Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.377
Filter
1.
Curr Sports Med Rep ; 23(5): 171-173, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38709942

ABSTRACT

ABSTRACT: A 23-year-old woman completing her first marathon collapsed near the finish line at 4 hours 6 min with a rectal temperature of 41.8°C. She was in good health before the race with no recent illness, had completed a full training program, and was taking no medications or supplements. On the initial exam, she was unconscious with a response to painful stimulus, spontaneous breathing, rapid pulse, eyes closed, fully dilated pupils, poor muscle tone, and pale skin that was warm to touch. The medical team initiated whole-body cooling using rapidly rotating ice water towels and ice packs placed in the neck, axilla, and groin. She developed echolalia during active cooling. About 20 minutes into the cooling procedure, she "woke up," was able to answer questions coherently, and her pupils were normal size and reactive. She was discharged home with instructions to follow-up in 2 d for evaluation and blood chemistry testing.


Subject(s)
Heat Stroke , Humans , Female , Young Adult , Heat Stroke/therapy , Heat Stroke/diagnosis , Ice , Marathon Running , Cryotherapy/methods , Physical Exertion/physiology
2.
AAPS PharmSciTech ; 25(5): 102, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714592

ABSTRACT

Freezing of biological drug substance (DS) is a critical unit operation that may impact product quality, potentially leading to protein aggregation and sub-visible particle formation. Cryo-concentration has been identified as a critical parameter to impact protein stability during freezing and should therefore be minimized. The macroscopic cryo-concentration, in the following only referred to as cryo-concentration, is majorly influenced by the freezing rate, which is in turn impacted by product independent process parameters such as the DS container, its size and fill level, and the freezing equipment. (At-scale) process characterization studies are crucial to understand and optimize freezing processes. However, evaluating cryo-concentration requires sampling of the frozen bulk, which is typically performed by cutting the ice block into pieces for subsequent analysis. Also, the large amount of product requirement for these studies is a major limitation. In this study, we report the development of a simple methodology for experimental characterization of frozen DS in bottles at relevant scale using a surrogate solution. The novel ice core sampling technique identifies the axial ice core in the center to be indicative for cryo-concentration, which was measured by osmolality, and concentrations of histidine and polysorbate 80 (PS80), whereas osmolality revealed to be a sensitive read-out. Finally, we exemplify the suitability of the method to study cryo-concentration in DS bottles by comparing cryo-concentrations from different freezing protocols (-80°C vs -40°C). Prolonged stress times during freezing correlated to a higher extent of cryo-concentration quantified by osmolality in the axial center of a 2 L DS bottle.


Subject(s)
Drug Packaging , Freezing , Ice , Drug Packaging/methods , Osmolar Concentration , Polysorbates/chemistry , Histidine/chemistry , Biological Products/chemistry
3.
PLoS One ; 19(5): e0303605, 2024.
Article in English | MEDLINE | ID: mdl-38781265

ABSTRACT

Black ice, a phenomenon that occurs abruptly owing to freezing rain, is difficult for drivers to identify because it mirrors the color of the road. Effectively managing the occurrence of unforeseen accidents caused by black ice requires predicting their probability using spatial, weather, and traffic factors and formulating appropriate countermeasures. Among these factors, weather and traffic exhibit the highest levels of uncertainty. To address these uncertainties, a study was conducted using a Monte Carlo simulation based on random values to predict the probability of black ice accidents at individual road points and analyze their trigger factors. We numerically modeled black ice accidents and visualized the simulation results in a geographical information system (GIS) by employing a sensitivity analysis, another feature of Monte Carlo simulations, to analyze the factors that trigger black ice accidents. The Monte Carlo simulation allowed us to map black ice accident occurrences at each road point on the GIS. The average black ice accident probability was found to be 0.0058, with a standard deviation of 0.001. Sensitivity analysis using Monte Carlo simulations identified wind speed, air temperature, and angle as significant triggers of black ice accidents, with sensitivities of 0.354, 0.270, and 0.203, respectively. We predicted the probability of black ice accidents per road section and analyzed the primary triggers of black ice accidents. The scientific contribution of this study lies in the development of a method beyond simple road temperature predictions for evaluating the risk of black ice occurrences and subsequent accidents. By employing Monte Carlo simulations, the probability of black ice accidents can be predicted more accurately through decoupling meteorological and traffic factors over time. The results can serve as a reference for government agencies, including road traffic authorities, to identify accident-prone spots and devise strategies focused on the primary triggers of black ice accidents.


Subject(s)
Geographic Information Systems , Ice , Monte Carlo Method , Models, Statistical , Humans , Accidents, Traffic/statistics & numerical data
4.
Cryo Letters ; 45(3): 185-193, 2024.
Article in English | MEDLINE | ID: mdl-38709190

ABSTRACT

BACKGROUND: Characterization of intracellular ice formation (IIF) in oocytes during the freezing and thawing processes will contribute to optimizing their cryopreservation. However, the observation of the ice formation process in oocytes is limited by the spatiotemporal resolution of the cryomicroscope systems. OBJECTIVE: To observe the intracellular icing of oocytes during cooling and rewarming, and to study the mechanism of formation and growth of intracellular ice in oocytes. MATERIALS AND METHODS: Mouse oocytes were frozen at different cooling rates to induce intracellular ice formation using a cryomicroscopy system consisting of a microscope equipped with a cryogenic cold stage, an automatic cooling system, a temperature control system, and a high-speed camera. The growth patterns of intracellular ice in oocytes were analyzed from the images recorded. Finally, the growth rate of intracellular ice formation in oocytes was calculated using an automatic intracellular ice tracking method. RESULTS: The IIF temperature decreased gradually with the increase in cooling rate. Initiation sites of IIF could be classified into three categories: marginal type, internal type and coexisting type. There was a strong predominance for ice crystal initiation site in the oocytes, with up to 80% of the initiation sites located in the marginal region. The intracellular ice growth modes of darkening and twitching cells were characterized by "spreading" and "clustering", respectively. In addition, twitching cells started to recrystallize during rewarming, while darkening cells did not. The instantaneous maximal growth rate of ice crystals in twitching cells was about 10 times higher than that in darkening cells. CONCLUSION: By visualising the growth of ice crystals in mouse oocytes during cooling and rewarming, we obtained valuable information on the kinetics of ice formation and melting in these cells. This information can help us understand how ice formation and melting affect the viability and quality of oocytes after cryopreservation. Doi.org/10.54680/fr24310110412.


Subject(s)
Cryopreservation , Ice , Oocytes , Animals , Mice , Oocytes/cytology , Oocytes/physiology , Cryopreservation/methods , Female , Freezing , Crystallization , Microscopy/methods
5.
Food Chem ; 451: 139502, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38701732

ABSTRACT

In this study, the correlation between protein phosphorylation and deterioration in the quality of tilapia during storage in ice was examined by assessing changes in texture, water-holding capacity (WHC), and biochemical characteristics of myofibrillar protein throughout 7 days of storage. The hardness significantly decreased from 471.50 to 252.17 g, whereas cooking and drip losses significantly increased from 26.5% to 32.6% and 2.9% to 9.1%, respectively (P < 0.05). Myofibril fragmentation increased, while myofibrillar protein sulfhydryl content and Ca2+-ATPase activity decreased from 119.33 to 89.29 µmol/g prot and 0.85 to 0.46 µmolPi/mg prot/h, respectively (P < 0.05). Correlation analysis revealed that the myofibrillar protein phosphorylation level was positively correlated with hardness and Ca2+-ATPase activity but negatively correlated with WHC. Myofibrillar protein phosphorylation affects muscle contraction by influencing the dissociation of actomyosin, thereby regulating hardness and WHC. This study provides novel insights for the establishment of quality control strategies for tilapia storage based on protein phosphorylation.


Subject(s)
Fish Proteins , Food Storage , Ice , Muscle Proteins , Myofibrils , Tilapia , Animals , Phosphorylation , Tilapia/metabolism , Muscle Proteins/metabolism , Muscle Proteins/chemistry , Fish Proteins/chemistry , Fish Proteins/metabolism , Ice/analysis , Myofibrils/chemistry , Myofibrils/metabolism , Seafood/analysis
6.
Int J Biol Macromol ; 268(Pt 2): 131941, 2024 May.
Article in English | MEDLINE | ID: mdl-38685545

ABSTRACT

The inherent functional fractions (gelation and ice-affinitive fractions) of gelatin enable it as a promising cryoprotectant alternative. However, the composition-antifreeze property relationships of gelatin remain to be investigated. In this study, the HW-PSG and LW-PSG fractions of gelatin from fish scales were obtained, according to the critical gelation conditions and ice-binding measurements, respectively. Thermal hysteresis (THA) value, associated with ice nucleation, of LW-PSG was higher than that of HW-PSG. Besides, the relatively low-sized ice crystals (210-550 µm2) indicated that HW-PSG showed strong ice recrystallization inhibition (IRI) ability, compared to other groups. These results suggested that LW-PSG inhibited ice nucleation, while HW-PSG displayed the strong IRI ability. Furthermore, the antifreeze mechanisms were clarified through IRI measurements and molecular dynamics simulation. The minimum size of ice crystals was found for HW-PSG gels with dense microstructure, suggesting the HW-PSG retarded the growth of ice crystals by restricting the migration and phase transformation of water molecules. The hydrogen bond interactions between the ice crystal surface and ASN1294 and PRO1433 residues of LW-PSG, and hydrophobic interactions contributed to inhibiting the nucleation of ice crystals. This study provided some references to further enhance antifreeze performance of gelatin by modulating fragment composition.


Subject(s)
Gelatin , Molecular Dynamics Simulation , Gelatin/chemistry , Animals , Ice , Crystallization , Hydrogen Bonding , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Hydrophobic and Hydrophilic Interactions , Fishes
7.
PLoS One ; 19(4): e0297867, 2024.
Article in English | MEDLINE | ID: mdl-38603730

ABSTRACT

We sequenced and comprehensively analysed the genomic architecture of 98 fluorescent pseudomonads isolated from different symptomatic and asymptomatic tissues of almond and a few other Prunus spp. Phylogenomic analyses, genome mining, field pathogenicity tests, and in vitro ice nucleation and antibiotic sensitivity tests were integrated to improve knowledge of the biology and management of bacterial blast and bacterial canker of almond. We identified Pseudomonas syringae pv. syringae, P. cerasi, and P. viridiflava as almond canker pathogens. P. syringae pv. syringae caused both canker and foliar (blast) symptoms. In contrast, P. cerasi and P. viridiflava only caused cankers, and P. viridiflava appeared to be a weak pathogen of almond. Isolates belonging to P. syringae pv. syringae were the most frequently isolated among the pathogenic species/pathovars, composing 75% of all pathogenic isolates. P. cerasi and P. viridiflava isolates composed 8.3 and 16.7% of the pathogenic isolates, respectively. Laboratory leaf infiltration bioassays produced results distinct from experiments in the field with both P. cerasi and P. syringae pv. syringae, causing significant necrosis and browning of detached leaves, whereas P. viridiflava conferred moderate effects. Genome mining revealed the absence of key epiphytic fitness-related genes in P. cerasi and P. viridiflava genomic sequences, which could explain the contrasting field and laboratory bioassay results. P. syringae pv. syringae and P. cerasi isolates harboured the ice nucleation protein, which correlated with the ice nucleation phenotype. Results of sensitivity tests to copper and kasugamycin showed a strong linkage to putative resistance genes. Isolates harbouring the ctpV gene showed resistance to copper up to 600 µg/ml. In contrast, isolates without the ctpV gene could not grow on nutrient agar amended with 200 µg/ml copper, suggesting ctpV can be used to phenotype copper resistance. All isolates were sensitive to kasugamycin at the label-recommended rate of 100µg/ml.


Subject(s)
Prunus dulcis , Pseudomonas syringae , Pseudomonas , Copper , Genomics , Ice , Phylogeny , Prunus dulcis/genetics
9.
Proc Natl Acad Sci U S A ; 121(17): e2316452121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621125

ABSTRACT

The main sources of redox gradients supporting high-productivity life in the Europan and other icy ocean world oceans were proposed to be photolytically derived oxidants, such as reactive oxygen species (ROS) from the icy shell, and reductants (Fe(II), S(-II), CH4, H2) from bottom waters reacting with a (ultra)mafic seafloor. Important roadblocks to maintaining life, however, are that the degree of ocean mixing to combine redox species is unknown, and ROS damage biomolecules. Here, we envisage a unique solution using an acid mine drainage (AMD)-filled pit lakes analog system for the Europan ocean, which previous models predicted to be acidic. We hypothesize that surface-generated ROS oxidize dissolved Fe(II) resulting in Fe(III) (hydr)oxide precipitates, that settle to the seafloor as "iron snow." The iron snow provides a respiratory substrate for anaerobic microorganisms ("breathing iron"), and limits harmful ROS exposure since they are now neutralized at the ice-water interface. Based on this scenario, we calculated Gibbs energies and maximal biomass productivities of various anaerobic metabolisms for a range of pH, temperatures, and H2 fluxes. Productivity by iron reducers was greater for most environmental conditions considered, whereas sulfate reducers and methanogens were more favored at high pH. Participation of Fe in the metabolic redox processes is largely neglected in most models of Europan biogeochemistry. Our model overcomes important conceptual roadblocks to life in icy ocean worlds and broadens the potential metabolic diversity, thus increasing total primary productivity, the diversity and volume of habitable environmental niches and, ultimately, the probability of biosignature detection.


Subject(s)
Ice , Iron , Reactive Oxygen Species , Snow , Oxidation-Reduction , Ferrous Compounds
10.
J Texture Stud ; 55(2): e12830, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581175

ABSTRACT

Freezing and blanching are essential processing steps in the production of frozen yellow peaches, inevitably leading to texture softening of the fruit. In this study, the synergistic mechanism of stem blanching, freezing conditions (-20°C, -40°C, -80°C, and liquid nitrogen [-173°C]), and sample sizes (cubes, slices, and half peaches) on macroscopic properties of texture, cellular structure, and ice crystal size distribution of frozen yellow peaches were measured. Blanching enhanced the heat and mass transfer rates in the subsequent freezing process. For nonblanched samples, cell membrane integrity was lost at any freezing rate, causing a significant reduction in textural quality. Slow freezing further exacerbated the texture softening, while the ultra-rapid freezing caused structural rupture. For blanched samples, the half peaches softened the most. The water holding capacity and fracture stress were not significantly affected by changes in freezing rate, although the ice crystal size distribution was more susceptible to the freezing rate. Peach cubes that had undergone blanching and rapid freezing (-80°C) experienced 4% less drip loss than nonblanched samples. However, blanching softened yellow peaches more than any freezing conditions. The implementation of uniform and shorter duration blanching, along with rapid freezing, has been proven to be more effective in preserving the texture of frozen yellow peaches. Optimization of the blanching process may be more important than increasing the freezing rate to improve the textural quality of frozen yellow peaches.


Subject(s)
Prunus persica , Steam , Freezing , Food Preservation , Ice
11.
Cryo Letters ; 45(2): 69-87, 2024.
Article in English | MEDLINE | ID: mdl-38557986

ABSTRACT

Despite the routine use of cryopreservation for the storage of biological materials, its outcomes are often sub-optimal (including reduced post-thaw viability, recovery, and functionality) due to the damage caused by uncontrolled ice growth. Traditional cryoprotective agents (CPAs), including dimethyl sulfoxide (DMSO), fail to prevent damage caused by ice growth and concerns over CPA cytotoxicity have fostered an increased interest in developing improved CPAs and cryoprotection strategies. The inhibition of ice recrystallization by natural antifreeze (glyco)proteins [AF(G)Ps] to improve cryopreservation outcomes has been examined; however, the ice binding properties of these substances and their challenging large-scale production make them poor CPA candidates. Therefore, the development and deployment of biocompatible, small-molecule ice recrystallization inhibitors (IRIs) for use as CPAs is a worthwhile objective. Extensive structure-activity relationship studies on AF(G)Ps revealed that simple carbohydrate derivatives could inhibit ice recrystallization. It was later discovered that this activity could be fine-tuned by delicately balancing the molecule's hydrophobicity and hydrophilicity. Current generation small-molecule IRIs have been meticulously designed to avoid binding to the surface of ice and subsequent biological testing (for both cytotoxicity and cryopreservation efficacy) has demonstrated significant improvements to the cryopreservation outcomes of several cell types. However, an individualized cell-specific approach for the simultaneous assessment of multiple cryopreservation outcomes is necessary to realize the full potential of IRIs as CPAs. This article provides a detailed overview of the development of small-molecule carbohydrate-based IRIs and highlights the crucial cell-specific biological considerations that must be taken into account when assessing cryopreservation outcomes. https://doi.org/10.54680/fr24210110112.


Subject(s)
Cryopreservation , Ice , Cell Survival , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Carbohydrates , Iris
12.
Scand J Med Sci Sports ; 34(4): e14614, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38610079

ABSTRACT

Long-track and short-track ice speed skating are integral to the Winter Olympics. The state of evidence-based injury prevention in these sports is unclear. Our goals were to summarize the current scientific knowledge, to determine the state of research, and to highlight future research areas for injury prevention in ice speed skating. We conducted a scoping review, searching all injury and injury prevention studies in competitive ice speed skaters. The six-stage Translating Research into Injury Prevention Practice (TRIPP) framework summarized the findings. The systematic search yielded 1109 citations. Nineteen studies were included, and additional searches yielded another 13 studies, but few had high-quality design. TRIPP stage 1 studies (n = 24) found competition injury rates from 2% to 18% of participants with various injury locations and types. Seasonal prevalence of physical complaints was up to 84% (for back pain) in long- and short-track. Ten studies covered information on TRIPP stage 2, with two small etiological studies linking injuries to functional strength deficits (short-track) and training load (long-track). Questionnaire studies identified various perceived risk factors for injuries but lacked further scientific evidence. Most TRIPP stage 3 studies (five out of eight) focused on developing protective measures, while two studies found short-track helmets performed poorly compared to helmets used in other sports. No study evaluated the efficacy, the intervention context, or the effectiveness (TRIPP stages 4-6) of the measures. Scientific knowledge on injury prevention in ice speed skating is limited. Future research should prioritize high-quality studies on injury epidemiology and etiology in the sports.


Subject(s)
Skating , Sports , Humans , Ice , Causality , Risk Factors
13.
Zhongguo Gu Shang ; 37(4): 392-8, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38664211

ABSTRACT

OBJECTIVE: To evaluate the rabbit modle of frozen shoulder induced by persistent strain injuries and ice compression. METHODS: Twelve clean, healthy male New Zealand rabbits with a mass of (2 500±500) g were selected and randomly divided into a blank group and a control group with 6 rabbits in each group. In the control group, the rabbits were modeled with persistent strain injuries and ice compression, the general conditions of the rabbits and the active and passive activities of the shoulder joint were observed and their body weights were recorded. MRI was performed on the affected shoulder joints at 6 d and 29 d after modelling to observe the fluid and soft tissue;HE staining was used to observe the morphology of the rabbit biceps longus tendon and the synovial membrane of the joint capsule;Masson staining was used to observe the fibrous deposits of the rabbit biceps longus tendon and the synovial membrane of the joint capsule, and the fibrous deposits were analysed semi-quantitatively by Image J software. RESULTS: Six days after the end of modeling, the active movement of the shoulder joints in the control group was limited, the passive movement was not significantly limited, and they walked with a limp;29 days after the end of the modeling, the active and passive movements of the shoulder joints in the model group were severely limited. Compared with the blank group (2.50±0.14) kg, the body weight of the model group (2.20±0.17) kg was significantly reduced(P<0.01). MRI showed that 6 days after modelling, the muscles around the shoulder joint were not smooth in shape, the joint capsule structure was narrowed and a large amount of fluid was seen in the joint cavity;29 days after modelling, the muscles around the shoulder joint were rough in shape, structure of the joint capsule was unclear and the fluid in the joint cavity was reduced compared with 6 days after modelling. Pathological staining showed that the long-headed biceps tendon fibres in the control group were disorganised, curled or even broken, and the synovial tissue of the joint capsule was heavily vascularised, with collagen fibre deposits and severe inflammatory cell infiltration. The fiber deposition of the long head of biceps brachii in the model group [(23.58±3.41)%, (27.56±3.70)%] and synovial tissue [(41.78±5.59)%, (62.19±7.54)%] were significantly higher than those in the blank group [(1.79±1.03) %, (1.29±0.63) %] at 7 and 30 days after modeling and synovial tissue fiber deposition [(8.15±3.61) %, (11.29±7.10) %], as shown by the semi-quantitative analysis of Masson staining results by Image J software. And the longer the time, the more severe the fibrosis (P<0.01). CONCLUSION: The behavioral, imaging and pathological findings showed that the rabbit frozen shoulder model with persistent strain injuries and ice compression is consistent with the clinical manifestations and pathogenesis of periarthritis, making it an ideal method for periarthritis research.


Subject(s)
Bursitis , Disease Models, Animal , Animals , Rabbits , Male , Bursitis/physiopathology , Ice , Sprains and Strains/physiopathology , Shoulder Joint/physiopathology , Magnetic Resonance Imaging
14.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38445741

ABSTRACT

Using molecular dynamics simulations, we show that a molecule of moderately active antifreeze protein (type III AFP, QAE HPLC-12 isoform) is able to interact with ice in an indirect manner. This interaction occurs between the ice binding site (IBS) of the AFP III molecule and the surface of ice, and it is mediated by liquid water, which separates these surfaces. As a result, the AFP III molecule positions itself at a specific orientation and distance relative to the surface of ice, which enables the effective binding (via hydrogen bonds) of the molecule with the nascent ice surface. Our results show that the final adsorption of the AFP III molecule on the surface of ice is not achieved by chaotic diffusion movements, but it is preceded by a remote, water-mediated interaction between the IBS and the surface of ice. The key factor that determines the existence of this interaction is the ability of water molecules to spontaneously form large, high-volume aggregates that can be anchored to both the IBS of the AFP molecule and the surface of ice. The results presented in this work for AFP III are in full agreement with the ones obtained by us previously for hyperactive CfAFP, which indicates that the mechanism of the remote interaction of these molecules with ice remains unchanged despite significant differences in the molecular structure of their ice binding sites. For that reason, we can expect that also other types of AFPs interact with the ice surface according to an analogous mechanism.


Subject(s)
Ice , alpha-Fetoproteins , Adsorption , Antifreeze Proteins , Water
15.
Scand J Clin Lab Invest ; 84(1): 62-67, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38451167

ABSTRACT

Glucose measurement plays a central role in the diagnosis of gestational diabetes mellitus (GDM). Because of earlier reports of overestimation of glucose in the widely used tubes containing granulated glycolysis inhibitor, the study assessed the performance of fast-clotting serum tubes as an alternative sample for the measurement of glucose. Glucose concentration in fast-clotting serum was compared to lithium-heparin plasma placed in an ice-water slurry after sample collection and glucose stability at room-temperature was studied. Blood samples from 30 volunteers were drawn in four different types of tubes (serum separator tubes, fast-clotting serum tubes, lithium-heparin tubes and sodium fluoride, EDTA and a citrate buffer (NaF-EDTA-citrate) tubes, all from Greiner Bio-One). Lithium-heparin tubes were placed in an ice-water slurry until centrifugation in accordance with international recommendations and centrifuged within 10 min. After centrifugation, glucose was measured in all tubes (timepoint T0) and after 24, 48, 72, 96 and 120 h of storage at 20-22 °C. NaF-EDTA-citrate plasma showed significant overestimation of glucose concentration by 4.7% compared to lithium-heparin plasma; fast-clotting serum showed glucose concentrations clinically equivalent to lithium-heparin plasma. In fast-clotting serum tubes, mean bias between glucose concentration after 24, 48, 72, 96 and 120 h and T0 was less than 2.4%. All individual differences compared to T0 were less than 6.5%. The results fulfill the acceptance criteria for sample stability based on biological variation. Fast-clotting serum tubes can be an alternative for the measurement of glucose in diagnosis and management of GDM and diabetes mellitus, especially when prolonged transportation is necessary.


Subject(s)
Diabetes, Gestational , Heparin , Pregnancy , Female , Humans , Glucose , Citric Acid/pharmacology , Edetic Acid , Lithium , Blood Glucose , Temperature , Ice , Citrates , Blood Specimen Collection/methods , Sodium Fluoride/pharmacology , Diabetes, Gestational/diagnosis , Centrifugation
16.
J Texture Stud ; 55(2): e12824, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453153

ABSTRACT

To inhibit the quality deterioration caused by the frozen storage of surimi products, this work investigated the effect of freezing methods, including raw-freezing-setting-heating, raw-setting-freezing-heating, and raw-setting-heating-freezing, on quality changes in surimi gel. The moisture loss, physical-chemical properties, and protein structure conformation of surimi gel derived from Bombay duck (BD) were assessed following frozen storage periods of 20, 40, and 60 days. The findings suggest that the raw-setting-heating-freezing method yielded optimal surimi gel properties with extended frozen storage time. Employing this approach led to a reduction in thawing loss, while cooking loss remained constant. After 60 days of frozen storage, the hardness exhibited an initial increase followed by a subsequent decrease, and water-holding capacity increased to 68.2%. Notably, the impact on surimi gel during the late stage of frozen storage was more pronounced throughout the formation of ice crystals, resulting in decreased disulfide bond content. Scanning hematoxylin-eosin (HE) staining slices of samples following thawing and heating demonstrated that the raw-setting-heating-freezing method could better resist the effect of ice crystals in frozen storage period on surimi tissue, while the gel on setting process could delay the erosion imposed on by ice crystals during frozen storage. This study provides a scientific foundation for the industrialization on frozen BD surimi products.


Subject(s)
Ducks , Ice , Animals , Freezing , Fishes , Cooking
17.
Sci Rep ; 14(1): 5599, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454107

ABSTRACT

Accurately monitoring the extent of freezing in biological tissue is an important requirement for cryoablation, a minimally invasive cancer treatment that induces cell death by freezing tissue with a cryoprobe. During the procedure, monitoring is required to avoid unnecessary harm to the surrounding healthy tissue and to ensure the tumor is properly encapsulated. One commonly used monitoring method is attenuation-based computed tomography (CT), which visualizes the ice ball by utilizing its hypoattenuating properties compared to unfrozen tissue. However, the contrast between frozen and unfrozen tissue remains low. In a proof-of-principle experiment, we show that the contrast between frozen and unfrozen parts of a porcine phantom mimicking breast tissue can be greatly enhanced by acquiring X-ray dark-field images that capture the increasing small-angle scattering caused by the ice crystals formed during the procedure. Our results show that, compared to X-ray attenuation, the frozen region is detected significantly better in dark-field radiographs and CT scans of the phantom. These findings demonstrate that X-ray dark-field imaging could be a potential candidate for improved monitoring of cryoablation procedures.


Subject(s)
Cryosurgery , Ice , Swine , Animals , Freezing , X-Rays , Tomography, X-Ray Computed/methods , Cryosurgery/methods
19.
Environ Geochem Health ; 46(4): 126, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483641

ABSTRACT

The migration of organochlorine pesticides (OCPs) and cypermethrin residues from internal organs to edible tissues of ice-held Labeo rohita (rohu) was investigated in this study. The liver (246 µg/kg) had the highest level of ∑OCP residues, followed by the gills (226 µg/kg), intestine (167 µg/kg), and muscle tissue (54 µg/kg). The predominant OCPs in the liver and gut were endosulfan (53-66 µg/kg), endrin (45-53 µg/kg), and dichloro-diphenyl-trichloroethane (DDT; 26-35 µg/kg). The ∑OCP residues in muscle increased to 152 µg/kg when the entire rohu was stored in ice, but they decreased to 129 µg/kg in gill tissues. On days 5 and 9, the total OCPs in the liver increased to 317 µg/kg and 933 µg/kg, respectively. Beyond day 5 of storage, total internal organ disintegration had led to an abnormal increase in OCP residues of liver-like mass. Despite a threefold increase in overall OCP residues by day 9, accumulation of benzene hexachloride (BHC) and heptachlor was sixfold, endrin and DDT were fourfold, aldrin was threefold, and endosulfan and cypermethrin were both twofold. Endosulfan, DDT, endrin, and heptachlor were similarly lost in the gills at a rate of 40%, while aldrin and BHC were also lost at 60 and 30%, respectively. The accumulation of OCP residues in tissues has been attributed to particular types of fatty acid derivatives. The study concluded that while pesticide diffusion to edible tissues can occur during ice storage, the levels observed were well below the allowable limit for endosulfan, endrin, and DDT.


Subject(s)
Hydrocarbons, Chlorinated , Pesticide Residues , Pesticides , Pyrethrins , Animals , Aldrin/analysis , DDT/analysis , Endosulfan/toxicity , Endosulfan/analysis , Endrin , Environmental Monitoring , Heptachlor/analysis , Hexachlorocyclohexane , Hydrocarbons, Chlorinated/toxicity , Hydrocarbons, Chlorinated/analysis , Ice , Pesticide Residues/analysis , Pesticides/toxicity , Pesticides/analysis
20.
Environ Sci Technol ; 58(14): 6305-6312, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38530277

ABSTRACT

Microplastics have littered the globe, with synthetic fibers being the largest source of atmospheric microplastics. Many atmospheric particles can act as ice nucleators, thereby affecting the microphysical and radiative properties of clouds and, hence, the radiative balance of the Earth. The present study focused on the ice-nucleating ability of fibers from clothing textiles (CTs), which are commonly shed from the normal wear of apparel items. Results from immersion ice nucleation experiments showed that CTs were effective ice nucleators active from -6 to -12 °C, similar to common biological ice nucleators. However, subsequent lysozyme and hydrogen peroxide digestion stripped the ice nucleation properties of CTs, indicating that ice nucleation was biological in origin. Microscopy confirmed the presence of biofilms (i.e., microbial cells attached to a surface and enclosed in an extracellular polysaccharide matrix) on CTs. If present in sufficient quantities in the atmosphere, biological particles (biofilms) attached to fibrous materials could contribute significantly to atmospheric ice nucleation.


Subject(s)
Ice , Microplastics , Plastics , Atmosphere , Clothing
SELECTION OF CITATIONS
SEARCH DETAIL
...