Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Neurosci Lett ; 764: 136205, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34478818

ABSTRACT

Lactate transport is an important means of communication between astrocytes and neurons and is implicated in a variety of neurobiological processes. However, the connection between astrocyte-neuron lactate transport and nociceptive modulation has not been well established. Here, we found that Complete Freund's adjuvant (CFA)-induced inflammation pain leads to a significant increase in extracellular lactate levels in the anterior cingulate cortex (ACC). Inhibition of glycogenolysis and lactate release in the ACC disrupted the persistent, but not acute, inflammation pain induced by CFA, and this effect was reversed by exogenous L-lactate administration. Knocking down the expression of lactate transporters (MCT1, MCT4, or MCT2) also disrupted the long lasting inflammation pain induced by CFA. Moreover, glycogenolysis in the ACC is critical for the induction of molecular changes related to neuronal plasticity, including the induction of phospho- (p-) ERK, p-CREB, and Fos. Taken together, our findings indicate that astrocyte-neuron lactate transport in the ACC is critical for the occurrence of persistent inflammation pain, suggesting a novel mechanism underlying chronic pain.


Subject(s)
Arabinose/pharmacology , Cell Communication/immunology , Chronic Pain/immunology , Gyrus Cinguli/pathology , Imino Furanoses/pharmacology , Lactic Acid/metabolism , Sugar Alcohols/pharmacology , Animals , Arabinose/therapeutic use , Astrocytes/metabolism , Cell Communication/drug effects , Chronic Pain/drug therapy , Chronic Pain/pathology , Disease Models, Animal , Freund's Adjuvant/administration & dosage , Freund's Adjuvant/immunology , Glycogenolysis/drug effects , Glycogenolysis/immunology , Gyrus Cinguli/cytology , Gyrus Cinguli/drug effects , Gyrus Cinguli/immunology , Humans , Imino Furanoses/therapeutic use , Male , Mice , Neuronal Plasticity/drug effects , Neuronal Plasticity/immunology , Neurons/metabolism , Sugar Alcohols/therapeutic use
2.
Pharm Biol ; 59(1): 175-182, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33715593

ABSTRACT

CONTEXT: The uric acid metabolism pathway is more similar in primates and humans than in rodents. However, there are no reports of using primates to establish animal models of hyperuricaemia (HUA). OBJECTIVES: To establish an animal model highly related to HUA in humans. MATERIALS AND METHODS: Inosine (75, 100 and 200 mg/kg) was intraperitoneally administered to adult male rhesus monkeys (n = 5/group). Blood samples were collected over 8 h, and serum uric acid (SUA) level was determined using commercial assay kits. XO and PNP expression in the liver and URAT1, OAT4 and ABCG2 expression in the kidneys were examined by qPCR and Western blotting to assess the effects of inosine on purine and uric acid metabolism. The validity of the acute HUA model was assessed using ulodesine, allopurinol and febuxostat. RESULTS: Inosine (200 mg/kg) effectively increased the SUA level in rhesus monkeys from 51.77 ± 14.48 at 0 h to 178.32 ± 14.47 µmol/L within 30 min and to peak levels (201.41 ± 42.73 µmol/L) at 1 h. PNP mRNA level was increased, whereas XO mRNA and protein levels in the liver were decreased by the inosine group compared with those in the control group. No changes in mRNA and protein levels of the renal uric acid transporter were observed. Ulodesine, allopurinol and febuxostat eliminated the inosine-induced elevation in SUA in tested monkeys. CONCLUSIONS: An acute HUA animal model with high reproducibility was induced; it can be applied to evaluate new anti-HUA drugs in vivo and explore the disease pathogenesis.


Subject(s)
Disease Models, Animal , Hyperuricemia/chemically induced , Inosine/pharmacology , Uric Acid/blood , Acute Disease , Allopurinol/pharmacology , Animals , Dose-Response Relationship, Drug , Febuxostat/pharmacology , Hyperuricemia/drug therapy , Hyperuricemia/physiopathology , Imino Furanoses/pharmacology , Inosine/administration & dosage , Macaca mulatta , Male , Pyrimidinones/pharmacology , Reproducibility of Results
3.
J Neurosci Res ; 99(4): 1084-1098, 2021 04.
Article in English | MEDLINE | ID: mdl-33491223

ABSTRACT

During cognitive efforts mediated by local neuronal networks, approximately 20% of additional energy is required; this is mediated by chemical messengers such as noradrenaline (NA). NA targets astroglial aerobic glycolysis, the hallmark of which is the end product l-lactate, a fuel for neurons. Biochemical studies have revealed that astrocytes exhibit a prominent glycogen shunt, in which a portion of d-glucose molecules entering the cytoplasm is transiently incorporated into glycogen, a buffer and source of d-glucose during increased energy demand. Here, we studied single astrocytes by measuring cytosolic L-lactate ([lac]i ) with the FRET nanosensor Laconic. We examined whether NA-induced increase in [lac]i is influenced by: (a) 2-deoxy-d-glucose (2-DG, 3 mM), a molecule that enters the cytosol and inhibits the glycolytic pathway; (b) 1,4-dideoxy-1,4-imino-d-arabinitol (DAB, 300 µM), a potent inhibitor of glycogen phosphorylase and glycogen degradation; and (c) 3-nitropropionic acid (3-NPA, 1 mM), an inhibitor of the Krebs cycle. The results of these pharmacological experiments revealed that d-glucose uptake is essential for the NA-induced increase in [lac]i , and that this exclusively arises from glycogen degradation, indicating that most, if not all, d-glucose molecules in NA-stimulated cells transit the glycogen shunt during glycolysis. Moreover, under the defined transmembrane d-glucose gradient, the glycolytic intermediates were not only used to produce l-lactate, but also to significantly support oxidative phosphorylation, as demonstrated by an elevation in [lac]i when Krebs cycle was inhibited. We conclude that l-lactate production via aerobic glycolysis is an essential energy pathway in NA-stimulated astrocytes; however, oxidative metabolism is important at rest.


Subject(s)
Astrocytes/metabolism , Glucose/metabolism , Glycogen/metabolism , Lactic Acid/biosynthesis , Norepinephrine/pharmacology , Animals , Animals, Newborn , Arabinose/pharmacology , Brain/metabolism , Citric Acid Cycle/drug effects , Deoxyglucose/pharmacology , Energy Metabolism , Fluorescence Resonance Energy Transfer , Imino Furanoses/pharmacology , Nitro Compounds/pharmacology , Oxidative Phosphorylation , Primary Cell Culture , Propionates/pharmacology , Rats , Rats, Wistar , Sugar Alcohols/pharmacology , Transfection
4.
Org Biomol Chem ; 18(5): 999-1011, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31944194

ABSTRACT

N-Substituted derivatives of 1,4-dideoxy-1,4-imino-d-mannitol (DIM), the pyrrolidine core of swainsonine, have been synthesized efficiently and stereoselectively from d-mannose with 2,3:5,6-di-O-isopropylidene DIM (10) as a key intermediate. These N-substituted derivatives include N-alkylated, N-alkenylated, N-hydroxyalkylated and N-aralkylated DIMs with the carbon number of the alkyl chain ranging from one to nine. The obtained 33 N-substituted DIM derivatives were assayed against various glycosidases, which allowed a systematic evaluation of their glycosidase inhibition profiles. Though N-substitution of DIM decreased their α-mannosidase inhibitory activities, some of the derivatives showed significant inhibition of other glycosidases.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Mannitol/analogs & derivatives , Animals , Enzyme Inhibitors/chemistry , Glycoside Hydrolases/metabolism , Humans , Imino Furanoses/chemical synthesis , Imino Furanoses/chemistry , Imino Furanoses/pharmacology , Inhibitory Concentration 50 , Mannitol/chemical synthesis , Mannitol/chemistry , Mannitol/pharmacology , Rats , Swainsonine/chemistry
5.
Glycobiology ; 29(7): 530-542, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30976784

ABSTRACT

The endoplasmic reticulum (ER) contains both α-glucosidases and α-mannosidases which process the N-linked oligosaccharides of newly synthesized glycoproteins and thereby facilitate polypeptide folding and glycoprotein quality control. By acting as structural mimetics, iminosugars can selectively inhibit these ER localized α-glycosidases, preventing N-glycan trimming and providing a molecular basis for their therapeutic applications. In this study, we investigate the effects of a panel of nine iminosugars on the actions of ER luminal α-glucosidase I and α-glucosidase II. Using ER microsomes to recapitulate authentic protein N-glycosylation and oligosaccharide processing, we identify five iminosugars that selectively inhibit N-glycan trimming. Comparison of their inhibitory activities in ER microsomes against their effects on purified ER α-glucosidase II, suggests that 3,7a-diepi-alexine acts as a selective inhibitor of ER α-glucosidase I. The other active iminosugars all inhibit α-glucosidase II and, having identified 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) as the most effective of these compounds, we use in silico modeling to understand the molecular basis for this enhanced activity. Taken together, our work identifies the C-3 substituted pyrrolizidines casuarine and 3,7a-diepi-alexine as promising "second-generation" iminosugar inhibitors.


Subject(s)
Arabinose/pharmacology , Endoplasmic Reticulum/enzymology , Glycoside Hydrolase Inhibitors/pharmacology , Imino Furanoses/pharmacology , Pyrrolizidine Alkaloids/pharmacology , Sugar Alcohols/pharmacology , alpha-Glucosidases/metabolism , Animals , Arabinose/chemistry , Dogs , Glycoside Hydrolase Inhibitors/chemistry , Humans , Imino Furanoses/chemistry , Mice , Microsomes/drug effects , Microsomes/metabolism , Pyrrolizidine Alkaloids/chemistry , Sugar Alcohols/chemistry
6.
Biosci Rep ; 38(5)2018 10 31.
Article in English | MEDLINE | ID: mdl-30143583

ABSTRACT

How glia affect neurite outgrowth during neural development has not been well elucidated. In the present study, we found that disruption of lactate production using 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and isofagomine significantly interfered with neurite outgrowth and that exogenous application of L-lactate rescued neurite growth failure. Monocarboxylate transporter-2-knockout, which blocked the lactate shuttle in neurons, showed a remarkable decrease in the length of axons and dendrites. We further demonstrated that Akt activity was decreased while glycogen synthase kinase 3ß (GSK3ß) activity was increased after astrocytic glycogen phosphorylase blockade. Additionally, GSK3ßSer9 mutation reversed neurite growth failure caused by DAB and isofagomine. Our results suggested that lactate transportation played a critical role in neural development and disruption of the lactate shuttle in quiescent condition also affected neurite outgrowth in the central nervous system.


Subject(s)
Glycogen Synthase Kinase 3 beta/genetics , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/genetics , Neurogenesis/genetics , Animals , Arabinose/pharmacology , Astrocytes/drug effects , Axons/enzymology , Axons/metabolism , Biological Transport/genetics , Imino Furanoses/pharmacology , Imino Pyranoses/pharmacology , Neurites/metabolism , Neurogenesis/drug effects , Neuroglia/drug effects , Neuroglia/metabolism , Neuronal Outgrowth/genetics , Neurons/drug effects , Neurons/metabolism , Phosphatidylinositol 3-Kinases , Primary Cell Culture , Proto-Oncogene Proteins c-akt/genetics , Rats , Signal Transduction/drug effects , Sugar Alcohols/pharmacology
7.
Cell Physiol Biochem ; 45(4): 1515-1528, 2018.
Article in English | MEDLINE | ID: mdl-29486476

ABSTRACT

BACKGROUND/AIMS: The overexpression of ATP-Binding Cassette (ABC) transporters has known to be one of the major obstacles impeding the success of chemotherapy in drug resistant cancers. In this study, we evaluated voruciclib, a CDK 4/6 inhibitor, for its chemo-sensitizing activity in ABCB1- and ABCG2- overexpressing cells. METHODS: Cytotoxicity and reversal effect of voruciclib was determined by MTT assay. The intracellular accumulation and efflux of ABCB1 and ABCG2 substrates were measured by scintillation counter. The effects on expression and intracellular localization of ABCB1 and ABCG2 proteins were determined by Western blotting and immunofluorescence, respectively. Vanadate-sensitive ATPase assay was done to determine the effect of voruciclib on the ATPase activity of ABCB1 and ABCG2. Flow cytometric analysis was done to determine the effect of voruciclib on apoptosis of ABCB1 and ABCG2-overexpressing cells and docking analysis was done to determine the interaction of voruciclib with ABCB1 and ACBG2 protein. RESULTS: Voruciclib significantly potentiated the effect of paclitaxel and doxorubicin in ABCB1-overexpressing cells, as well as mitoxantrone and SN-38 in ABCG2-overexpressing cells. Voruciclib moderately sensitized ABCC10- overexpressing cells to paclitaxel, whereas it did not alter the cytotoxicity of substrates of ABCC1. Furthermore, voruciclib increased the intracellular accumulation and decreased the efflux of substrate anti-cancer drugs from ABCB1- or ABCG2-overexpressing cells. However, voruciclib did not alter the expression or the sub-cellular localization of ABCB1 or ABCG2. Voruciclib stimulated the ATPase activity of both ABCB1 and ABCG2 in a concentration-dependent manner. Lastly, voruciclib exhibited a drug-induced apoptotic effect in ABCB1- or ABCG2- overexpressing cells. CONCLUSION: Voruciclib is currently a phase I clinical trial drug. Our findings strongly support its potential use in combination with conventional anti-cancer drugs for cancer chemotherapy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Drug Resistance, Neoplasm/drug effects , Imino Furanoses/pharmacology , Neoplasm Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzopyrans/chemistry , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Doxorubicin/pharmacology , HEK293 Cells , Humans , Imino Furanoses/chemistry , Mitoxantrone/pharmacology , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/metabolism , Mutation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Paclitaxel/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Structure, Tertiary
8.
Ann Neurol ; 83(1): 61-73, 2018 01.
Article in English | MEDLINE | ID: mdl-29244233

ABSTRACT

OBJECTIVE: Glycogen in astrocyte processes contributes to maintenance of low extracellular glutamate and K+ concentrations around excitatory synapses. Sleep deprivation (SD), a common migraine trigger, induces transcriptional changes in astrocytes, reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches. METHODS: We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD. RESULTS: DAB caused neuronal pannexin-1 large pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking down the neuronal lactate transporter MCT2 with an antisense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly delivered phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, Asante Potassium Green-4, revealed that DAB treatment or SD caused a significant rise in extracellular K+ during whisker stimulation, illustrating the critical role of glycogen in extracellular K+ clearance. INTERPRETATION: Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lower the CSD threshold. Therefore, conditions that limit energy supply to synapses (eg, SD) may predispose to migraine attacks, as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. Ann Neurol 2018;83:61-73.


Subject(s)
Brain Chemistry , Cortical Spreading Depression/genetics , Glycogen/metabolism , Sleep Deprivation/physiopathology , Animals , Arabinose/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Connexins/drug effects , Connexins/metabolism , Energy Metabolism , Gene Knockdown Techniques , HMGB1 Protein/metabolism , Imino Furanoses/pharmacology , Injections, Intraventricular , Mice , Monocarboxylic Acid Transporters/antagonists & inhibitors , Nerve Tissue Proteins/drug effects , Nerve Tissue Proteins/metabolism , Oligonucleotides, Antisense/pharmacology , Phloretin/pharmacology , Potassium/physiology , Sugar Alcohols/pharmacology , Vibrissae/innervation
9.
Physiol Rep ; 5(23)2017 Dec.
Article in English | MEDLINE | ID: mdl-29199177

ABSTRACT

The glucose polymer glycogen is a vital fuel reserve in the brain. The mediobasal hypothalamic energy sensor AMP-activated protein kinase (AMPK) maintains glucostasis via neurotransmitter mechanisms that suppress [γ-aminobutyric acid; GABA] or stimulate [nitric oxide; steroidogenic factor-1 (SF1)] counter-regulatory outflow. This study investigated whether glycogen-derived fuel supply is a critical screened variable in ventromedial hypothalamic nucleus (VMN) monitoring of neuro-metabolic stability during glucostasis and/or insulin (I)-induced hypoglycemia. Adult male rats were pretreated by intra-VMN infusion of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) before sc vehicle or I injection. Western blot analyses of micropunch-dissected VMN tissue from euglycemic animals showed DAB augmentation of phosphoAMPK (pAMPK), neuronal nitric oxide synthase (nNOS), and SF-1, but not glutamate decarboxylase65/67 (GAD) protein. Combinatory DAB/I treatment did not further enhance AMPK activity but significantly amplified nNOS expression relative to DAB alone. Hypoglycemic stimulation of corticosterone, but not glucagon release was prevented by DAB Results imply that glycogen-derived substrate fuel provision represses VMN AMPK activity and neurotransmitter signals of metabolic deficiency. Progressive augmentation of nNOS protein by DAB/I versus DAB/V intimates that "fuel-inhibited" nitrergic neurons may exhibit increasing sensitivity to disrupted glycogen breakdown during glucoprivation versus glucostasis. nNOS and GAD reactivity to DAB/I, but not I implies that acute glycogen utilization during hypoglycemia may be sufficiently robust to avert effects on local metabolic sensory signaling. DAB/I upregulation of GAD alongside prevention of hypercorticosteronemia suggests that indicators of metabolic sufficiency may occur secondary to local compensatory adaptations to severe restriction of glucose-derived energy.


Subject(s)
Glycogen Phosphorylase/metabolism , Hypoglycemia/metabolism , Nitric Oxide Synthase Type I/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , AMP-Activated Protein Kinase Kinases , Animals , Arabinose/pharmacology , Enzyme Inhibitors/pharmacology , Glutamate Decarboxylase/metabolism , Glycogen/metabolism , Glycogen Phosphorylase/antagonists & inhibitors , Imino Furanoses/pharmacology , Male , Nitric Oxide Synthase Type I/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Rats , Rats, Sprague-Dawley , Sugar Alcohols/pharmacology , Ventromedial Hypothalamic Nucleus/drug effects
10.
Sci Rep ; 7(1): 18007, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269870

ABSTRACT

Aberrant regulation of BCL-2 family members enables evasion of apoptosis and tumor resistance to chemotherapy. BCL-2 and functionally redundant counterpart, MCL-1, are frequently over-expressed in high-risk diffuse large B-cell lymphoma (DLBCL). While clinical inhibition of BCL-2 has been achieved with the BH3 mimetic venetoclax, anti-tumor efficacy is limited by compensatory induction of MCL-1. Voruciclib, an orally bioavailable clinical stage CDK-selective inhibitor, potently blocks CDK9, the transcriptional regulator of MCL-1. Here, we demonstrate that voruciclib represses MCL-1 protein expression in preclinical models of DLBCL. When combined with venetoclax in vivo, voruciclib leads to model-dependent tumor cell apoptosis and tumor growth inhibition. Strongest responses were observed in two models representing high-risk activated B-cell (ABC) DLBCL, while no response was observed in a third ABC model, and intermediate responses were observed in two models of germinal center B-cell like (GCB) DLBCL. Given the range of responses, we show that CIVO, a multiplexed tumor micro-dosing technology, represents a viable functional precision medicine approach for differentiating responders from non-responders to BCL-2/MCL-1 targeted therapy. These findings suggest that the combination of voruciclib and venetoclax holds promise as a novel, exclusively oral combination therapy for a subset of high-risk DLBCL patients.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzopyrans/pharmacology , Gene Expression Regulation/drug effects , Imino Furanoses/pharmacology , Lymphoma, Large B-Cell, Diffuse/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Antineoplastic Agents/therapeutic use , Benzopyrans/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Line, Tumor , Drug Synergism , Humans , Imino Furanoses/therapeutic use , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
11.
J Cell Physiol ; 232(5): 986-995, 2017 05.
Article in English | MEDLINE | ID: mdl-27861886

ABSTRACT

Oligodendrocyte progenitor cells (OPCs) undergo marked morphological changes to become mature oligodendrocytes, but the metabolic resources for this process have not been fully elucidated. Although lactate, a metabolic derivative of glycogen, has been reported to be consumed in oligodendrocytes as a metabolite, and to ameliorate hypomyelination induced by low glucose conditions, it is not clear about the direct contribution of lactate to cell cycling and differentiation of OPCs, and the source of lactate for remyelination. Therefore, we evaluated the effect of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB), an inhibitor of the glycogen catabolic enzyme glycogen phosphorylase, in a mouse cuprizone model. Cuprizone induced demyelination in the corpus callosum and remyelination occurred after cuprizone treatment ceased. This remyelination was inhibited by the administration of DAB. To further examine whether lactate affects proliferation or differentiation of OPCs, we cultured mouse primary OPC-rich cells and analyzed the effect of lactate. Lactate rescued the slowed cell cycling induced by 0.4 mM glucose, as assessed by the BrdU-positive cell ratio. Lactate also promoted OPC differentiation detected by monitoring the mature oligodendrocyte marker myelin basic protein, in the presence of both 36.6 mM and 0.4 mM glucose. Furthermore, these lactate-mediated effects were suppressed by the reported monocarboxylate transporter inhibitor, α-cyano-4-hydroxy-cinnamate. These results suggest that lactate directly promotes the cell cycling rate and differentiation of OPCs, and that glycogen, one of the sources of lactate, contributes to remyelination in vivo. J. Cell. Physiol. 232: 986-995, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.


Subject(s)
Cell Cycle , Cell Differentiation , Lactic Acid/metabolism , Oligodendroglia/cytology , Stem Cells/cytology , Animals , Arabinose/pharmacology , Cell Cycle/drug effects , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Corpus Callosum/pathology , Cuprizone , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Female , Glucose/pharmacology , Imino Furanoses/pharmacology , Lactic Acid/pharmacology , Male , Mice, Inbred C57BL , Models, Biological , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/metabolism , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Sugar Alcohols/pharmacology
12.
Org Biomol Chem ; 14(38): 9105-9113, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27714243

ABSTRACT

Glycogen synthase (GS) and glycogen phosphorylase (GP) are the key enzymes that control, respectively, the synthesis and degradation of glycogen, a multi-branched glucose polymer that serves as a form of energy storage in bacteria, fungi and animals. An abnormal glycogen metabolism is associated with several human diseases. Thus, GS and GP constitute adequate pharmacological targets to modulate cellular glycogen levels by means of their selective inhibition. The compound 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) is a known potent inhibitor of GP. We studied the inhibitory effect of DAB, its enantiomer LAB, and 29 DAB derivatives on the activity of rat muscle glycogen phosphorylase (RMGP) and E. coli glycogen synthase (EcGS). The isoform 4 of sucrose synthase (SuSy4) from Solanum tuberosum L. was also included in the study for comparative purposes. Although these three enzymes possess highly conserved catalytic site architectures, the DAB derivatives analysed showed extremely diverse inhibitory potential. Subtle changes in the positions of crucial residues in their active sites are sufficient to discriminate among the structural differences of the tested inhibitors. For the two Leloir-type enzymes, EcGS and SuSy4, which use sugar nucleotides as donors, the inhibitory potency of the compounds analysed was synergistically enhanced by more than three orders of magnitude in the presence of ADP and UDP, respectively. Our results are consistent with a model in which these compounds bind to the subsite in the active centre of the enzymes that is normally occupied by the glucosyl residue which is transferred between donor and acceptor substrates. The ability to selectively inhibit the catalytic activity of the key enzymes of the glycogen metabolism may represent a new approach for the treatment of disorders of the glycogen metabolism.


Subject(s)
Arabinose/chemistry , Arabinose/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycogen/metabolism , Imino Furanoses/chemistry , Imino Furanoses/pharmacology , Sugar Alcohols/chemistry , Sugar Alcohols/pharmacology , Animals , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/metabolism , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Glycogen Phosphorylase/antagonists & inhibitors , Glycogen Phosphorylase/metabolism , Glycogen Synthase/antagonists & inhibitors , Glycogen Synthase/metabolism , Molecular Docking Simulation , Rats , Solanum tuberosum/drug effects , Solanum tuberosum/enzymology , Solanum tuberosum/metabolism
13.
Sci Rep ; 6: 33215, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27622597

ABSTRACT

Starch degradation in barley endosperm provides carbon for early seedling growth, but the control of this process is poorly understood. We investigated whether endosperm cell wall degradation is an important determinant of the rate of starch degradation. We identified iminosugar inhibitors of enzymes that degrade the cell wall component arabinoxylan. The iminosugar 1,4-dideoxy-1, 4-imino-l-arabinitol (LAB) inhibits arabinoxylan arabinofuranohydrolase (AXAH) but does not inhibit the main starch-degrading enzymes α- and ß-amylase and limit dextrinase. AXAH activity in the endosperm appears soon after the onset of germination and resides in dimers putatively containing two isoforms, AXAH1 and AXAH2. Upon grain imbibition, mobilisation of arabinoxylan and starch spreads across the endosperm from the aleurone towards the crease. The front of arabinoxylan degradation precedes that of starch degradation. Incubation of grains with LAB decreases the rate of loss of both arabinoxylan and starch, and retards the spread of both degradation processes across the endosperm. We propose that starch degradation in the endosperm is dependent on cell wall degradation, which permeabilises the walls and thus permits rapid diffusion of amylolytic enzymes. AXAH may be of particular importance in this respect. These results provide new insights into the mobilization of endosperm reserves to support early seedling growth.


Subject(s)
Cell Wall/metabolism , Endosperm/metabolism , Hordeum/metabolism , Starch/metabolism , Arabinose/pharmacology , Cell Wall/drug effects , Endosperm/drug effects , Glycoside Hydrolases/antagonists & inhibitors , Glycoside Hydrolases/metabolism , Hordeum/growth & development , Imino Furanoses/pharmacology , Immunoblotting , Plant Proteins/antagonists & inhibitors , Plant Proteins/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Sugar Alcohols/pharmacology , Xylans/metabolism
14.
Oncotarget ; 7(3): 2809-22, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26646452

ABSTRACT

The CXCR4 receptor (Chemokine C-X-C motif receptor 4) is highly expressed in different hematological malignancies including chronic lymphocytic leukemia (CLL). The CXCR4 ligand (CXCL12) stimulates CXCR4 promoting cell survival and proliferation, and may contribute to the tropism of leukemia cells towards lymphoid tissues. Therefore, strategies targeting CXCR4 may constitute an effective therapeutic approach for CLL. To address that question, we studied the effect of Ulocuplumab (BMS-936564), a fully human IgG4 anti-CXCR4 antibody, using a stroma--CLL cells co-culture model. We found that Ulocuplumab (BMS-936564) inhibited CXCL12 mediated CXCR4 activation-migration of CLL cells at nanomolar concentrations. This effect was comparable to AMD3100 (Plerixafor--Mozobil), a small molecule CXCR4 inhibitor. However, Ulocuplumab (BMS-936564) but not AMD3100 induced apoptosis in CLL at nanomolar concentrations in the presence or absence of stromal cell support. This pro-apoptotic effect was independent of CLL high-risk prognostic markers, was associated with production of reactive oxygen species and did not require caspase activation. Overall, these findings are evidence that Ulocuplumab (BMS-936564) has biological activity in CLL, highlight the relevance of the CXCR4-CXCL12 pathway as a therapeutic target in CLL, and provide biological rationale for ongoing clinical trials in CLL and other hematological malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Chemokine CXCL12/biosynthesis , Imino Furanoses/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Pyrimidinones/pharmacology , Reactive Oxygen Species/metabolism , Receptors, CXCR4/antagonists & inhibitors , Actins/metabolism , Benzylamines , Cell Movement/drug effects , Cell Proliferation , Cell Survival , Chemokine CXCL12/metabolism , Cyclams , Enzyme Activation/drug effects , Heterocyclic Compounds/pharmacology , Humans , Jurkat Cells , Leukocytes, Mononuclear , Receptors, CXCR4/biosynthesis , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism
15.
Biol Psychiatry ; 79(11): 928-39, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26293178

ABSTRACT

BACKGROUND: Drug memories that associate drug-paired stimuli with the effects of abused drugs contribute to relapse. Exposure to drug-associated contexts causes consolidated drug memories to be in a labile state, during which manipulations can be given to impair drug memories. Although substantial evidence demonstrates the crucial role of neuronal signaling in addiction, little is known about the contribution of astrocyte-neuron communication. METHODS: Rats were trained for cocaine-induced conditioned place preference (CPP) or self-administration and microinjected with the glycogen phosphorylation inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol into the basolateral amygdala (BLA) immediately after retrieval. The concentration of lactate was measured immediately after retrieval via microdialysis, and the CPP score and number of nosepokes were recorded 24 hours later. Furthermore, we used antisense oligodeoxynucleotides to disrupt the expression of astrocytic lactate transporters (monocarboxylate transporters 1 and 2) in the BLA after retrieval, tested the expression of CPP 1 day later, and injected L-lactate into the BLA 15 minutes before retrieval to rescue the effects of the oligodeoxynucleotides. RESULTS: Injection of 1,4-dideoxy-1,4-imino-D-arabinitol into the BLA immediately after retrieval prevented the subsequent expression of cocaine-induced CPP, decreased the concentration of lactate in the BLA, and reduced the number of nosepokes for cocaine self-administration. Disrupting the expression of monocarboxylate transporters 1 and 2 in the BLA also caused subsequent deficits in the expression of cocaine-induced CPP, which was rescued by pretreatment with L-lactate. CONCLUSIONS: Our results suggest that astrocyte-neuron lactate transport in the BLA is critical for the reconsolidation of cocaine memory.


Subject(s)
Arabinose/pharmacology , Cocaine-Related Disorders/drug therapy , Cocaine-Related Disorders/psychology , Imino Furanoses/pharmacology , Lactic Acid/metabolism , Memory Consolidation/drug effects , Psychotropic Drugs/pharmacology , Sugar Alcohols/pharmacology , Animals , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Cocaine/administration & dosage , Cocaine-Related Disorders/metabolism , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Dopamine Uptake Inhibitors/administration & dosage , Drug-Seeking Behavior/drug effects , Drug-Seeking Behavior/physiology , Male , Memory Consolidation/physiology , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/metabolism , Rats, Sprague-Dawley , Recurrence , Secondary Prevention , Self Administration , Space Perception/drug effects , Space Perception/physiology
16.
Glia ; 62(4): 526-34, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24464850

ABSTRACT

Astrocytic glycogen, the only storage form of glucose in the brain, has been shown to play a fundamental role in supporting learning and memory, an effect achieved by providing metabolic support for neurons. We have examined the interplay between glycogenolysis and the bioenergetics of astrocytic Ca(2+) homeostasis, by analyzing interdependency of glycogen and store-operated Ca(2+) entry (SOCE), a mechanism in cellular signaling that maintains high endoplasmatic reticulum (ER) Ca(2+) concentration and thus provides the basis for store-dependent Ca(2+) signaling. We stimulated SOCE in primary cultures of murine cerebellar and cortical astrocytes, and determined glycogen content to investigate the effects of SOCE on glycogen metabolism. By blocking glycogenolysis, we tested energetic dependency of SOCE-related Ca(2+) dynamics on glycogenolytic ATP. Our results show that SOCE triggers astrocytic glycogenolysis. Upon inhibition of adenylate cyclase with 2',5'-dideoxyadenosine, glycogen content was no longer significantly different from that in unstimulated control cells, indicating that SOCE triggers astrocytic glycogenolysis in a cAMP-dependent manner. When glycogenolysis was inhibited in cortical astrocytes by 1,4-dideoxy-1,4-imino-D-arabinitol, the amount of Ca(2+) loaded into ER via sarco/endoplasmic reticulum Ca(2)-ATPase (SERCA) was reduced, which suggests that SERCA pumps preferentially metabolize glycogenolytic ATP. Our study demonstrates SOCE as a novel pathway in stimulating astrocytic glycogenolysis. We also provide first evidence for a new functional role of brain glycogen, in providing local ATP to SERCA, thus establishing the bioenergetic basis for astrocytic Ca(2+) signaling. This mechanism could offer a novel explanation for the impact of glycogen on learning and memory.


Subject(s)
Astrocytes/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Glycogenolysis/physiology , Homeostasis/physiology , Analysis of Variance , Animals , Animals, Newborn , Arabinose/pharmacology , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/ultrastructure , Brain/cytology , Cells, Cultured , Cyclic AMP/metabolism , Cytosol/drug effects , Cytosol/microbiology , Dideoxyadenosine/analogs & derivatives , Dideoxyadenosine/pharmacology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Energy Metabolism , Glycogen/metabolism , Glycogenolysis/drug effects , Imino Furanoses/pharmacology , Mice , Sugar Alcohols/pharmacology
17.
Neuroscience ; 257: 41-8, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24200922

ABSTRACT

The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. For a long time it was believed that glucose was the only source of energy for neurons. However, a growing body of experimental evidence indicates that lactic acid, generated by aerobic glycolysis in perivascular astrocytes, is also a source of energy for neuronal activity, particularly when the supply of glucose from the intravascular space is interrupted. Adenosine monophosphate-activated protein kinase (AMPK) is an evolutionary conserved kinase that couples cellular activity with energy consumption via induction of the uptake of glucose and activation of the glycolytic pathway. The uptake of glucose by the blood-brain barrier is mediated by glucose transporter-1 (GLUT1), which is abundantly expressed in endothelial cells and astrocytic end-feet processes. Tissue-type plasminogen activator (tPA) is a serine proteinase that is found in endothelial cells, astrocytes and neurons. Genetic overexpression of neuronal tPA or treatment with recombinant tPA protects neurons from the deleterious effects of metabolic stress or excitotoxicity, via a mechanism independent of tPA's ability to cleave plasminogen into plasmin. The work presented here shows that exposure to metabolic stress induces the rapid release of tPA from murine neurons but not from astrocytes. This tPA induces AMPK activation, membrane recruitment of GLUT1, and GLUT1-mediated glucose uptake in astrocytes and endothelial cells. Our data indicate that this is followed by the synthesis and release of lactic acid from astrocytes, and that the uptake of this lactic acid via the monocarboxylate transporter-2 promotes survival in neurons exposed to metabolic stress.


Subject(s)
Cerebral Cortex/cytology , Neuroglia/drug effects , Neuroglia/metabolism , Tissue Plasminogen Activator/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Animals, Newborn , Arabinose/pharmacology , Cell Death/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Embryo, Mammalian , Glial Fibrillary Acidic Protein/metabolism , Glucose/deficiency , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Hypoxia/physiopathology , Imino Furanoses/pharmacology , Lactic Acid/metabolism , Mice , Neurons/drug effects , Neurons/metabolism , Sugar Alcohols/pharmacology , Time Factors
18.
Acta Virol ; 57(1): 85-6, 2013.
Article in English | MEDLINE | ID: mdl-23530829

ABSTRACT

We have previously examined the antiviral effects of total alkaloids from Commelina communis L. (TAC). Here we investigated the active constituents of TAC, responsible for the antiviral effect. Harman, homonojirimycin (HNJ) and 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine were isolated from TAC by HPLC. Only HNJ showed strong antiviral activity against influenza A/PR/8/34 virus (H1N1) as measured by cytopathic effect reduction assay. The results suggest that HNJ is one of the active components of TAC.


Subject(s)
1-Deoxynojirimycin/analogs & derivatives , Antiviral Agents/pharmacology , Commelina/chemistry , Influenza A Virus, H1N1 Subtype/drug effects , 1-Deoxynojirimycin/isolation & purification , 1-Deoxynojirimycin/pharmacology , Alkaloids/pharmacology , Animals , Chromatography, High Pressure Liquid , Dogs , Harmine/analogs & derivatives , Harmine/pharmacology , Imino Furanoses/pharmacology , Madin Darby Canine Kidney Cells , Mannitol/analogs & derivatives , Mannitol/pharmacology
19.
Org Biomol Chem ; 11(12): 2005-21, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23381224

ABSTRACT

A chemo-enzymatic strategy for the preparation of 2-aminomethyl derivatives of (2R,3R,4R)-2-(hydroxymethyl)pyrrolidine-3,4-diol (also called 1,4-dideoxy-1,4-imino-D-arabinitol, DAB) and its enantiomer LAB is presented. The synthesis is based on the enzymatic preparation of DAB and LAB followed by the chemical modification of their hydroxymethyl functionality to afford diverse 2-aminomethyl derivatives. This strategy leads to novel aromatic, aminoalcohol and 2-oxopiperazine DAB and LAB derivatives. The compounds were preliminarily explored as inhibitors of a panel of commercial glycosidases, rat intestinal disaccharidases and against Mycobacterium tuberculosis, the causative agent of tuberculosis. It was found that the inhibitory profile of the new products differed considerably from the parent DAB and LAB. Furthermore, some of them were active inhibiting the growth of M. tuberculosis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Arabinose/pharmacology , Disaccharidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Imino Furanoses/pharmacology , Mycobacterium tuberculosis/drug effects , Sugar Alcohols/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Arabinose/chemistry , Arabinose/metabolism , Disaccharidases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Imino Furanoses/chemistry , Imino Furanoses/metabolism , Intestinal Mucosa/metabolism , Intestines/enzymology , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/growth & development , Rats , Structure-Activity Relationship , Sugar Alcohols/chemistry , Sugar Alcohols/metabolism
20.
Neurochem Res ; 38(3): 472-85, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23232850

ABSTRACT

The importance of astrocytic K(+) uptake for extracellular K(+) ([K(+)](e)) clearance during neuronal stimulation or pathophysiological conditions is increasingly acknowledged. It occurs by preferential stimulation of the astrocytic Na(+),K(+)-ATPase, which has higher K(m) and V(max) values than its neuronal counterpart, at more highly increased [K(+)](e) with additional support of the cotransporter NKCC1. Triggered by a recent DiNuzzo et al. paper, we used administration of the glycogenolysis inhibitor DAB to primary cultures of mouse astrocytes to determine whether K(+) uptake required K(+)-stimulated glycogenolysis. KCl was increased by either 5 mM (stimulating only the Na(+),K(+)-ATPase) or 10 mM (stimulating both transporters) in glucose-containing saline media prepared to become iso-osmotic after the addition. DAB completely inhibited both uptakes, the Na(+),K(+)-ATPase-mediated by preventing Na(+) uptake for stimulation of its intracellular Na(+)-activated site, and the NKCC1-mediated uptake by inhibition of depolarization- and L-channel-mediated Ca(2+) uptake. Drugs inhibiting the signaling pathways involved in either of these processes also abolished K(+) uptake. Assuming similar in vivo characteristics, partly supported by literature data, K(+)-stimulated astrocytic K(+) uptake must discontinue after normalization of extracellular K(+). This will allow Kir1.4-mediated release and reuptake by the less powerful neuronal Na(+),K(+)-ATPase.


Subject(s)
Astrocytes/metabolism , Homeostasis/physiology , Potassium/metabolism , Animals , Arabinose/pharmacology , Cells, Cultured , Glycogen/metabolism , Glycogenolysis/drug effects , Imino Furanoses/pharmacology , Macrocyclic Compounds/pharmacology , Mice , Monensin/pharmacology , Oxazoles/pharmacology , Potassium/pharmacology , Sodium-Potassium-Chloride Symporters/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , Solute Carrier Family 12, Member 2 , Sugar Alcohols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...