Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 487
Filter
1.
NPJ Syst Biol Appl ; 10(1): 49, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714708

ABSTRACT

Morphogenetic programs coordinate cell signaling and mechanical interactions to shape organs. In systems and synthetic biology, a key challenge is determining optimal cellular interactions for predicting organ shape, size, and function. Physics-based models defining the subcellular force distribution facilitate this, but it is challenging to calibrate parameters in these models from data. To solve this inverse problem, we created a Bayesian optimization framework to determine the optimal cellular force distribution such that the predicted organ shapes match the experimentally observed organ shapes. This integrative framework employs Gaussian Process Regression, a non-parametric kernel-based probabilistic machine learning modeling paradigm, to learn the mapping functions relating to the morphogenetic programs that maintain the final organ shape. We calibrated and tested the method on Drosophila wing imaginal discs to study mechanisms that regulate epithelial processes ranging from development to cancer. The parameter estimation framework successfully infers the underlying changes in core parameters needed to match simulation data with imaging data of wing discs perturbed with collagenase. The computational pipeline identifies distinct parameter sets mimicking wild-type shapes. It enables a global sensitivity analysis to support the regulation of actomyosin contractility and basal ECM stiffness to generate and maintain the curved shape of the wing imaginal disc. The optimization framework, combined with experimental imaging, identified that Piezo, a mechanosensitive ion channel, impacts fold formation by regulating the apical-basal balance of actomyosin contractility and elasticity of ECM. This workflow is extensible toward reverse-engineering morphogenesis across organ systems and for real-time control of complex multicellular systems.


Subject(s)
Bayes Theorem , Morphogenesis , Wings, Animal , Animals , Models, Biological , Drosophila melanogaster , Imaginal Discs , Computer Simulation , Drosophila
2.
Dev Biol ; 510: 40-49, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493946

ABSTRACT

The Spalt transcriptional regulators participate in a variety of cell fate decisions during multicellular development. Vertebrate Spalt proteins have been mostly associated to the organization of heterochromatic regions, but they also contribute regulatory functions through binding to A/T rich motives present in their target genes. The developmental processes in which the Drosophila spalt genes participate are well known through genetic analysis, but the mechanism by which the Spalt proteins regulate transcription are still unknown. Furthermore, despite the prominent changes in gene expression associated to mutations in the spalt genes, the specific DNA sequences they bind are unknow. Here, we analyze a DNA fragment present in the regulatory region of the knirps gene. Spalt proteins are candidate repressors of knirps expression during the formation of the venation pattern in the wing disc, and we identified a minimal conserved 30bp sequence that binds to Spalt major both in vivo and in vitro. This sequence mediates transcriptional repression in the central region of the wing blade, constituting the first confirmed case of a direct regulatory interaction between Spalt major and its target DNA in Drosophila. Interestingly, we also find similar sequences in a set of eight novel candidate Spalt target genes, pointing to a common mechanism of transcriptional repression mediated by Spalt proteins.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Imaginal Discs/metabolism , Repressor Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Wings, Animal
3.
Biol Open ; 13(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38345430

ABSTRACT

Automated image quantification workflows have dramatically improved over the past decade, enriching image analysis and enhancing the ability to achieve statistical power. These analyses have proved especially useful for studies in organisms such as Drosophila melanogaster, where it is relatively simple to obtain high sample numbers for downstream analyses. However, the developing wing, an intensively utilized structure in developmental biology, has eluded efficient cell counting workflows due to its highly dense cellular population. Here, we present efficient automated cell counting workflows capable of quantifying cells in the developing wing. Our workflows can count the total number of cells or count cells in clones labeled with a fluorescent nuclear marker in imaginal discs. Moreover, by training a machine-learning algorithm we have developed a workflow capable of segmenting and counting twin-spot labeled nuclei, a challenging problem requiring distinguishing heterozygous and homozygous cells in a background of regionally varying intensity. Our workflows could potentially be applied to any tissue with high cellular density, as they are structure-agnostic, and only require a nuclear label to segment and count cells.


Subject(s)
Drosophila , Imaginal Discs , Animals , Drosophila melanogaster , Larva , Cell Nucleus
4.
PLoS Genet ; 19(12): e1011103, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38127821

ABSTRACT

Some animals respond to injury by inducing new growth to regenerate the lost structures. This regenerative growth must be carefully controlled and constrained to prevent aberrant growth and to allow correct organization of the regenerating tissue. However, the factors that restrict regenerative growth have not been identified. Using a genetic ablation system in the Drosophila wing imaginal disc, we have identified one mechanism that constrains regenerative growth, impairment of which also leads to erroneous patterning of the final appendage. Regenerating discs with reduced levels of the RNA-regulator Brain tumor (Brat) exhibit enhanced regeneration, but produce adult wings with disrupted margins that are missing extensive tracts of sensory bristles. In these mutants, aberrantly high expression of the pro-growth factor Myc and its downstream targets likely contributes to this loss of cell-fate specification. Thus, Brat constrains the expression of pro-regeneration genes and ensures that the regenerating tissue forms the proper final structure.


Subject(s)
Drosophila Proteins , Regeneration , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Imaginal Discs/metabolism , Regeneration/genetics , Wings, Animal , DNA-Binding Proteins/genetics
5.
PLoS Genet ; 19(11): e1010826, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37967127

ABSTRACT

engrailed (en) encodes a homeodomain transcription factor crucial for the proper development of Drosophila embryos and adults. Like many developmental transcription factors, en expression is regulated by many enhancers, some of overlapping function, that drive expression in spatially and temporally restricted patterns. The en embryonic enhancers are located in discrete DNA fragments that can function correctly in small reporter transgenes. In contrast, the en imaginal disc enhancers (IDEs) do not function correctly in small reporter transgenes. En is expressed in the posterior compartment of wing imaginal discs; in contrast, small IDE-reporter transgenes are expressed mainly in the anterior compartment. We found that En binds to the IDEs and suggest that it may directly repress IDE function and modulate En expression levels. We identified two en IDEs, O and S. Deletion of either of these IDEs from a 79kb HA-en rescue transgene (HAen79) caused a loss-of-function en phenotype when the HAen79 transgene was the sole source of En. In contrast, flies with a deletion of the same IDEs from an endogenous en gene had no phenotype, suggesting a resiliency not seen in the HAen79 rescue transgene. Inserting a gypsy insulator in HAen79 between en regulatory DNA and flanking sequences strengthened the activity of HAen79, giving better function in both the ON and OFF transcriptional states. Altogether our data suggest that the en IDEs stimulate expression in the entire imaginal disc, and that the ON/OFF state is set by epigenetic memory set by the embryonic enhancers. This epigenetic regulation is similar to that of the Ultrabithorax IDEs and we suggest that the activity of late-acting enhancers in other genes may be similarly regulated.


Subject(s)
Drosophila Proteins , Imaginal Discs , Animals , Chromatin/genetics , Chromatin/metabolism , DNA/metabolism , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeostasis , Imaginal Discs/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
STAR Protoc ; 4(4): 102653, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37862174

ABSTRACT

Translation is a fundamental process of cellular behavior. Here, we present a protocol for measuring translation in Drosophila epithelial tissues using O-propargyl-puromycin (OPP), a puromycin derivative. We detail steps for larval dissection, OPP incorporation, fixation, OPP labeling, immunostaining, and imaging. We also provide details of quantification analysis. Significantly, OPP addition to methionine-containing media enables polypeptide labeling in living cells. Here, we study wing imaginal discs, an excellent model system for investigating growth, proliferation, pattern formation, differentiation, and cell death. For complete details on the use and execution of this protocol, please refer to Lee et al. (2018), Ji et al. (2019), and Kiparaki et al. (2022).1,2,3.


Subject(s)
Drosophila , Imaginal Discs , Puromycin/analogs & derivatives , Animals , Larva/metabolism , Puromycin/pharmacology
7.
Genes Cells ; 28(12): 857-867, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37817293

ABSTRACT

Drosophila imaginal disc cells can change their identity under stress conditions through transdetermination (TD). Research on TD can help elucidate the in vivo process of cell fate conversion. We previously showed that the overexpression of winged eye (wge) induces eye-to-wing TD in the eye disc and that an insulin-like peptide, Dilp8, is then highly expressed in the disc. Although Dilp8 is known to mediate systemic developmental delay via the Lgr3 receptor, its role in TD remains unknown. This study showed that Dilp8 is expressed in specific cells that do not express eye or wing fate markers during Wge-mediated TD and that the loss of Dilp8 impairs the process of eye-to-wing transition. Thus, Dilp8 plays a pivotal role in the cell fate conversion under wge overexpression. Furthermore, we found that instead of Lgr3, another candidate receptor, Drl, is involved in Wge-mediated TD and acts locally in the eye disc cells. We propose a model in which Dilp8-Drl signaling organizes cell fate conversion in the imaginal disc during TD.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Cell Differentiation , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental , Imaginal Discs/metabolism , Signal Transduction , Wings, Animal/metabolism
8.
Sci Rep ; 13(1): 15162, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704704

ABSTRACT

wingless expression is exquisitely regulated by different factors and enhancers in the imaginal wing discs of Drosophila melanogaster in four domains: the dorsal band, the dorso-ventral boundary, and the inner and outer ring domains. tonalli is a trithorax group gene that encodes a putative SUMO E3 ligase that binds to chromatin to regulate the expression of its targets, including the Hox genes. However, its role in modulating gene expression is barely known. Here, we show that TnaA modulates the wingless expression at two domains of the wing disc, the dorso-ventral boundary and the inner ring. At first, tonalli interacts genetically with Notch to form the wing margin. In the inner ring domain, TnaA modulates wingless transcription. When the dosage of TnaA increases in or near the inner ring since early larval stages, this domain expands with a rapid increase in wingless expression. TnaA occupies the wingless Inner Ring Enhancer at the wing disc, meanwhile it does not affect wingless expression directed by the Ventral Disc Enhancer in leg discs, suggesting that TnaA acts as a wingless enhancer-specific factor. We describe for the first time the presence of TnaA at the Inner Ring Enhancer as a specific regulator of wingless in the development of wing boundaries.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Drosophila melanogaster/genetics , Imaginal Discs , Larva , Ubiquitin-Protein Ligases
9.
Development ; 150(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37702007

ABSTRACT

A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are misregulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex, which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high-throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate.


Subject(s)
Drosophila Proteins , Imaginal Discs , Animals , Drosophila Proteins/genetics , Drosophila , Genomics , Hyperplasia , Polycomb-Group Proteins/genetics
10.
STAR Protoc ; 4(4): 102566, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37768826

ABSTRACT

Apicobasal polarity determinants are potential tumor suppressors that have been extensively studied. However, the precise mechanisms by which their misregulation disrupts tissue homeostasis are not fully understood. Here, we present a comprehensive protocol for establishing a conditional RNAi knockdown of scribble in Drosophila wing imaginal disc. We describe steps for generating fly lines, conditional knockdown in host stocks, and sample preparation. We then detail procedures for imaging, image analysis, and verification of wing disc phenotypes by various antibodies. For complete details on the use and execution of this protocol, please refer to Huang et al.1.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Imaginal Discs , Drosophila Proteins/genetics , Drosophila , Communication
11.
Int J Mol Sci ; 24(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569581

ABSTRACT

Cell cycle progression during development is meticulously coordinated with differentiation. This is particularly evident in the Drosophila 3rd instar eye imaginal disc, where the cell cycle is synchronized and arrests at the G1 phase in the non-proliferative region (NPR), setting the stage for photoreceptor cell differentiation. Here, we identify the transcription factor Nuclear Factor-YC (NF-YC) as a crucial player in this finely tuned progression, elucidating its specific role in the synchronized movement of the morphogenetic furrow. Depletion of NF-YC leads to extended expression of Cyclin A (CycA) and Cyclin B (CycB) from the FMW to the NPR. Notably, NF-YC knockdown resulted in decreased expression of Eyes absent (Eya) but did not affect Decapentaplegic (Dpp) and Hedgehog (Hh). Our findings highlight the role of NF-YC in restricting the expression of CycA and CycB in the NPR, thereby facilitating cell-cycle synchronization. Moreover, we identify the transcriptional cofactor Eya as a downstream target of NF-YC, revealing a new regulatory pathway in Drosophila eye development. This study expands our understanding of NF-YC's role from cell cycle control to encompass developmental processes.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Imaginal Discs/metabolism , Hedgehog Proteins/metabolism , Eye/metabolism , Cell Cycle/genetics , Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Developmental , Cyclin B/metabolism
12.
J Cell Sci ; 136(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37309190

ABSTRACT

Spatial organization within an organ is essential and needs to be maintained during development. This is largely implemented via compartment boundaries that serve as barriers between distinct cell types. Biased accumulation of junctional non-muscle Myosin II along the interface between differently fated groups of cells contributes to boundary integrity and maintains its shape via increased tension. Here, using the Drosophila wing imaginal disc, we tested whether interfacial tension driven by accumulation of Myosin is responsible for the elimination of aberrantly specified cells that would otherwise compromise compartment organization. To this end, we genetically reduced Myosin II levels in three different patterns: in both wild-type and misspecified cells, only in misspecified cells, and specifically at the interface between wild-type and aberrantly specified cells. We found that the recognition and elimination of aberrantly specified cells do not strictly rely on tensile forces driven by interfacial Myosin cables. Moreover, apical constriction of misspecified cells and their separation from wild-type neighbours occurred even when Myosin levels were greatly reduced. Thus, we conclude that the forces that drive elimination of aberrantly specified cells are largely independent of Myosin II accumulation.


Subject(s)
Myosin Type II , Animals , Clone Cells , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Morphogenesis , Myosin Type II/metabolism , Imaginal Discs/metabolism
13.
STAR Protoc ; 4(1): 101878, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36867537

ABSTRACT

Cleavage Under Targets & Release Using Nucleases (CUT&RUN) sequencing is a technique used to study gene regulation. The protocol presented here has been used successfully to identify the pattern of histone modifications within the genome of the eye-antennal disc of the fruit fly, Drosophila melanogaster. In its present form, it can be used to analyze genomic features of other imaginal discs. It can be modified for use with other tissues and applications including identifying the pattern of transcription factor occupancy.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Imaginal Discs/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epigenesis, Genetic/genetics
14.
Arch Insect Biochem Physiol ; 112(4): e21995, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36575612

ABSTRACT

The imaginal disc growth factor (IDGF), belonging to the glycoside hydrolase 18 family, plays an important role in various physiological processes in insects. However, the detail physiological function of IDGF is still unclear. In this study, transcriptome analysis was performed on the fatbody isolated from staged control and BmIDGF mutant silkworm larvae. Transcriptional profiling revealed that the absence of BmIDGF significantly affected differentially expressed genes involved in tyrosine and purine metabolism, as well as multiple energy metabolism pathways, including glycolysis, galactose, starch, and sucrose metabolism. The interruption of BmIDGF caused similar and specific gene expression changes to male and female fatbody. Furthermore, a genome-scale metabolic network integrating metabolomic and transcriptomic datasets revealed 11 pathways significantly altered at the transcriptional and metabolic levels, including amino acid, carbohydrate, uric acid metabolism pathways, insect hormone biosynthesis, and ABC transporters. In conclusion, this multiomics analysis suggests that IDGF is involved in gene-metabolism interactions, revealing its unique role in melanin synthesis and energy metabolism. This study provides new insights into the physiological function of IDGF in insects.


Subject(s)
Bombyx , Male , Animals , Female , Bombyx/metabolism , Melanins/metabolism , Imaginal Discs/metabolism , Gene Expression Profiling , Energy Metabolism , Intercellular Signaling Peptides and Proteins/metabolism
15.
Genetics ; 223(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36576887

ABSTRACT

Chitinase-like proteins (CLPs) are members of the family 18 glycosyl hydrolases, which include chitinases and the enzymatically inactive CLPs. A mutation in the enzyme's catalytic site, conserved in vertebrates and invertebrates, allowed CLPs to evolve independently with functions that do not require chitinase activity. CLPs normally function during inflammatory responses, wound healing, and host defense, but when they persist at excessive levels at sites of chronic inflammation and in tissue-remodeling disorders, they correlate positively with disease progression and poor prognosis. Little is known, however, about their physiological function. Drosophila melanogaster has 6 CLPs, termed Imaginal disk growth factors (Idgfs), encoded by Idgf1, Idgf2, Idgf3, Idgf4, Idgf5, and Idgf6. In this study, we developed tools to facilitate characterization of the physiological roles of the Idgfs by deleting each of the Idgf genes using the CRISPR/Cas9 system and assessing loss-of-function phenotypes. Using null lines, we showed that loss of function for all 6 Idgf proteins significantly lowers viability and fertility. We also showed that Idgfs play roles in epithelial morphogenesis, maintaining proper epithelial architecture and cell shape, regulating E-cadherin and cortical actin, and remarkably, protecting these tissues against CO2 exposure. Defining the normal molecular mechanisms of CLPs is a key to understanding how deviations tip the balance from a physiological to a pathological state.


Subject(s)
Chitinases , Drosophila Proteins , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Chitinases/genetics , Chitinases/metabolism , Carbon Dioxide , Imaginal Discs/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Morphogenesis/genetics , Intracellular Signaling Peptides and Proteins
16.
Methods Mol Biol ; 2599: 255-270, 2023.
Article in English | MEDLINE | ID: mdl-36427155

ABSTRACT

Genetic ablation is a highly efficient method to study regeneration in vivo by stimulating tissue-specific cell death that subsequently induces regrowth and repair in a developing organism. This approach has been particularly successful in Drosophila, for which various temperature-based genetic ablation tools have been developed to explore the complexities of regeneration in larval imaginal discs. Here, we describe the use of a recently established ablation system called DUAL Control, which can be used to both characterize the damage response and genetically manipulate blastema cells to identify novel regulators of regeneration.


Subject(s)
Drosophila Proteins , Imaginal Discs , Animals , Imaginal Discs/metabolism , Drosophila/genetics , Drosophila Proteins/metabolism , Wound Healing/physiology , Larva/metabolism
17.
PLoS One ; 17(11): e0275613, 2022.
Article in English | MEDLINE | ID: mdl-36445897

ABSTRACT

The multi-subunit Mediator complex plays a critical role in gene expression by bridging enhancer-bound transcription factors and the RNA polymerase II machinery. Although experimental case studies suggest differential roles of Mediator subunits, a comprehensive view of the specific set of genes regulated by individual subunits in a developing tissue is still missing. Here we address this fundamental question by focusing on the Med19 subunit and using the Drosophila wing imaginal disc as a developmental model. By coupling auxin-inducible degradation of endogenous Med19 in vivo with RNA-seq, we got access to the early consequences of Med19 elimination on gene expression. Differential gene expression analysis reveals that Med19 is not globally required for mRNA transcription but specifically regulates positively or negatively less than a quarter of the expressed genes. By crossing our transcriptomic data with those of Drosophila gene expression profile database, we found that Med19-dependent genes are highly enriched with spatially-regulated genes while the expression of most constitutively expressed genes is not affected upon Med19 loss. Whereas globally downregulation does not exceed upregulation, we identified a functional class of genes encoding spatially-regulated transcription factors, and more generally developmental regulators, responding unidirectionally to Med19 loss with an expression collapse. Moreover, we show in vivo that the Notch-responsive wingless and the E(spl)-C genes require Med19 for their expression. Combined with experimental evidences suggesting that Med19 could function as a direct transcriptional effector of Notch signaling, our data support a model in which Med19 plays a critical role in the transcriptional activation of developmental genes in response to cell signaling pathways.


Subject(s)
Drosophila , Imaginal Discs , Animals , Drosophila/genetics , Transcriptional Activation , RNA Polymerase II , Transcription Factors/genetics
18.
PLoS Genet ; 18(9): e1010395, 2022 09.
Article in English | MEDLINE | ID: mdl-36166470

ABSTRACT

Programmed Cell Death (PCD) or apoptosis is a highly conserved biological process and plays essential roles both in the development and stress context. In Drosophila, expression of pro-apoptotic genes, including reaper (rpr), head involution defective (hid), grim, and sickle (skl), is sufficient to induce cell death. Here, we demonstrate that the chromatin remodeler Dmp18, the homolog of mammalian Znhit1, plays a crucial role in regulating apoptosis in eye and wing development. We showed that loss of Dmp18 disrupted eye and wing development, up-regulated transcription of pro-apoptotic genes, and induced apoptosis. Inhibition of apoptosis suppressed the eye defects caused by Dmp18 deletion. Furthermore, loss of Dmp18 disrupted H2Av incorporation into chromatin, promoted H3K4me3, but reduced H3K27me3 modifications on the TSS regions of pro-apoptotic genes. These results indicate that Dmp18 negatively regulates apoptosis by mediating H2Av incorporation and histone H3 modifications at pro-apoptotic gene loci for transcriptional regulation. Our study uncovers the role of Dmp18 in regulating apoptosis in Drosophila eye and wing development and provides insights into chromatin remodeling regulating apoptosis at the epigenetic levels.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Apoptosis/genetics , Chromatin/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Histones/genetics , Imaginal Discs/metabolism , Mammals/genetics
19.
Methods Mol Biol ; 2540: 317-334, 2022.
Article in English | MEDLINE | ID: mdl-35980586

ABSTRACT

In this chapter, I present a method for the ex vivo cultivation and live imaging of Drosophila imaginal disc explants using low concentrations of the steroid hormone 20-hydroxyecdysone (20E). This method has been optimized for analyzing cellular dynamics during wing disc growth and leverages recent insights from in vivo experiments demonstrating that 20E is required for growth and patterning of the imaginal tissues. Using this protocol, we directly observe wing disc proliferation at a rapid rate for at least 13 h during live imaging. The orientation of tissue growth is also consistent with that inferred from indirect in vivo techniques. Thus, this method provides an improved way of studying dynamic cellular processes and tissue movements during imaginal disc development. I first describe the preparation of the growth medium and the dissection, and then I include a protocol for mounting and live imaging of the explants.


Subject(s)
Drosophila Proteins , Imaginal Discs , Animals , Culture Media , Drosophila , Drosophila melanogaster , Larva , Wings, Animal
20.
Cells ; 11(16)2022 08 16.
Article in English | MEDLINE | ID: mdl-36010619

ABSTRACT

The loss-of-function conditions for an l(3)malignant brain tumour (l(3)mbt) in larvae reared at 29 °C results in malignant brain tumours and hyperplastic imaginal discs. Unlike the former that have been extensively characterised, little is known about the latter. Here we report the results of a study of the hyperplastic l(3)mbt mutant wing imaginal discs. We identify the l(3)mbt wing disc tumour transcriptome and find it to include genes involved in reactive oxygen species (ROS) metabolism. Furthermore, we show the presence of oxidative stress in l(3)mbt hyperplastic discs, even in apoptosis-blocked conditions, but not in l(3)mbt brain tumours. We also find that chemically blocking oxidative stress in l(3)mbt wing discs reduces the incidence of wing disc overgrowths. Our results reveal the involvement of oxidative stress in l(3)mbt wing discs hyperplastic growth.


Subject(s)
Drosophila Proteins , Imaginal Discs , Animals , Drosophila/metabolism , Drosophila Proteins/metabolism , Imaginal Discs/metabolism , Oxidative Stress , Wings, Animal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...