Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.431
Filter
1.
Sci Rep ; 14(1): 10419, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710746

ABSTRACT

The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Indoles , Molecular Docking Simulation , Protease Inhibitors , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , HEK293 Cells , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Computer Simulation , COVID-19/virology , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis
2.
J Med Chem ; 67(10): 8346-8360, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38741265

ABSTRACT

Toll-like receptor (TLR)-7 agonists are immunostimulatory vaccine adjuvants. A systematic structure-activity relationship (SAR) study of TLR7-active 1-benzyl-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine led to the identification of a potent hTLR7-specific p-hydroxymethyl IMDQ 23 with an EC50 value of 0.22 µM. The SAR investigation also resulted in the identification of TLR7 selective carboxamide 12 with EC50 values of 0.32 µM for hTLR7 and 18.25 µM for hTLR8. In the vaccination study, TLR7-specific compound 23 alone or combined with alum (aluminum hydroxide wet gel) showed adjuvant activity for a spike protein immunogen in mice, with enhanced anti-spike antibody production. Interestingly, the adjuvant system comprising carboxamide 12 and alum showed prominent adjuvant activity with high levels of IgG1, IgG2b, and IgG2c in immunized mice, confirming a balanced Th1/Th2 response. In the absence of any apparent toxicity, the TLR7 selective agonists in combination with alum may make a suitable vaccine adjuvant.


Subject(s)
Adjuvants, Immunologic , Toll-Like Receptor 7 , Toll-Like Receptor 7/agonists , Structure-Activity Relationship , Animals , Humans , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/chemical synthesis , Mice , Female , Alum Compounds/pharmacology , Alum Compounds/chemistry , Mice, Inbred BALB C , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis
3.
Eur J Med Chem ; 272: 116454, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704937

ABSTRACT

Increasing antibiotic resistance of bacterial pathogens poses a serious threat to human health worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is among the most deleterious bacterial pathogens owing to its multidrug resistance, necessitating the development of new antibacterial agents against it. We previously identified a novel dioxonaphthoimidazolium agent, c5, with moderate antibacterial activity against MRSA from an anticancer clinical candidate, YM155. In this study, we aimed to design and synthesize several novel cationic amphiphilic N1,N3-dialkyldioxonaphthoimidazolium bromides with enhanced lipophilicity of the two side chains in the imidazolium scaffold and improved antibacterial activities compared to those of c5 against gram-positive bacteria in vitro and in vivo. Our new antibacterial lead, N1,N3-n-octylbenzyldioxonaphthoimidazolium bromide (11), exhibited highly potent antibacterial activities against various gram-positive bacterial strains (MICs: 0.19-0.39 µg/mL), including MRSA, methicillin-sensitive S. aureus, and Bacillus subtilis. Moreover, antibacterial mechanism of 11 against MRSA based on the generation of reactive oxygen species (ROS) was evaluated. Although compound 11 exhibited cytotoxic effects in vitro and lacked a therapeutic index against the HEK293 and HDFa mammalian cell lines, it exhibited low toxicity in the Drosophila animal model. Remarkably, 11 exhibited better in vivo antibacterial efficacy than c5 and the clinically used antibiotic, vancomycin, in SA3-infected Drosophila model. Moreover, the development of bacterial resistance to 11 was not observed after 16 consecutive passages. Therefore, rational design of antibacterial cationic amphiphiles based on ROS-generating pharmacophores with optimized lipophilicity can facilitate the identification of potent antibacterial agents against drug-resistant infections.


Subject(s)
Anti-Bacterial Agents , Drug Design , Imidazoles , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Structure-Activity Relationship , Humans , Molecular Structure , Dose-Response Relationship, Drug , Zebrafish , Reactive Oxygen Species/metabolism
4.
J Am Chem Soc ; 146(21): 14633-14644, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752889

ABSTRACT

Macrocyclic peptides (MPs) are a class of compounds that have been shown to be particularly well suited for engaging difficult protein targets. However, their utility is limited by their generally poor cell permeability and bioavailability. Here, we report an efficient solid-phase synthesis of novel MPs by trapping a reversible intramolecular imine linkage with a 2-formyl- or 2-keto-pyridine to create an imidazopyridinium (IP+)-linked ring. This chemistry is useful for the creation of macrocycles of different sizes and geometries, including head-to-side and side-to-side chain configurations. Many of the IP+-linked MPs exhibit far better passive membrane permeability than expected for "beyond Rule of 5" molecules, in some cases exceeding that of much lower molecular weight, traditional drug molecules. We demonstrate that this chemistry is suitable for the creation of libraries of IP+-linked MPs and show that these libraries can be mined for protein ligands.


Subject(s)
Imidazoles , Imidazoles/chemistry , Imidazoles/chemical synthesis , Cell Membrane Permeability , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Pyridines/chemistry , Pyridines/chemical synthesis , Molecular Structure
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731811

ABSTRACT

Recently studied N-(ß-d-glucopyranosyl)-3-aryl-1,2,4-triazole-5-carboxamides have proven to be low micromolar inhibitors of glycogen phosphorylase (GP), a validated target for the treatment of type 2 diabetes mellitus. Since in other settings, the bioisosteric replacement of the 1,2,4-triazole moiety with imidazole resulted in significantly more efficient GP inhibitors, in silico calculations using Glide molecular docking along with unbound state DFT calculations were performed on N-(ß-d-glucopyranosyl)-arylimidazole-carboxamides, revealing their potential for strong GP inhibition. The syntheses of the target compounds involved the formation of an amide bond between per-O-acetylated ß-d-glucopyranosylamine and the corresponding arylimidazole-carboxylic acids. Kinetics experiments on rabbit muscle GPb revealed low micromolar inhibitors, with the best inhibition constants (Kis) of ~3-4 µM obtained for 1- and 2-naphthyl-substituted N-(ß-d-glucopyranosyl)-imidazolecarboxamides, 2b-c. The predicted protein-ligand interactions responsible for the observed potencies are discussed and will facilitate the structure-based design of other inhibitors targeting this important therapeutic target. Meanwhile, the importance of the careful consideration of ligand tautomeric states in binding calculations is highlighted, with the usefulness of DFT calculations in this regard proposed.


Subject(s)
Enzyme Inhibitors , Glycogen Phosphorylase , Imidazoles , Molecular Docking Simulation , Kinetics , Rabbits , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Glycogen Phosphorylase/antagonists & inhibitors , Glycogen Phosphorylase/metabolism , Glycogen Phosphorylase/chemistry , Imidazoles/chemistry , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Computer Simulation , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis
6.
J Am Chem Soc ; 146(17): 11648-11656, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629317

ABSTRACT

Imidazolones represent an important class of heterocycles present in a wide range of pharmaceuticals, metabolites, and bioactive natural products and serve as the active chromophore in green fluorescent protein. Recently, imidazolones have received attention for their ability to act as a nonaromatic amide bond bioisotere which improves pharmacological properties. Herein, we present a tandem amidine installation and cyclization with an adjacent ester to yield (4H)-imidazolone products. Using amino acid building blocks, we can access the first examples of α-chiral imidazolones that have been previously inaccessible. Additionally, our method is amenable to on-resin installation which can be seamlessly integrated into existing solid-phase peptide synthesis protocols. Finally, we show that peptide imidazolones are potent cis-amide bond surrogates that preorganize linear peptides for head-to-tail macrocyclization. This work represents the first general approach to the backbone and side-chain insertion of imidazolone bioisosteres at various positions in linear and cyclic peptides.


Subject(s)
Amides , Imidazoles , Peptides , Imidazoles/chemistry , Imidazoles/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis , Amides/chemistry , Cyclization , Stereoisomerism , Molecular Structure
7.
Int J Biol Macromol ; 266(Pt 2): 131239, 2024 May.
Article in English | MEDLINE | ID: mdl-38569992

ABSTRACT

We present the design, synthesis, computational analysis, and biological assessment of several acrylonitrile derived imidazo[4,5-b]pyridines, which were evaluated for their anticancer and antioxidant properties. Our aim was to explore how the number of hydroxy groups and the nature of nitrogen substituents influence their biological activity. The prepared derivatives exhibited robust and selective antiproliferative effects against several pancreatic adenocarcinoma cells, most markedly targeting Capan-1 cells (IC50 1.2-5.3 µM), while their selectivity was probed relative to normal PBMC cells. Notably, compound 55, featuring dihydroxy and bromo substituents, emerged as a promising lead molecule. It displayed the most prominent antiproliferative activity without any adverse impact on the viability of normal cells. Furthermore, the majority of studied derivatives also exhibited significant antioxidative activity within the FRAP assay, even surpassing the reference molecule BHT. Computational analysis rationalized the results by highlighting the dominance of the electron ionization for the antioxidant features with the trend in the computed ionization energies well matching the observed activities. Still, in trihydroxy derivatives, their ability to release hydrogen atoms and form a stable O-H⋯O•⋯H-O fragment upon the H• abstraction prevails, promoting them as excellent antioxidants in DPPH• assays as well.


Subject(s)
Acrylonitrile , Antineoplastic Agents , Antioxidants , Cell Proliferation , Pancreatic Neoplasms , Pyridines , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Acrylonitrile/chemistry , Acrylonitrile/pharmacology , Acrylonitrile/analogs & derivatives , Cell Proliferation/drug effects , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Pyridines/chemistry , Pyridines/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Structure-Activity Relationship , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis
8.
Bioorg Chem ; 147: 107310, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583249

ABSTRACT

Using the licochalcone moiety as a lead compound scaffold, 16 novel imidazole-chalcone derivatives were designed and synthesized as microtubule protein polymerization inhibitors. The proliferation inhibitory activities of the derivatives against SiHa (human cervical squamous cell carcinoma), C-33A (human cervical cancer), HeLa (human cervical cancer), HeLa/DDP (cisplatin-resistant human cervical cancer), and H8 (human cervical epithelial immortalized) cells were evaluated. Compound 5a exhibited significant anticancer activity with IC50 values ranging from 2.28 to 7.77 µM and a resistance index (RI) of 1.63, while showing minimal toxicity to normal H8 cells. When compound 5a was coadministered with cisplatin, the RI of cisplatin to HeLa/DDP cells decreased from 6.04 to 2.01, while compound 5a enhanced the fluorescence intensity of rhodamine 123 in HeLa/DDP cells. Further studies demonstrated that compound 5a arrested cells at the G2/M phase, induced apoptosis, reduced colony formation, inhibited cell migration, and inhibited cell invasion. Preliminary mechanistic studies revealed that compound 5a decreased the immunofluorescence intensity of α-/ß-tubulin in cancer cells, reduced the expression of polymerized α-/ß-tubulin, and increased the expression of depolymerized α-/ß-tubulin. Additionally, the molecular docking results demonstrate that compound 5a can interact with the tubulin colchicine binding site and generate multiple types of interactions. These results suggested that compound 5a has anticancer effects and significantly reverses cervical cancer resistance to cisplatin, which may be related to its inhibition of microtubule and P-glycoprotein (P-gp) activity.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Cisplatin , Dose-Response Relationship, Drug , Drug Design , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Imidazoles , Uterine Cervical Neoplasms , Humans , Cisplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Structure-Activity Relationship , Cell Proliferation/drug effects , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Drug Resistance, Neoplasm/drug effects , Female , Molecular Structure , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Polymerization/drug effects , Apoptosis/drug effects , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , Molecular Docking Simulation , Tubulin/metabolism , Cell Line, Tumor , Microtubules/drug effects , Microtubules/metabolism
9.
ChemMedChem ; 19(10): e202400004, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38356418

ABSTRACT

A new series of tetrasubstituted imidazole carrying sulfonamide as zinc-anchoring group has been designed. The structures of the synthesized derivatives 5 a-l have been confirmed by spectroscopic analysis. These compounds incorporate an ethylenic spacer between the benzenesulfonamide and the rest of the trisubstituted imidazole moiety and were tested as inhibitors of carbonic anhydrases and for in-vitro cytotoxicity. Most of them act as effective inhibitors of the tumor-linked CA isoforms IX and XII, in nanomolar range. Also, different compounds have shown selectivity in comparable with the standard acetazolamide. Our IBS 5 d, 5 g, and 5 l (with Ki: 10.1, 19.4, 19.8 nM against hCA IX and 47, 45, 20 nM against hCA IX) showed the best inhibitory profile. In-vitro screening of all derivatives against a full sixty-cell-lined from NCI at a single dose of 10 µM offered growth inhibition of up to 45 %. Compound 5 b has been identified with the most potent cytotoxic activity and broad spectrum. Docking studies have also been implemented and were also in accordance with the biological outcomes. Our SAR analysis has interestingly proposed efficient tumor-related hCAs IX/XII suppression.


Subject(s)
Antigens, Neoplasm , Benzenesulfonamides , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Imidazoles , Sulfonamides , Humans , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Structure-Activity Relationship , Carbonic Anhydrases/metabolism , Antigens, Neoplasm/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Molecular Structure , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug
10.
Chem Biodivers ; 21(5): e202301399, 2024 May.
Article in English | MEDLINE | ID: mdl-38393939

ABSTRACT

Imidazoles and phenylthiazoles are an important class of heterocycles that demonstrate a wide range of biological activities against various types of cancers, diabetes mellitus and pathogenic microorganisms. The heterocyclic structure having oxothiazolidine moiety is an important scaffold present in various drugs, with potential for enzyme inhibition. In an effort to discover new heterocyclic compounds, we synthesized 26 new 4,5-diphenyl-1H-imidazole, phenylthiazole, and oxothiazolidine heterocyclic analogues that demonstrated potent α-glucosidase inhibition and anticancer activities. Majority of the compounds noncompetitively inhibited α-glucosidase except for two that exhibited competitive inhibition of the enzyme. Docking results suggested that the noncompetitive inhibitors bind to an apparent allosteric site on the enzyme located in the vicinity of the active site. Additionally, the analogues also exhibited significant activity against various types of cancers including non-small lung cancer. Since tubulin protein plays an important role in the pathogenesis of non-small lung cancer, molecular docking with one of the target compounds provided important clues to its binding mode. The current work on imidazoles and phenylthiazole derivatives bears importance for designing of new antidiabetic and anticancer drugs.


Subject(s)
Antineoplastic Agents , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , alpha-Glucosidases , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Humans , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , alpha-Glucosidases/metabolism , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Molecular Structure , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Cell Line, Tumor , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Cell Proliferation/drug effects , Dose-Response Relationship, Drug
11.
Anticancer Agents Med Chem ; 24(7): 504-513, 2024.
Article in English | MEDLINE | ID: mdl-38275051

ABSTRACT

BACKGROUND: Cyclooxygenase-2 (COX-2), the key enzyme in the arachidonic acid conversion to prostaglandins, is one of the enzymes associated with different pathophysiological conditions, such as inflammation, cancers, Alzheimer's, and Parkinson's disease. Therefore, COX-2 inhibitors have emerged as potential therapeutic agents in these diseases. OBJECTIVE: The objective of this study was to design and synthesize novel imidazo[1,2-a]pyridine derivatives utilizing rational design methods with the specific aim of developing new potent COX-2 inhibitors. Additionally, we sought to investigate the biological activities of these compounds, focusing on their COX-2 inhibitory effects, analgesic activity, and antiplatelet potential. We aimed to contribute to the development of selective COX-2 inhibitors with enhanced therapeutic benefits. METHODS: Docking investigations were carried out using AutoDock Vina software to analyze the interaction of designed compounds. A total of 15 synthesized derivatives were obtained through a series of five reaction steps. The COX-2 inhibitory activities were assessed using the fluorescent Cayman kit, while analgesic effects were determined through writing tests, and Born's method was employed to evaluate antiplatelet activities. RESULTS: The findings indicated that the majority of the tested compounds exhibited significant and specific inhibitory effects on COX-2, with a selectivity index ranging from 51.3 to 897.1 and IC50 values of 0.13 to 0.05 µM. Among the studied compounds, derivatives 5e, 5f, and 5j demonstrated the highest potency with IC50 value of 0.05 µM, while compound 5i exhibited the highest selectivity with a selectivity index of 897.19. In vivo analgesic activity of the most potent COX-2 inhibitors revealed that 3-(4-chlorophenoxy)-2-[4-(methylsulfonyl) phenyl] imidazo[1,2-a]pyridine (5j) possessed the most notable analgesic activity with ED50 value of 12.38 mg/kg. Moreover, evaluating the antiplatelet activity showed compound 5a as the most potent for inhibiting arachidonic acidinduced platelet aggregation. In molecular modeling studies, methylsulfonyl pharmacophore was found to be inserted in the secondary pocket of the COX-2 active site, where it formed hydrogen bonds with Arg-513 and His-90. CONCLUSION: The majority of the compounds examined demonstrated selectivity and potency as inhibitors of COX-2. Furthermore, the analgesic effects observed of potent compounds can be attributed to the inhibition of the cyclooxygenase enzyme.


Subject(s)
Cyclooxygenase 2 Inhibitors , Cyclooxygenase 2 , Drug Design , Pyridines , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Cyclooxygenase 2/metabolism , Animals , Structure-Activity Relationship , Molecular Structure , Humans , Dose-Response Relationship, Drug , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Analgesics/pharmacology , Analgesics/chemical synthesis , Analgesics/chemistry , Molecular Docking Simulation , Male , Rats , Mice , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation Inhibitors/chemistry
12.
Eur J Med Chem ; 241: 114626, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35939995

ABSTRACT

A series of hybrid anaplastic lymphoma kinase (ALK) inhibitors (Y1∼Y30) were designed by assembling aminoindazole of Entrectinib onto 2-position of 2,4-diarylaminopyrimidine (DAAP) fragment to serve as ATP dual-mimic agents. Under structure-based optimization, all conjugates were detected moderate to excellent cytotoxicity potency, among which the pyrrolidine analog Y28 exerted optimal antiproliferative effects on ALK-addicted cell lines with IC50 values below 20 nM. As a highly potent ALK inhibitor (ALKWT, IC50 = 1.6 nM), Y28 was also capable of suppressing ALK-resistant mutations including ALKL1196M (0.71 nM) and ALKG1202R (1.3 nM). Intriguingly, Y28 turned out to effectively inhibit colony formation and restrain cell migration of H2228 cells in a dose dependent manner. In addition, flow cytometric analysis indicated that Y28 could induce cell apoptosis and achieve cell cycle arrest in G2 phase. Notably, oral administration of Y28 at 50 mg/kg regressed tumor in the H2228 xenograft model with tumor growth inhibition value of 70.46%. Finally, the binding models of Y28 with ALKWT & ALKG1202R within the active site well established its mode of action and accounted for the superior activities as a promising antitumor candidate.


Subject(s)
Antineoplastic Agents , Imidazoles/therapeutic use , Neoplasms , Pyridazines/therapeutic use , Adenosine Triphosphate/pharmacology , Anaplastic Lymphoma Kinase , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , Imidazoles/chemical synthesis , Indoles , Mutation , Oligopeptides , Protein Kinase Inhibitors/chemistry , Pyridazines/chemical synthesis
13.
Bioorg Med Chem Lett ; 60: 128604, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35123004

ABSTRACT

To explore effective antituberculosis agents, a new class of imidazoles and benzimidazoles linked ethionamide analogs were designed and synthesized. The elemental analysis, 1H NMR, 13C NMR and mass spectral data were used to characterize all of the novel analogs. In vitro activity against Mycobacterium tuberculosis (Mtb) H37Rv was assessed for all of the target compounds. The hydroxy and nitrile moieties on the imidazole ring, as well as the hydroxy and methoxy groups on the benzimidazole ring connected to the ethionamide side chain, were shown to be advantageous. In our cell viability experiment against the Vero cell line, all of the compounds were non-cytotoxic even at 100 µM. To confirm the powerful analogs target identification, we investigated their in vitro inhibitory action on an M. tuberculosis InhA over-expressing (Mtb InhA-OE) strain, which yielded MICs nearly twice those of the Mtb H37Rv strain. Furthermore, the results of molecular docking confirmed the experimental findings. Additionally, the molecules were evaluated in silico for ADMET and drug similarity features. The experimental observation enables the newly generated ethionamide derivatives to be attractive candidates for the creation of newer and better anti-TB agents.


Subject(s)
Antitubercular Agents/pharmacology , Benzimidazoles/pharmacology , Ethionamide/pharmacology , Imidazoles/pharmacology , Inhibins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Dose-Response Relationship, Drug , Drug Design , Ethionamide/chemical synthesis , Ethionamide/chemistry , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Inhibins/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 59: 128548, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35051578

ABSTRACT

Toll-like receptors (TLRs) 7 and 8 are key targets in the development of immunomodulatory drugs for treating infectious disease, cancer, and autoimmune disorders. These receptors can adopt both agonist and antagonist binding conformations that switch the receptor signal on or off to the downstream production of cytokines. In this study, we examined the effect of simple isomeric substitutions to the C2-butyl group of two imidazoquinoline agonists and evaluated the activity of these analogs using both TLR7 and TLR8 reporter cells and cytokine induction assays. Results are presented showing the C2-isobutyl and C2-cyclopropylmethyl isomers are both mixed TLR7/8 competitive antagonists of the parent agonist [4-Amino-1-(4-(aminomethyl)benzyl)-2-butyl-7-methoxycarbonyl-1H-imidazo[4,5-c]quinoline], indicating the conformation of the dimeric receptor complex is highly sensitive to steric perturbations to the ligand binding pocket. This observation is consistent with prior work demonstrating TLR7 and TLR8 activity is directly correlated to C2-alkyl substitutions that project into a hydrophobic pocket at the dimer interface of the receptor. The close structural relationship of the agonist/antagonist pairs identified here highlights the importance of this pocket in tipping the balance between the agonist and antagonist binding states of the receptor which may have significant ramifications to the design of imidazoquinoline-based immunomodulatory agents.


Subject(s)
Imidazoles/pharmacology , Quinolines/pharmacology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/antagonists & inhibitors , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
15.
J Med Chem ; 65(3): 1848-1866, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35025488

ABSTRACT

Immunogenic cell death (ICD) can engage a specific immune response and establish a long-term immunity in hepatocellular carcinoma (HCC). Herein, we design and synthesize a series of Pt(II)-N-heterocyclic carbene (Pt(II)-NHC) complexes derived from 4,5-diarylimidazole, which show strong anticancer activities in vitro. Among them, 2c displays much higher anticancer activities than cisplatin and other Pt(II)-NHC complexes, especially in HCC cancer cells. In addition, we find that 2c is a type II ICD inducer, which can successfully induce endoplasmic reticulum stress (ERS) accompanied by reactive oxygen species (ROS) generation and finally lead to the release of damage-associated molecular patterns (DAMPs) in HCC cells. Importantly, 2c shows a great anti-HCC potential in a vaccination mouse model and leads to the in vivo immune cell activation in the CCl4-induced liver injury model.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Coordination Complexes/therapeutic use , Immunogenic Cell Death/drug effects , Liver Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Calreticulin/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Dendritic Cells/metabolism , Endoplasmic Reticulum Stress/drug effects , Humans , Imidazoles/chemical synthesis , Imidazoles/therapeutic use , Immunity/drug effects , Male , Mice, Inbred C57BL , Platinum/chemistry , Reactive Oxygen Species/metabolism , T-Lymphocytes/metabolism
16.
J Inorg Biochem ; 229: 111726, 2022 04.
Article in English | MEDLINE | ID: mdl-35065320

ABSTRACT

Leishmania amazonensis and L. braziliensis are the main etiological agents of the American Tegumentary Leishmaniasis (ATL). Taking into account the limited effectiveness and high toxicity of the current drug arsenal to treat ATL, novel options are urgently needed. Inspired by the fact that gold-based compounds are promising candidates for antileishmanial drugs, we studied the biological action of a systematic series of six (1)-(6) symmetric Au(I) benzyl and aryl-N-heterocyclic carbenes. All compounds were active at low micromolar concentrations with 50% effective concentrations ranging from 1.57 to 8.30 µM against Leishmania promastigotes. The mesityl derivative (3) proved to be the best candidate from this series, with a selectivity index ~13 against both species. The results suggest an effect of the steric and electronic parameters of the N-substituent in the activity. Intracellular infections were drastically reduced after 24h of (2)-(5) incubation in terms of infection rate and amastigote burden. Further investigations showed that our compounds induced significant parasites' morphological alterations and membrane permeability. Also, (3) and (6) were able to reduce the residual activity of three Leishmania recombinant cysteine proteases, known as possible targets for Au(I) complexes. Our promising results open the possibility of exploring gold complexes as leishmanicidal molecules to be further screened in in vivo models of infection.


Subject(s)
Imidazoles/pharmacology , Organogold Compounds/pharmacology , Trypanocidal Agents/pharmacology , Animals , Cell Membrane/drug effects , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/pharmacology , Female , Gold/chemistry , Imidazoles/chemical synthesis , Leishmania braziliensis/drug effects , Mice, Inbred BALB C , Molecular Structure , Organogold Compounds/chemical synthesis , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis
17.
ACS Appl Mater Interfaces ; 14(4): 5112-5121, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35048696

ABSTRACT

Type-I photodynamic therapy (PDT) with less oxygen consumption shows great potential for overcoming the vicious hypoxia typically observed in solid tumors. However, the development of type-I PDT is hindered by insufficient radical generation and the ambiguous design strategy of type-I photosensitizers (PSs). Therefore, developing highly efficient type-I PSs and unveiling their structure-function relationship are still urgent and challenging. Herein, we develop two phenanthro[9,10-d]imidazole derivatives (AQPO and AQPI) with aggregation-induced emission (AIE) characteristics and boost their reactive oxygen species (ROS) generation efficiency by reducing singlet-triplet splitting (ΔEST). Both AQPO and AQPI show ultrasmall ΔEST values of 0.09 and 0.12 eV, respectively. By incorporating electron-rich anisole, the categories of generated ROS by AIE PSs are changed from type-II (singlet oxygen, 1O2) to type-I (superoxide anion radical, O2•- and hydroxyl radical, •OH). We demonstrate that the assembled AQPO nanoparticles (NPs) achieve a 3.2- and 2.9-fold increase in the O2•- and •OH generation efficiencies, respectively, compared to those of AQPI NPs (without anisole) in water, whereas the 1O2 generation efficiency of AQPO NPs is lower (0.4-fold) than that of AQPI NPs. The small ΔEST and anisole group endow AQPO with an excellent capacity for type-I ROS generation. In vitro and in vivo experiments show that AQPO NPs achieve an excellent hypoxia-overcoming PDT effect by efficiently eliminating tumor cells upon white light irradiation with good biosafety.


Subject(s)
Imidazoles/therapeutic use , Neoplasms/drug therapy , Phenanthrolines/therapeutic use , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism , Tumor Hypoxia/drug effects , A549 Cells , Animals , Drug Carriers/chemistry , Female , Humans , Imidazoles/chemical synthesis , Imidazoles/radiation effects , Light , Mice , Mice, Inbred BALB C , Mice, Nude , NIH 3T3 Cells , Nanoparticles/chemistry , Phenanthrolines/chemical synthesis , Phenanthrolines/radiation effects , Phosphatidylethanolamines/chemistry , Photochemotherapy , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/radiation effects , Polyethylene Glycols/chemistry
18.
ChemMedChem ; 17(4): e202100537, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34713586

ABSTRACT

Phenanthroline derivatives containing fluorinated imidazole ring are effective anti-neoplastic agents. Herein, a series of four fluorinated imidazole[4,5f][1,10]phenanthroline derivatives were synthesized and investigated as potential inhibitors to fight against the growth of liver cancer cells. The in vitro antitumor activity of targeted compounds have been evaluated by using MTT assay, and results showed that compound 4 (2-(2,3-difluorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) exhibited excellent inhibitory effect against the growth of various tumor cells, particularly for HepG2 cells, with IC50 value of approximately 0.29 µM. This result has been further confirmed by colony formation assay, showing that compound 4 suppressed the proliferation of HepG2 cells. Moreover, cell apoptosis (AO/PI dual staining and flow cytometry) analyses as well as comet assay showed that compound 4 may induce apoptosis of HepG2 cells through triggering DNA damage. Furthermore, the in vivo anti-tumor activity were evaluated on zebrafish bearing HepG2 cells showed that compound 4 can observably block the growth of liver cancer cells. All in together, these compounds, particularly compound 4, may be developed as a potential agent to treat liver cancer in the future.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Imidazoles/pharmacology , Phenanthrolines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Halogenation , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Phenanthrolines/chemical synthesis , Phenanthrolines/chemistry , Structure-Activity Relationship
19.
Chem Biol Drug Des ; 99(2): 187-196, 2022 02.
Article in English | MEDLINE | ID: mdl-34623027

ABSTRACT

We prepared and biologically evaluated 32 novel molecules named phenyl 4-(dioxoimidazolidin-1-yl)benzenesulfonates (PID-SOs) and ethyl 2-(3-(4-(phenoxysulfonyl)phenyl)ureido)acetates (EPA-SOs). The antiproliferative activity of PID-SOs and EPA-SOs was assessed on four cancer cell lines (HT-1080, HT-29, M21, and MCF7). The most potent PID-SOs bearing an imidazolidin-2,4-dione group show antiproliferative activity in the nanomolar to low micromolar range (0.066 - 6 µM) while EPA-SOs and PID-SOs bearing an imidazolidin-2,5-dione moiety are mostly not active, exhibiting antiproliferative activity over 100 µM. The most potent PID-SOs (16-18) arrest the cell cycle progression in G2/M phase and interact with the colchicine-binding site leading to the microtubule and cytoskeleton disruption. Moreover, their antiproliferative activity is not impaired in vinblastine-, paclitaxel-, and multidrug-resistant cell lines. Finally, our study confirms that PID-SOs bearing the imidazolidin-2,4-dione moiety are a new family of promising antimitotics.


Subject(s)
Antimitotic Agents/pharmacology , Imidazoles/pharmacology , Microtubules/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antimitotic Agents/chemical synthesis , Antimitotic Agents/chemistry , Binding Sites , CHO Cells , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/metabolism , Cricetulus , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Microtubules/metabolism , Polymerization , Structure-Activity Relationship , Tubulin/metabolism
20.
Eur J Med Chem ; 228: 113965, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34763944

ABSTRACT

Production of metallo-ß-lactamases (MBLs) in bacterial pathogens is an important cause of resistance to the 'last-resort' carbapenem antibiotics. Development of effective MBL inhibitors to reverse carbapenem resistance in Gram-negative bacteria is still needed. We herein report X-ray structure-guided optimization of 1H-imidazole-2-carboxylic acid (ICA) derivatives by considering how to engage with the active-site flexible loops and improve penetration into Gram-negative bacteria. Structure-activity relationship studies revealed the importance of appropriate substituents at ICA 1-position to achieve potent inhibition to class B1 MBLs, particularly the Verona Integron-encoded MBLs (VIMs), mainly by involving ingenious interactions with the flexible active site loops as observed by crystallographic analyses. Of the tested ICA inhibitors, 55 displayed potent synergistic antibacterial activity with meropenem against engineered Escherichia coli strains and even intractable clinically isolated Pseudomonas aeruginosa producing VIM-2 MBL. The morphologic and internal structural changes of bacterial cells after treatment further demonstrated that 55 crossed the outer membrane and reversed the activity of meropenem. Moreover, 55 showed good pharmacokinetic and safety profile in vivo, which could be a potential candidate for combating VIM-mediated Gram-negative carbapenem resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carboxylic Acids/pharmacology , Escherichia coli/drug effects , Imidazoles/pharmacology , Pseudomonas aeruginosa/drug effects , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Dose-Response Relationship, Drug , Escherichia coli/metabolism , Female , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Mice , Mice, Inbred ICR , Microbial Sensitivity Tests , Molecular Structure , Pseudomonas aeruginosa/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tissue Distribution , beta-Lactamase Inhibitors/chemical synthesis , beta-Lactamase Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...