the Cremophor EL-loaded formulation did not exhibit enhanced antifungal effects on agar media, its ability to facilitate the permeation of fluconazole and ibuprofen suggested potential efficacy in countering Candida invasion in the oral mucosa. Moreover, these formulations demonstrated significant thermal inhibition of protein denaturation in egg albumin, indicating anti-inflammatory properties. Consequently, the fluconazole-loaded ibuprofen in situ gel-based oral spray presents itself as a promising dosage form for oropharyngeal candidiasis treatment.


Subject(s)
Candidiasis, Oral , Fluconazole , Glycerol/analogs & derivatives , Fluconazole/pharmacology , Candidiasis, Oral/drug therapy , Candidiasis, Oral/microbiology , Oral Sprays , Ibuprofen/pharmacology , Antifungal Agents , Candida albicans , Microbial Sensitivity Tests
9.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542530

ABSTRACT

A new ibuprofen derivative, (E)-2-(4-isobutylphenyl)-N'-(4-oxopentan-2-ylidene) propane hydrazide (IA), was synthesized, along with its metal complexes with Co, Cu, Ni, Gd, and Sm, to investigate their anti-inflammatory efficacy and COX-2 inhibition potential. Comprehensive characterization, including 1H NMR, MS, FTIR, UV-vis spectroscopy, and DFT analysis, were employed to determine the structural configurations, revealing unique motifs for Gd/Sm (capped square antiprismatic/tricapped trigonal prismatic) and Cu/Ni/Co (octahedral) complexes. Molecular docking with the COX-2 enzyme (PDB code: 5IKT) and pharmacokinetic assessments through SwissADME indicated that these compounds have superior binding energies and pharmacokinetic profiles, including BBB permeability and gastrointestinal absorption, compared to the traditional ibuprofen standalone. Their significantly lower IC50 values further suggest a higher efficacy as anti-inflammatory agents and COX-2 inhibitors. These research findings not only introduce promising ibuprofen derivatives for therapeutic applications but also set the stage for future validation and exploration of this new generation of ibuprofen compounds.


Subject(s)
Anti-Inflammatory Agents , Ibuprofen , Ibuprofen/pharmacology , Ibuprofen/chemistry , Molecular Docking Simulation , Cyclooxygenase 2/metabolism , Anti-Inflammatory Agents/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology
10.
Sci Rep ; 14(1): 7310, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538710

ABSTRACT

This paper presents active analgesic and anti-inflammatory dressings based on cotton woven material with surface functionalization enabling drug implementation. For this purpose, lactide was polymerized on the surface of cotton textiles to achieve better compatibility with hydrophobic drug and polylactide (PLA)-based macromolecules. Subsequently, ibuprofen-loaded PLA and PLA-PEG were implemented through the exhausting method. Such material was tested for cytotoxicity (toward L929 mouse fibroblasts) and anti-inflammatory activity (towards human Hs68 fibroblasts) based on the secretion of pro-inflammatory cytokines IL-1ß and TNF-α. The results showed that the drug attachment and its performance are influenced by a combination of mercerization, bleaching and polylactide grafting, and the release of ibuprofen depends on the drug-loaded layer structure. Moreover, we show that cotton woven fabric with ibuprofen-loaded PLA and PLA-PEG cover layers had anti-inflammatory properties. These new dressings may open possibilities for developing prolonged analgesic and anti-inflammatory materials for wound healing or transdermal drug delivery.


Subject(s)
Anti-Inflammatory Agents , Ibuprofen , Mice , Animals , Humans , Ibuprofen/pharmacology , Ibuprofen/chemistry , Anti-Inflammatory Agents/pharmacology , Polyesters/chemistry , Textiles , Analgesics
11.
Int J Dev Neurosci ; 84(3): 227-250, 2024 May.
Article in English | MEDLINE | ID: mdl-38459740

ABSTRACT

Preterm infants often experience frequent intermittent hypoxia (IH) episodes which are associated with neuroinflammation. We tested the hypotheses that early caffeine and/or non-steroidal inflammatory drugs (NSAIDs) confer superior therapeutic benefits for protection against IH-induced neuroinflammation than late treatment. Newborn rats were exposed to IH or hyperoxia (50% O2) from birth (P0) to P14. For early treatment, the pups were administered: 1) daily caffeine (Caff) citrate (Cafcit, 20 mg/kg IP loading on P0, followed by 5 mg/kg from P1-P14); 2) ketorolac (Keto) topical ocular solution in both eyes from P0 to P14; 3) ibuprofen (Ibu, Neoprofen, 10 mg/kg loading dose on P0 followed by 5 mg/kg/day on P1 and P2); 4) Caff+Keto co-treatment; 5) Caff+Ibu co-treatment; or 6) equivalent volume saline (Sal). On P14, animals were placed in room air (RA) with no further treatment until P21. For late treatment, pups were exposed from P0 to P14, then placed in RA during which they received similar treatments from P15-P21 (Sal, Caff, and/or Keto), or P15-P17 (Ibu). RA controls were similarly treated. At P21, whole brains were assessed for histopathology, apoptosis, myelination, and biomarkers of inflammation. IH caused significant brain injury and hemorrhage, inflammation, reduced myelination, and apoptosis. Early treatment with Caff alone or in combination with NSAIDs conferred better neuroprotection against IH-induced damage than late treatment. Early postnatal treatment during a critical time of brain development, may be preferable for the prevention of IH-induced brain injury in preterm infants.


Subject(s)
Animals, Newborn , Anti-Inflammatory Agents, Non-Steroidal , Caffeine , Rats, Sprague-Dawley , Animals , Rats , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Caffeine/pharmacology , Caffeine/therapeutic use , Neuroinflammatory Diseases/prevention & control , Neuroinflammatory Diseases/drug therapy , Hypoxia/complications , Female , Male , Disease Models, Animal , Brain/drug effects , Brain/metabolism , Brain/pathology , Ibuprofen/pharmacology , Ibuprofen/therapeutic use , Ketorolac/pharmacology , Ketorolac/therapeutic use
12.
Physiol Res ; 73(1): 139-155, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38466012

ABSTRACT

Nonsteroidal anti-inflammatory drugs are the most widely used drugs for Parkinson's disease (PD), of which ibuprofen shows positive effects in suppressing symptoms; however, the associated risk needs to be addressed in different pathological stages. Initially, we developed an initial and advanced stage of the Parkinson disease mouse model by intraperitoneal injection of MPTP (20 mg/kg; 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine) for 10 and 20 days, respectively. Subsequently, ibuprofen treatment was administered for 2 months, and a pole test, rotarod test, histology, immunohistochemistry, and western blotting were performed to determine neuronal motor function. Histological analysis for 10 days after mice were injected with MPTP showed the onset of neurodegeneration and cell aggregation, indicating the initial stages of Parkinson's disease. Advanced Parkinson's disease was marked by Lewy body formation after another 10 days of MPTP injection. Neurodegeneration reverted after ibuprofen therapy in initial Parkinson's disease but not in advanced Parkinson's disease. The pole and rotarod tests confirmed that motor activity in the initial Parkinson disease with ibuprofen treatment recovered (p<0.01). However, no improvement was observed in the ibuprofen-treated mice with advanced disease mice. Interestingly, ibuprofen treatment resulted in a significant improvement (p<0.01) in NURR1 (Nuclear receptor-related 1) expression in mice with early PD, but no substantial improvement was observed in its expression in mice with advanced PD. Our findings indicate that NURR1 exerts anti-inflammatory and neuroprotective effects. Overall, NURR1 contributed to the effects of ibuprofen on PD at different pathological stages.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Mice , Parkinson Disease/metabolism , Ibuprofen/pharmacology , Ibuprofen/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology
13.
ACS Appl Mater Interfaces ; 16(12): 14595-14604, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38469717

ABSTRACT

Herein, we report the preparation of bifunctional silica nanoparticles by covalent attachment of both an anti-inflammatory drug (ibuprofen) and an antibiotic (levofloxacin or norfloxacin) through amide groups. We also describe the coating of cotton fabrics with silica nanoparticles containing both ibuprofen and norfloxacin moieties linked by amide groups by using a one-step coating procedure under ultrasonic conditions. The functionalized nanoparticles and cotton fabrics have been characterized using spectroscopic and microscopic techniques. The functionalized nanoparticles and textiles have been treated with model proteases for the in situ release of the drugs by the amide bond enzymatic cleavage. Topical dermal applications in medical bandages are expected, which favor wound healing.


Subject(s)
Nanoparticles , Norfloxacin , Silicon Dioxide/chemistry , Ibuprofen/pharmacology , Cotton Fiber , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Textiles , Wound Healing , Anti-Inflammatory Agents/chemistry , Amides
14.
ChemMedChem ; 19(10): e202300651, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38354370

ABSTRACT

In this research work, a series of 16 quinazoline derivatives bearing ibuprofen and an amino acid were designed as inhibitors of epidermal growth factor receptor tyrosine kinase domain (EGFR-TKD) and cyclooxygenase-2 (COX-2) with the intention of presenting dual action in their biological behavior. The designed compounds were synthesized and assessed for cytotoxicity on epithelial cancer cells lines (AGS, A-431, MCF-7, MDA-MB-231) and epithelial non-tumorigenic cell line (HaCaT). From this evaluation, derivative 6 was observed to exhibit higher cytotoxic potency (IC50) than gefitinib (reference drug) on three cancer cell lines (0.034 µM in A-431, 2.67 µM in MCF-7, and 3.64 µM in AGS) without showing activity on the non-tumorigenic cell line (>100 µM). Furthermore, assessment of EGFR-TKD inhibition by 6 showed a discreet difference compared to gefitinib. Additionally, 6 was used to conduct an in vivo anti-inflammatory assay using the 12-O-tetradecanoylphorbol-3-acetate (TPA) method, and it was shown to be 5 times more potent than ibuprofen. Molecular dynamics studies of EGFR-TKD revealed interactions between compound 6 and M793. On the other hand, one significant interaction was observed for COX-2, involving S531. The RMSD graph indicated that the ligand remained stable in 50 ns.


Subject(s)
Amino Acids , Antineoplastic Agents , Cyclooxygenase 2 , Drug Screening Assays, Antitumor , ErbB Receptors , Ibuprofen , Quinazolines , Ibuprofen/pharmacology , Ibuprofen/chemistry , Ibuprofen/chemical synthesis , Humans , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Cyclooxygenase 2/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Amino Acids/chemistry , Amino Acids/pharmacology , Amino Acids/chemical synthesis , Molecular Structure , Cell Line, Tumor , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Tetradecanoylphorbol Acetate/pharmacology , Cell Proliferation/drug effects , Animals , Dose-Response Relationship, Drug , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Cell Survival/drug effects
15.
J Mol Graph Model ; 128: 108720, 2024 05.
Article in English | MEDLINE | ID: mdl-38324969

ABSTRACT

This study employs density functional theory to explore the interaction between ibuprofen (IBU) and silica, emphasizing the influence of the trimethylsilyl (TMS) functional group for designing pH-responsive drug carriers. The surface (S) and drug (D) molecules' neutral (0) or deprotonated (-1) states were taken into consideration during the investigation. The likelihood of these states was determined based on the pKa values and the desired pH conditions. To calculate the pH-dependent interaction energy (EintpH), four different situations have been identified: S0D0, S0D-1, S-1D0, and S-1D-1.The electrostatic component of interaction energy aligns favorably with its theoretical value in both the Debye-Hückel and Grahame models. The investigation has gathered first-hand experimental data on the drug loading and release of pH-responsive mesoporous silica nanoparticles. Effective drug loading was observed in the acidic environment of the stomach (pH 2-5), followed by a release in the slightly basic to neutral pH of the small intestine (pH 7.4), These findings align with existing literature. The results revealed horizontal drug adherence on silica surfaces, improving binding capabilities. Comparisons were made with combinations involving carboxylated carbon nanotubes and ibuprofen, silica, and sulfasalazine, and silica and alendronate, exploring drug loading/release dynamics associated with positive/negative interaction energies. The investigation, supported by experimental data, contributes valuable insights into pH-responsive mesoporous silica nanoparticles, offering new design possibilities for drug carriers.


Subject(s)
Ibuprofen , Nanotubes, Carbon , Ibuprofen/pharmacology , Drug Carriers , Sulfasalazine/pharmacology , Alendronate , Silicon Dioxide , Hydrogen-Ion Concentration , Porosity
16.
Int J Biol Macromol ; 263(Pt 1): 130266, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368982

ABSTRACT

Recently, a significantly greater clinical benefit has been reported with a combination of glucosamine sulfate and nonsteroidal anti-inflammatory drugs (NSAIDs) compared to either treatment alone for the growing osteoarthritis (OA) disease. So, this study introduces hydrogels using O-carboxymethyl chitosan (O-CMC, structurally akin glucosamine glycan), and Gelatin type A (GA) in a 1:2 ratio with ß-glycerophosphate (ßGPh) at varying percentages (5 %, 12.5 %, and 15 %). We show that hydrogel properties, adaptable for drug delivery or tissue engineering, can be fine-tuned based on OCMC:ßGPh ratio. CMC/GA/ßGPh-12.5 exhibited a swelling rate of 189 %, compressive stress of 164 kPa, and compressive modulus of 3.4 kPa. The self-healing hydrogel also exhibited excellent injectability through a 21-gauge needle, requiring only 5 N of force. Ibuprofen and Naproxen release from CMC/GA/ßGPh-12.5 and CMC/GA/ßGPh-15 of designed dimensions (bi-layer structures of different diameter and height) were measured, and drug release kinetics were estimated using mathematical equations (MATLAB and polyfit program). CMC/GA/ßGPh-12.5 demonstrated significant antibacterial effects against E. coli and S. aureus, a high cell survival rate of 89 % against L929 fibroblasts, and strong cell adhesion, all indicating biocompatibility. These findings underscore potential of these hydrogels as promising candidates for treating inflammatory diseases such as osteoarthritis.


Subject(s)
Chitosan , Chitosan/analogs & derivatives , Osteoarthritis , Humans , Ibuprofen/pharmacology , Naproxen , Gelatin/chemistry , Hydrogels/chemistry , Escherichia coli , Staphylococcus aureus , Chitosan/chemistry , Anti-Bacterial Agents/chemistry
17.
Molecules ; 29(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276584

ABSTRACT

Several organometallic complexes based on more than twenty different metals have already been approved for medical applications. The aim of the presented research was to obtain complexes of silver and copper with the non-steroidal anti-inflammatory drugs ibuprofen and xanthine alkaloid caffeine and evaluate selected aspects of their bioactivity and biosafety in terms of their future possible applications. The obtained complexes were characterized by Fourier-transform infrared spectroscopy, thermogravimetry, UV-VIS spectroscopy, conductometry, elemental analysis, and bioassays. Cytotoxicity for normal human cells of the CCD-Co18 cell line was evaluated by determining the IC50 value, with metabolic and morphology assessments. It was observed that complexes containing ibuprofen and caffeine exhibited lower toxicity than those with ibuprofen only. Complexes with copper showed lower toxicity towards healthy human fibroblasts compared to silver-based compounds, with an IC50 above 140 µg mL-1. However, in the silver complexes, the presence of caffeine increased the potency of COX-2 inhibition. Antimicrobial effects against different Gram-positive and Gram-negative bacterial strains were evaluated by MIC determination with values less than 20 µg mL-1.


Subject(s)
Ibuprofen , Silver , Humans , Silver/chemistry , Ibuprofen/pharmacology , Ibuprofen/chemistry , Copper/chemistry , Caffeine/pharmacology , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
18.
J Int Soc Sports Nutr ; 21(1): 2302046, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38198469

ABSTRACT

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen, flurbiprofen, naproxen sodium, and indomethacin are commonly employed for their pain-relieving and inflammation-reducing qualities. NSAIDs work by blocking COX-1 and/or COX-2, enzymes which play roles in inflammation, fever, and pain. The main difference among NSAIDs lies in their affinity to these enzymes, which in turn, influences prostaglandin secretion, and skeletal muscle growth and regeneration. The current study investigated the effects of NSAIDs on human skeletal muscle cells, focusing on myoblast proliferation, differentiation, and muscle protein synthesis signaling. METHODS: Using human primary muscle cells, we examined the dose-response impact of flurbiprofen (25-200 µM), indomethacin (25-200 µM), ibuprofen (25-200 µM), and naproxen sodium (25-200 µM), on myoblast viability, myotube area, fusion, and prostaglandin production. RESULTS: We found that supraphysiological concentrations of indomethacin inhibited myoblast proliferation (-74 ± 2% with 200 µM; -53 ± 3% with 100 µM; both p < 0.05) compared to control cells and impaired protein synthesis signaling pathways in myotubes, but only attenuated myotube fusion at the highest concentrations (-18 ± 2% with 200 µM, p < 0.05) compared to control myotubes. On the other hand, ibuprofen had no such effects. Naproxen sodium only increased cell proliferation at low concentrations (+36 ± 2% with 25 µM, p < 0.05), and flurbiprofen exhibited divergent impacts depending on the concentration whereby low concentrations improved cell proliferation (+17 ± 1% with 25 µM, p < 0.05) but high concentrations inhibited cell proliferation (-32 ± 1% with 200 µM, p < 0.05). CONCLUSION: Our findings suggest that indomethacin, at high concentrations, may detrimentally affect myoblast proliferation and differentiation via an AKT-dependent mechanism, and thus provide new understanding of NSAIDs' effects on skeletal muscle cell development.


Subject(s)
Flurbiprofen , Naproxen , Humans , Naproxen/pharmacology , Ibuprofen/pharmacology , Flurbiprofen/pharmacology , Indomethacin/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Muscle Fibers, Skeletal , Inflammation , Pain , Prostaglandins
19.
BMC Emerg Med ; 24(1): 15, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273252

ABSTRACT

INTRODUCTION: This study aims to investigate the effectiveness of intravenous ibuprofen or intravenous ibuprofen plus acetaminophen compared to intravenous morphine in patients with closed extremity fractures. METHODS: A triple-blinded randomized clinical trial was conducted at a tertiary trauma center in Iran. Adult patients between 15 and 60 years old with closed, isolated limb fractures and a pain intensity of at least 6/10 on the visual analog scale (VAS) were eligible. Patients with specific conditions or contraindications were not included. Participants were randomly assigned to receive intravenous ibuprofen, intravenous ibuprofen plus acetaminophen, or intravenous morphine. Pain scores were assessed using the visual analog scale at baseline and 5, 15, 30, and 60 min after drug administration. The primary outcome measure was the pain score reduction after one hour. RESULTS: Out of 388 trauma patients screened, 158 were included in the analysis. There were no significant differences in age or sex distribution among the three groups. The pain scores decreased significantly in all groups after 5 min, with the morphine group showing the lowest pain score at 15 min. The maximum effect of ibuprofen was observed after 30 min, while the ibuprofen-acetaminophen combination maintained its effect after 60 min. One hour after injection, pain score reduction in the ibuprofen-acetaminophen group was significantly more than in the other two groups, and pain score reduction in the ibuprofen group was significantly more than in the morphine group. CONCLUSION: The study findings suggest that ibuprofen and its combination with acetaminophen have similar or better analgesic effects compared to morphine in patients with closed extremity fractures. Although morphine initially provided the greatest pain relief, its effect diminished over time. In contrast, ibuprofen and the ibuprofen-acetaminophen combination maintained their analgesic effects for a longer duration. The combination therapy demonstrated the most sustained pain reduction. The study highlights the potential of non-opioid analgesics in fracture pain management and emphasizes the importance of initiation of these medications as first line analgesic for patients with fractures. These findings support the growing trend of exploring non-opioid analgesics in pain management. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05630222 (Tue, Nov 29, 2022). The manuscript adheres to CONSORT guidelines.


Subject(s)
Analgesics, Non-Narcotic , Fractures, Bone , Adolescent , Adult , Humans , Middle Aged , Young Adult , Acetaminophen/pharmacology , Analgesics/pharmacology , Analgesics, Non-Narcotic/pharmacology , Analgesics, Opioid/pharmacology , Double-Blind Method , Extremities , Fractures, Bone/complications , Ibuprofen/pharmacology , Morphine/pharmacology , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Male , Female
20.
Int J Biol Macromol ; 260(Pt 1): 129515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237826

ABSTRACT

The design and preparation of safe wound dressings with antibacterial and controlled drug release abilities is valuable in medicine. This research focuses on the fabrication of a hydrogel carrier with graphene oxide (GO)-triggered ibuprofen (IBU) release to control inflammation. The hydrogel was prepared by cross-linking the base polymer sodium alginate (SA) and functionalized GO. The morphology of the gel was observed by a scanning electron microscope (SEM), and its structure was analyzed through X-ray diffraction (XRD) and Fourier transform infrared reflection (FTIR) spectroscopy. The effects of GO on swelling capacity, IBU release behavior and antibacterial activity were investigated by using the prepared GO/SA hydrogel as a drug carrier and IBU as a drug model. In vitro studies confirmed that the GO/SA hydrogel had good antimicrobial activity and excellent cytotoxicity. The analysis of cumulative IBU release rates revealed that the addition of GO could promote the release of IBU, and the change in GO content did not have a prominent effect on IBU release. At the same time, the rate of IBU release from the GO/SA hydrogel was affected by near-infrared light. Under a light source, the release rate of IBU increased, and the release amount of IBU showed a clear stepwise increase under light on-off conditions. These results suggest that the GO/SA hydrogel could be a potential antibacterial and anti-inflammatory wound dressing.


Subject(s)
Graphite , Hydrogels , Ibuprofen , Ibuprofen/pharmacology , Ibuprofen/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Alginates/chemistry , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...