Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.450
Filter
1.
Int J Nanomedicine ; 19: 4719-4733, 2024.
Article in English | MEDLINE | ID: mdl-38813391

ABSTRACT

Introduction: Lung cancer's high incidence and dismal prognosis with traditional treatments like surgery and radiotherapy necessitate innovative approaches. Despite advancements in nanotherapy, the limitations of single-treatment modalities and significant side effects persist. To tackle lung cancer effectively, we devised a temperature-sensitive hydrogel-based local injection system with near-infrared triggered drug release. Utilizing 2D MXene nanosheets as carriers loaded with R837 and cisplatin (DDP), encapsulated within a temperature-sensitive hydrogel-forming PEG-MXene@DDP@R837@SHDS (MDR@SHDS), we administered in situ injections of MDR@SHDS into tumor tissues combined with photothermal therapy (PTT). The immune adjuvant R837 enhances dendritic cell (DC) maturation and tumor cell phagocytosis, while PTT induces tumor cell apoptosis and necrosis by converting light energy into heat energy. Methods: Material characterization employed transmission electron microscopy, X-ray photoelectron spectroscopy, phase transition temperature, and near-infrared thermography. In vitro experiments assessed Lewis cell proliferation and apoptosis using CCK-8, Edu, and TUNEL assays. In vivo experiments on C57 mouse Lewis transplant tumors evaluated the photothermal effect via near-infrared thermography and assessed DC maturation and CD4+/CD8+ T cell ratios using flow cytometry. The in vivo anti-tumor efficacy of MDR@SHDS was confirmed by tumor growth curve recording and HE and TUNEL staining of tumor sections. Results: The hydrogel exhibited excellent temperature sensitivity, controlled release properties, and high biocompatibility. In vitro experiments revealed that MDR@SHDS combined with PTT had a greater inhibitory effect on tumor cell proliferation compared to MDR@SHD alone. Combining local immunotherapy, chemotherapy, and PTT yielded superior anti-tumor effects than individual treatments. Conclusion: MDR@SHDS, with its simplicity, biocompatibility, and enhanced anti-tumor effects in combination with PTT, presents a promising therapeutic approach for lung cancer treatment, offering potential clinical utility.


Subject(s)
Cisplatin , Imiquimod , Lung Neoplasms , Mice, Inbred C57BL , Animals , Cisplatin/pharmacology , Cisplatin/chemistry , Cisplatin/administration & dosage , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Imiquimod/chemistry , Imiquimod/administration & dosage , Imiquimod/pharmacology , Hydrogels/chemistry , Apoptosis/drug effects , Nanostructures/chemistry , Photothermal Therapy/methods , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Drug Delivery Systems/methods , Humans , Temperature , Dendritic Cells/drug effects , Drug Carriers/chemistry , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/pathology
2.
Int Immunopharmacol ; 134: 112248, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38749332

ABSTRACT

Psoriasis, characterized by aberrant epidermal keratinocyte proliferation and differentiation, is a chronic inflammatory immune-related skin disease. Diosmetin (Dios), derived from citrus fruits, exhibits anti-inflammatory and anti-proliferative properties. In this study, IL-17A-induced HaCaT cell model and Imiquimod (IMQ)-induced mouse model were utilized to investigate the effects of Dios against psoriasis. The morphology and biomarkers of psoriasis were regarded as the preliminary evaluation including PASI score, skin thickness, H&E staining, EdU staining and inflammatory factors. Transcriptomics analysis revealed PGC-1α as a key target for Dios in ameliorating psoriasis. Specifically, Dios, through PGC-1α, suppressed YAP-mediated proliferation and inflammatory responses in psoriatic keratinocytes. In conclusion, Dios shows promise in psoriasis treatment and holds potential for development as targeted medications for application in psoriasis.


Subject(s)
Cell Proliferation , Imiquimod , Keratinocytes , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Psoriasis , Signal Transduction , Psoriasis/drug therapy , Psoriasis/immunology , Animals , Keratinocytes/drug effects , Keratinocytes/metabolism , Humans , Signal Transduction/drug effects , Cell Proliferation/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice , Flavonoids/pharmacology , Flavonoids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , YAP-Signaling Proteins/metabolism , Disease Models, Animal , Transcription Factors/metabolism , Transcription Factors/genetics , HaCaT Cells , Cell Line , Mice, Inbred BALB C , Interleukin-17/metabolism , Male , Inflammation/drug therapy
3.
Int Immunopharmacol ; 134: 112261, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38761783

ABSTRACT

BACKGROUND: Psoriasis, a chronic inflammatory condition of the skin, is characterized by an atypical proliferation of epidermal keratinocytes and immune cell infiltration. Orientin is a flavonoid monomer with potent anti-inflammatory activities. However, the therapeutic effects of orientin on psoriasis and the underlying mechanisms have not been elucidated. OBJECTIVE: To investigate the therapeutic effect of orientin on psoriasis and the underlying mechanisms using network pharmacology and experimental studies. METHODS: A psoriasis-like mouse model was established using imiquimod (IMQ). Lipopolysaccharide (LPS) was used to stimulate the RAW264.7 and HaCaT cells in vitro. The therapeutic effects of orientin and the underlying mechanism were analyzed using histopathological, immunohistochemical, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, flow cytometry, and western blotting analyses. RESULTS: Orientin ameliorated skin lesions and suppressed keratinocyte proliferation and immune cell infiltration in the IMQ-induced psoriasis-like mouse model. Additionally, orientin inhibited the secretion of the pro-inflammatory factors interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-6, IL-8, IL-17, and IL-23 in the psoriasis-like mouse model and LPS-induced RAW264.7 and HaCaT cells. Furthermore, orientin mitigated the LPS-induced upregulation of reactive oxygen species and downregulation of IL-10 and glutathione levels. Orientin alleviated inflammation by downregulating the MAPK signaling pathway. CONCLUSION: Orientin alleviated psoriasis-like dermatitis by suppressing the MAPK signaling pathway, suggesting that orientin is a potential therapeutic for psoriasis.


Subject(s)
Anti-Inflammatory Agents , Cytokines , Disease Models, Animal , Flavonoids , Glucosides , HaCaT Cells , Imiquimod , Keratinocytes , Lipopolysaccharides , MAP Kinase Signaling System , Mice, Inbred BALB C , Psoriasis , Animals , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/chemically induced , Psoriasis/pathology , Mice , Humans , RAW 264.7 Cells , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Flavonoids/pharmacology , Flavonoids/therapeutic use , Cytokines/metabolism , Keratinocytes/drug effects , Glucosides/therapeutic use , Glucosides/pharmacology , MAP Kinase Signaling System/drug effects , Skin/pathology , Skin/drug effects , Skin/immunology , Cell Proliferation/drug effects , Male , Reactive Oxygen Species/metabolism , Dermatitis/drug therapy , Dermatitis/pathology , Dermatitis/immunology , Cell Line
4.
ACS Appl Mater Interfaces ; 16(21): 27187-27201, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747985

ABSTRACT

Development of theranostic nanomedicines to tackle glioma remains to be challenging. Here, we present an advanced blood-brain barrier (BBB)-crossing nanovaccine based on cancer cell membrane-camouflaged poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) incorporated with MnO2 and doxorubicin (DOX). We show that the disulfide bond-cross-linked redox-responsive PVCL NGs can be functionalized with dermorphin and imiquimod R837 through cell membrane functionalization. The formed functionalized PVCL NGs having a size of 220 nm are stable, can deplete glutathione, and responsively release both Mn2+ and DOX under the simulated tumor microenvironment to exert the chemo/chemodynamic therapy mediated by DOX and Mn2+, respectively. The combined therapy induces tumor immunogenic cell death to maturate dendritic cells (DCs) and activate tumor-killing T cells. Further, the nanovaccine composed of cancer cell membranes as tumor antigens, R837 as an adjuvant with abilities of DC maturation and macrophages M1 repolarization, and MnO2 with Mn2+-mediated stimulator of interferon gene activation of tumor cells can effectively act on both targets of tumor cells and immune cells. With the dermorphin-mediated BBB crossing, cell membrane-mediated homologous tumor targeting, and Mn2+-facilitated magnetic resonance (MR) imaging property, the designed NG-based theranostic nanovaccine enables MR imaging and combination chemo-, chemodynamic-, and imnune therapy of orthotopic glioma with a significantly decreased recurrence rate.


Subject(s)
Glioma , Magnetic Resonance Imaging , Manganese Compounds , Theranostic Nanomedicine , Glioma/diagnostic imaging , Glioma/drug therapy , Glioma/therapy , Glioma/pathology , Animals , Mice , Humans , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Cancer Vaccines/chemistry , Immunotherapy , Oxides/chemistry , Oxides/pharmacology , Cell Line, Tumor , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Blood-Brain Barrier/metabolism , Nanogels/chemistry , Imiquimod/chemistry , Imiquimod/pharmacology , Nanovaccines
5.
Int J Biol Macromol ; 269(Pt 2): 132207, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723823

ABSTRACT

To overcome the low efficacy of sonodynamic therapy (SDT) caused by hypoxia in the tumor microenvironment, we developed a multiple anti-tumor nanoplatform with synergistic SDT, photothermal therapy (PTT), and ferroptosis effects. PCN-224@FcCaO2/Mn/dihydroartemisinin/imiquimod/PDA (PFC) was prepared by modified with dihydroartemisinin (DHA), imiquimod (R837), CaO2, ferrocene (Fc) and Mn2+ on the PCN-224 (Cu) to achieve self-replenishment of H2O2/O2 and GSH consumption. FcCaO2 decomposed into H2O2 in the tumor microenvironment, triggering the Fenton effect to produce OH, and Cu2+ reduced the potential loss of OH by the depletion of GSH. Under ultrasonic (US) and laser irradiation, PFC exhibits exciting PTT and SDT effects from polydopamine (PDA) and PCN-224. Mn2+ not only promoted the reaction of H2O2 to produce O2 to effectively enhance SDT but also induced tumor cell apoptosis by Mn2+ combined with DHA. PFC induced ferroptosis via Fe interaction with DHA to produce ROS and reduce the expression of GPX4. The released R837 and tumor-associated antigens from SDT/PTT can produce damage associated molecular patterns (DAMPs), which can initiate adaptive immune responses to kill cancer cells, and released again to promote the tumor immune cycle. What's more, SDT/PTT and ferroptosis combined with aPD-L1 can effectively suppress both primary and distant tumor growth.


Subject(s)
Indoles , Metal-Organic Frameworks , Photothermal Therapy , Polymers , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry , Polymers/pharmacology , Humans , Animals , Mice , Photothermal Therapy/methods , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Cell Line, Tumor , Nanoparticles/chemistry , Apoptosis/drug effects , Ferroptosis/drug effects , Tumor Microenvironment/drug effects , Combined Modality Therapy , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Hydrogen Peroxide/pharmacology , Imiquimod/pharmacology , Metallocenes/chemistry , Metallocenes/pharmacology
6.
Int J Biol Macromol ; 269(Pt 2): 132177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729484

ABSTRACT

Tumor vaccine, which can effectively prevent tumor recurrence and metastasis, is a promising tool in tumor immunotherapy. However, heterogeneity of tumors and the inability to achieve a cascade effect limit the therapeutic effects of most developing tumor vaccine. We have developed a cascading immunoinducible in-situ mannose-functionalized polydopamine loaded with imiquimod phenylboronic hyaluronic acid nanocomposite gel vaccine (M/P-PDA@IQ PHA) through a boronic ester-based reaction. This reaction utilizes mannose-functionalized polydopamine loaded with imiquimod (M/P-PDA@IQ NAs) as a cross-linking agent to react with phenylboronic-grafted hyaluronic acid. Under near-infrared light irradiation, the M/P-PDA@IQ PHA caused local hyperthermia to trigger immunogenic cell death of tumor cells and tumor-associated antigens (TAAs) releasing. Subsequently, the M/P-PDA@IQ NAs which were gradually released by the pH/ROS/GSH-triggered degradation of M/P-PDA@IQ PHA, could capture and deliver these TAAs to lymph nodes. Finally, the M/P-PDA@IQ NAs facilitated maturation and cross-presentation of dendritic cells, as well as activation of cytotoxic T lymphocytes. Overall, the M/P-PDA@IQ PHA could serve as a novel in situ vaccine to stimulate several key nodes including TAAs release and capture, targeting lymph nodes and enhanced dendritic cells uptake and maturation as well as T cells activation. This cascading immune activation strategy can effectively elicit antitumor immune response.


Subject(s)
Cancer Vaccines , Hyaluronic Acid , Hydrogels , Indoles , Nanoparticles , Polymers , Hyaluronic Acid/chemistry , Polymers/chemistry , Cancer Vaccines/chemistry , Cancer Vaccines/immunology , Indoles/chemistry , Indoles/pharmacology , Animals , Mice , Hydrogels/chemistry , Nanoparticles/chemistry , Humans , Imiquimod/chemistry , Imiquimod/pharmacology , Dendritic Cells/immunology , Vaccination , Cell Line, Tumor , Immunotherapy/methods , Cross-Linking Reagents/chemistry , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/drug effects
7.
Int Immunopharmacol ; 134: 112183, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705031

ABSTRACT

Psoriasis is a chronic inflammatory skin disease substantially affecting the quality of life, with no complete cure owing to its complex pathogenesis. Cornuside, a major bioactive compound present in Cornus officinalis Sieb. et Zucc., which is a well-known traditional Chinese medicine with a variety of biological and pharmacological activities, such as anti-apoptotic, antioxidant, and anti-inflammatory properties. However, its effects on psoriasis remain unclear. Our preliminary analysis of network pharmacology showed that cornuside may be involved in psoriasis by regulating the inflammatory response and IL-17 signaling pathway. Thus, we investigated the protective role and mechanism of cornuside in the pathogenesis of psoriasis in an imiquimod (IMQ)-induced psoriasis mouse model. In-vivo experiments demonstrated that cornuside-treated mice had reduced skin erythema, scales, thickness, and inflammatory infiltration. The Psoriasis Area Severity Index score was significantly lower than that of the IMQ group. Flow cytometry analysis indicated that cornuside effectively inhibited Th1- and Th17-cell infiltration and promoted aggregation of Th2 cells in skin tissues. Cornuside also inhibited the infiltration of macrophages to the skin. Furthermore, in-vitro experiments indicated that cornuside also decreased the polarization of M1 macrophages and reduced the levels of associated cytokines. Western blotting demonstrated that cornuside suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular receptor kinase (ERK) in bone marrow-derived macrophages. Our findings indicate that cornuside has a protective effect against IMQ-induced psoriasis by inhibiting M1 macrophage polarization through the ERK and JNK signaling pathways and modulating the infiltration of immune cells as well as the expression of inflammatory factors.


Subject(s)
Anti-Inflammatory Agents , Imiquimod , Mice, Inbred BALB C , Psoriasis , Skin , Th17 Cells , Animals , Psoriasis/drug therapy , Psoriasis/chemically induced , Psoriasis/immunology , Skin/drug effects , Skin/pathology , Skin/immunology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Mice , Th17 Cells/immunology , Th17 Cells/drug effects , Disease Models, Animal , Macrophages/drug effects , Macrophages/immunology , Cornus/chemistry , Humans , Interleukin-17/metabolism , Cytokines/metabolism , Female , Signal Transduction/drug effects , Th1 Cells/immunology , Th1 Cells/drug effects , Male
8.
Mol Pharm ; 21(6): 2813-2827, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38752564

ABSTRACT

Psoriasis, affecting 2-3% of the global population, is a chronic inflammatory skin condition without a definitive cure. Current treatments focus on managing symptoms. Recognizing the need for innovative drug delivery methods to enhance patient adherence, this study explores a new approach using calcipotriol monohydrate (CPM), a primary topical treatment for psoriasis. Despite its effectiveness, CPM's therapeutic potential is often limited by factors like the greasiness of topical applications, poor skin permeability, low skin retention, and lack of controlled delivery. To overcome these challenges, the study introduces CPM in the form of nanosuspensions (NSs), characterized by an average particle size of 211 ± 2 nm. These CPM NSs are then incorporated into a trilayer dissolving microneedle patch (MAP) made from poly(vinylpyrrolidone) and w poly(vinyl alcohol) as needle arrays and prefrom 3D printed polylactic acid backing layer. This MAP features rapidly dissolving tips and exhibits good mechanical properties and insertion capability with delivery efficiency compared to the conventional Daivonex ointment. The effectiveness of this novel MAP was tested on Sprague-Dawley rats with imiquimod-induced psoriasis, demonstrating efficacy comparable to the marketed ointment. This innovative trilayer dissolving MAP represents a promising new local delivery system for calcipotriol, potentially revolutionizing psoriasis treatment by enhancing drug delivery and patient compliance.


Subject(s)
Administration, Cutaneous , Calcitriol , Drug Delivery Systems , Needles , Psoriasis , Rats, Sprague-Dawley , Psoriasis/drug therapy , Animals , Calcitriol/analogs & derivatives , Calcitriol/administration & dosage , Rats , Drug Delivery Systems/methods , Skin Absorption/drug effects , Skin/metabolism , Skin/drug effects , Skin/pathology , Particle Size , Male , Nanoparticles/chemistry , Imiquimod/administration & dosage , Suspensions , Dermatologic Agents/administration & dosage , Dermatologic Agents/pharmacokinetics , Transdermal Patch
9.
Arch Dermatol Res ; 316(5): 176, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758283

ABSTRACT

Psoriasis is a chronic immune mediated inflammatory skin disease with systemic manifestations. It has been reported that caloric restriction could improve severity of psoriasis patients. However, the mechanism of intermittent fasting effects on psoriasis has not been investigated. Caloric restriction is known to reduce the number of circulating inflammatory monocytes in a CCL2-dependent manner. However, it is still unknown whether caloric restriction can improve psoriasis by regulating monocytes through CCL2. In this study, we used imiquimod (IMQ)-induced psoriasis-like mouse model to explore the effects and the mechanisms of intermittent fasting on psoriasis-like dermatitis. We found that intermittent fasting could significantly improve IMQ-induced psoriasis-like dermatitis, and reduce the number of γδT17 cells and IL-17 production in draining lymph nodes and psoriatic lesion via inhibiting proliferation and increasing death of γδT17 cells. Furthermore, intermittent fasting could significantly decrease monocytes in blood, and this was associated with decreased monocytes, macrophages and DC in psoriasis-like skin inflammation. Reduced monocytes in circulation and increased monocytes in BM of fasting IMQ-induced psoriasis-like mice is through reducing the production of CCL2 from BM to inhibit monocyte egress to the periphery. Our above data shads light on the mechanisms of intermittent fasting on psoriasis.


Subject(s)
Chemokine CCL2 , Disease Models, Animal , Fasting , Imiquimod , Monocytes , Psoriasis , Animals , Psoriasis/immunology , Psoriasis/chemically induced , Psoriasis/pathology , Monocytes/immunology , Monocytes/metabolism , Mice , Fasting/blood , Chemokine CCL2/metabolism , Th17 Cells/immunology , Interleukin-17/metabolism , Skin/pathology , Skin/immunology , Humans , Mice, Inbred C57BL , Male , Cell Proliferation , Caloric Restriction , Intermittent Fasting
10.
Dev Comp Immunol ; 157: 105197, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763479

ABSTRACT

Toll-like receptors (TLRs) are pivotal pattern recognition receptors (PRRs) and key mediators of innate immunity. Despite the significance of channel catfish (Ictalurus punctatus) in comparative immunology and aquaculture, its 20 TLR genes remain largely functionally uncharacterized. In this study, our aim was to determine the catfish TLR7 agonists, signaling potential, and cellular localization. Using a mammalian reporter system, we identified imiquimod and resiquimod, typical ssRNA analogs, as potent catfish TLR7 agonists. Notably, unlike grass carp TLR7, catfish TLR7 lacks the ability to respond to poly (I:C). Confocal microscopy revealed predominant catfish TLR7 expression in lysosomes, co-localizing with the endosomal chaperone protein, UNC93B1. Furthermore, imiquimod stimulation elicited robust IFNb transcription in peripheral blood leukocytes isolated from adult catfish. These findings underscore the conservation of TLR7 signaling in catfish, reminiscent of mammalian TLR7 responses. Our study sheds light on the functional aspects of catfish TLR7 and contributes to a better understanding of its role in immune defense mechanisms.


Subject(s)
Fish Proteins , Ictaluridae , Imidazoles , Imiquimod , Immunity, Innate , Lysosomes , Toll-Like Receptor 7 , Animals , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics , Imidazoles/pharmacology , Ictaluridae/immunology , Lysosomes/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Signal Transduction , Humans , Aminoquinolines/pharmacology , Poly I-C/immunology
11.
J Transl Med ; 22(1): 341, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594751

ABSTRACT

BACKGROUND: Chemoimmunotherapy has shown promising advantages of eliciting immunogenic cell death and activating anti-tumor immune responses. However, the systemic toxicity of chemotherapy and tumor immunosuppressive microenvironment limit the clinical application. METHODS: Here, an injectable sodium alginate hydrogel (ALG) loaded with nanoparticle albumin-bound-paclitaxel (Nab-PTX) and an immunostimulating agent R837 was developed for local administration. Two murine hepatocellular carcinoma and breast cancer models were established. The tumor-bearing mice received the peritumoral injection of R837/Nab-PTX/ALG once a week for two weeks. The antitumor efficacy, the immune response, and the tumor microenvironment were investigated. RESULTS: This chemoimmunotherapy hydrogel with sustained-release character was proven to have significant effects on killing tumor cells and inhibiting tumor growth. Peritumoral injection of our hydrogel caused little harm to normal organs and triggered a potent antitumor immune response against both hepatocellular carcinoma and breast cancer. In the tumor microenvironment, enhanced immunogenic cell death induced by the combination of Nab-PTX and R837 resulted in 3.30-fold infiltration of effector memory T cells and upregulation of 20 biological processes related to immune responses. CONCLUSIONS: Our strategy provides a novel insight into the combination of chemotherapy and immunotherapy and has the potential for clinical translation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Mice , Animals , Hydrogels/pharmacology , Hydrogels/therapeutic use , Imiquimod/pharmacology , Imiquimod/therapeutic use , Immunogenic Cell Death , Cell Line, Tumor , Liver Neoplasms/drug therapy , Immunotherapy/methods , Immunity , Tumor Microenvironment
12.
Drug Dev Res ; 85(3): e22191, 2024 May.
Article in English | MEDLINE | ID: mdl-38685610

ABSTRACT

Psoriasis is a chronic inflammatory and proliferative skin disease that causes pathological skin changes and has a substantial impact on the quality of patient life. Apremilast was approved by the US Food and Drug Administration as an oral medication for psoriasis and is beneficial in mild to moderate conditions for chronic usage. However, 5%-7% of withdrawals were reported due to severe side effects. To address the issue, a localized drug delivery strategy via the topical route may be a viable approach. However, poor physicochemical properties make it vulnerable to passing through the skin, requiring a specialized drug delivery system to demonstrate its full potential via a topical route like lecithin organogel. The formulation was optimized by screening the suitable lecithin type and non-polar solvents based on the gel formation ability of lecithin and the solubility of apremilast in the solvent. The pseudo-ternary diagram was used to optimize the water content required to form the gel. The optimized gel was found to be shear thinning characterized for rheological parameters, in-vitro diffusion studies, and in-vitro skin distribution studies. Preclinical studies in Imiquimod-induced mice showed a better reduction in severity index, cytokine levels, and epidermal hyperplasia from the lecithin organogel group compared to the apremilast oral administration and marketed standard topical gel group. Based on these results, lecithin organogel can be considered a promising approach to deliver molecules like apremilast by topical route in psoriatic-like conditions.


Subject(s)
Drug Delivery Systems , Gels , Lecithins , Psoriasis , Thalidomide , Thalidomide/analogs & derivatives , Psoriasis/drug therapy , Lecithins/chemistry , Animals , Mice , Thalidomide/administration & dosage , Thalidomide/chemistry , Thalidomide/pharmacokinetics , Skin Absorption/drug effects , Skin/metabolism , Skin/drug effects , Administration, Cutaneous , Administration, Topical , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Drug Evaluation, Preclinical , Imiquimod/administration & dosage , Male
13.
Mol Nutr Food Res ; 68(8): e2300720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581348

ABSTRACT

SCOPE: The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS: The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION: HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.


Subject(s)
Amino Acids, Branched-Chain , Diet, High-Fat , Obesity , Psoriasis , Transaminases , Animals , Male , Mice , Amino Acids, Branched-Chain/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Imiquimod , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-17/genetics , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Obesity/complications , PPAR gamma/metabolism , PPAR gamma/genetics , Psoriasis/metabolism , Psoriasis/pathology , Signal Transduction , Skin/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Transaminases/metabolism
14.
Cell Signal ; 119: 111171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604345

ABSTRACT

BACKGROUND: Psoriasis is a chronic, inflammatory skin disease. MicroRNAs (miRNAs) are an abundant class of non-coding RNA molecules. Recent studies have shown that multiple miRNAs are abnormally expressed in patients with psoriasis. The upregulation of miR-374a-5p has been associated with psoriasis severity. However, the specific role of miR-374a-5p in the pathogenesis of psoriasis remain unclear. METHODS: qRT-PCR was employed to validate the expression of miR-374a-5p in psoriatic lesions and in a psoriasis-like cell model constructed using a mixture of M5 (IL-17A, IL-22, OSM, IL-1α, and TNF-α). HaCaT cells were transfected with miR-374a-5p mimic/inhibitor, and assays including EdU, CCK-8, and flow cytometry were conducted to evaluate the effect of miR-374a-5p on cell proliferation. The expression of inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α was verified by qRT-PCR. Bioinformatics analysis and dual-luciferase reporter gene assay were performed to detect the downstream target genes and upstream transcription factors of miR-374a-5p, followed by validation of their expression through qRT-PCR and Western blotting. A psoriasis-like mouse model was established using imiquimod cream topical application. The psoriasis area and severity index scoring, hematoxylin-eosin histology staining, and Ki67 immunohistochemistry were employed to validate the effect of miR-374a-5p on the psoriatic inflammation phenotype after intradermal injection of miR-374a-5p agomir/NC. Additionally, the expression of pathway-related molecules and inflammatory factors such as IL-1ß, IL-17a, and TNF-α was verified by immunohistochemistry. RESULTS: Upregulation of miR-374a-5p was observed in psoriatic lesions and the psoriasis-like cell model. In vitro experiments demonstrated that miR-374a-5p not only promoted the proliferation of HaCaT cells but also upregulated the expression of inflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α. Furthermore, miR-374a-5p promoted skin inflammation and epidermal thickening in the Imiquimod-induced psoriasis-like mouse model. Mechanistic studies revealed that miR-374a-5p led to downregulation of WIF1, thereby activating the Wnt5a/NF-κB signaling pathway. The transcription factor p65 encoded by RELA, as a subunit of NF-κB, further upregulated the expression of miR-374a-5p upon activation. This positive feedback loop promoted keratinocyte proliferation and abnormal inflammation, thereby facilitating the development of psoriasis. CONCLUSION: Our findings elucidate the role of miR-374a-5p upregulation in the pathogenesis of psoriasis through inhibition of WIF1 and activation of the Wnt5a/NF-κB pathway, providing new potential therapeutic targets for psoriasis.


Subject(s)
Adaptor Proteins, Signal Transducing , MicroRNAs , NF-kappa B , Psoriasis , Wnt-5a Protein , Psoriasis/genetics , Psoriasis/pathology , Psoriasis/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , NF-kappa B/metabolism , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Up-Regulation , Down-Regulation , Cell Proliferation , Male , HaCaT Cells , Female , Imiquimod , Adult , Repressor Proteins/metabolism , Repressor Proteins/genetics , Middle Aged
15.
Int Immunopharmacol ; 133: 112033, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608446

ABSTRACT

Psoriasis is an immuno-inflammatory disease characterized by excessive keratinocyte proliferation, requiring extensive lipids. 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) is an essential enzyme in the mevalonate pathway, involved in cholesterol synthesis and the inflammatory response. However, the role of HMGCS1 in psoriasis has remained elusive. This study aims to elucidate the mechanism by which HMGCS1 controls psoriasiform inflammation. We discovered an increased abundance of HMGCS1 in psoriatic lesions when analyzing two Gene Expression Omnibus (GEO) datasets and confirmed this in psoriatic animal models and psoriatic patients by immunohistochemistry. In a TNF-α stimulated psoriatic HaCaT cell line, HMGCS1 was found to be overexpressed. Knockdown of HMGCS1 using siRNA suppressed the migration and proliferation of HaCaT cells. Mechanistically, HMGCS1 downregulation also reduced the expression of IL-23 and the STAT3 phosphorylation level. In imiquimod-induced psoriatic mice, intradermal injection of HMGCS1 siRNA significantly decreased the expression of HMGCS1 in the epidermis, which in turn led to an improvement in the Psoriasis Area and Severity Index score, epidermal thickening, and pathological Baker score. Additionally, expression levels of inflammatory cytokines IL-23, IL1-ß, chemokine CXCL1, and innate immune mediator S100A7-9 were downregulated in the epidermis. In conclusion, HMGCS1 downregulation improved psoriasis in vitro and in vivo through the STAT3/IL-23 axis.


Subject(s)
Cell Proliferation , Hydroxymethylglutaryl-CoA Synthase , Imiquimod , Interleukin-23 , Keratinocytes , Psoriasis , STAT3 Transcription Factor , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/pathology , Animals , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Proliferation/drug effects , Mice , Interleukin-23/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Signal Transduction/drug effects , HaCaT Cells , Cell Line , Male , Disease Models, Animal , Female , Mice, Inbred BALB C
16.
Int Immunopharmacol ; 133: 112082, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652958

ABSTRACT

Psoriasis is an incurable immune-mediated disease affecting the skin or the joints. There are continuing studies on drugs for psoriasis prevention and treatment. This research found that Geniposide (GE) significantly thinned IMQ mice's skin lesions, reduced the scales, and lowered the presence of inflammatory cells in the pathology in a dose-dependent manner. GE inhibited IL-23, IL-22, IL-17A, IL-12, IL-6, and TNF-α levels in psoriatic mice serum. AKT1, TNF, TLR4, MMP9, MAPK3, and EGFR were selected as the top 6 targets of GE against psoriasis via network pharmacology, and GE-TLR4 has the most robust docking score value by molecular docking. Taken together, GE significantly inhibited TLR4 and MMP9 protein expression and influenced MyD88/NF-κB p65 signaling pathway. Finally, TLR4 was verified as the critical target of GE, which engaged in immunomodulatory activities and reduced MMP9 production in LPS and TAK-242-induced HaCaT cells. GE had a medium affinity for TLR4, and the KD value was 1.06 × 10-5 M. GE is an effective treatment and preventative strategy for psoriasis since it impacts TLR4.


Subject(s)
Iridoids , Matrix Metalloproteinase 9 , Myeloid Differentiation Factor 88 , Psoriasis , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Animals , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/drug effects , Matrix Metalloproteinase 9/metabolism , Humans , Psoriasis/drug therapy , Psoriasis/immunology , Iridoids/pharmacology , Iridoids/therapeutic use , Mice , Transcription Factor RelA/metabolism , Skin/drug effects , Skin/pathology , Skin/immunology , Skin/metabolism , Cytokines/metabolism , Male , Molecular Docking Simulation , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , HaCaT Cells , Imiquimod , Cell Line
17.
Int Immunopharmacol ; 132: 111923, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38565041

ABSTRACT

In this study, we aimed to evaluate the protective effect of geniposide (GEN) on imiquimod (IMQ)-induced psoriasis-like skin lesions in mice. Firstly, visual changes of psoriatic skin lesions were observed and the severity was recorded using psoriasis area and severity index (PASI) score. Histological changes were assessed by HE staining for epidermal thickness and Masson's staining for collagen fibers. Then, photographs of microvascular inside the skin were taken for macroscopic observation, and microscopic changes associated with angiogenesis were evaluated. Furthermore, expression of angiogenic factors were analyzed by ELISA, immunohistochemistry and immunofluorescence, separately. Lastly, the expression of VEGFR signaling-related proteins was detected by WB. Compared with control, IMQ drove a significant increment of epidermal thicknesses with higher PASI scores and more dermal collagen deposition. IMQ treatment led to abnormal keratinocyte proliferation, increased microvascular inside skin, growing production of angiogenesis-related factors, up-regulated expression of VEGFR1 and VEGFR2, and enhanced phosphorylation of p38. However, GEN significantly ameliorated the psoriatic skin lesions, the epidermal thickness, the formation of collagen fibers, and abnormal keratinocyte proliferation. Importantly, GEN inhibited angiogenesis, the production of angiogenic factors (VEGF-A, Ang-2, TNF-α, and IL-17A), and the proliferation of vascular endothelial cells. Simultaneously, GEN curbed the expression of VEGFR1, VEGFR2, p38, and P-p38 proteins involved in VEGFR signaling. Of note, the suppressive effect of GEN was reversed in the HUVECs with over-expressed VEGFR1 or VEGFR2 related to the cells without transfection. These findings suggest that VEGFR1 and VEGFR2 participate in the anti-angiogenesis of GEN in IMQ-induced psoriasis-like skin lesions in mice.


Subject(s)
Imiquimod , Iridoids , Neovascularization, Pathologic , Psoriasis , Skin , Animals , Male , Mice , Angiogenesis , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacology , Cell Proliferation/drug effects , Disease Models, Animal , Imiquimod/toxicity , Iridoids/pharmacology , Iridoids/therapeutic use , Keratinocytes/drug effects , Mice, Inbred BALB C , Neovascularization, Pathologic/drug therapy , Psoriasis/drug therapy , Psoriasis/chemically induced , Psoriasis/pathology , Skin/pathology , Skin/drug effects , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
18.
Mol Pain ; 20: 17448069241252384, 2024.
Article in English | MEDLINE | ID: mdl-38631843

ABSTRACT

PD-1/PD-L1 inhibitors have been demonstrated to induce itch in both humans and experimental animals. However, whether the PD-1/PD-L1 pathway is involved in the regulation of chronic psoriatic itch remains unclear. This study aimed to investigate the role of the PD-1/PD-L1 pathway in imiquimod-induced chronic psoriatic itch. The intradermal injection of PD-L1 in the nape of neck significantly alleviated chronic psoriatic itch in imiquimod-treated skin. Additionally, we observed that spontaneous scratching behavior induced by imiquimod disappeared on day 21. Still, intradermal injection of PD-1/PD-L1 inhibitors could induce more spontaneous scratching for over a month, indicating that imiquimod-treated skin remained in an itch sensitization state after the spontaneous scratching behavior disappeared. During this period, there was a significant increase in PD-1 receptor expression in both the imiquimod-treated skin and the spinal dorsal horn in mice, accompanied by significant activation of microglia in the spinal dorsal horn. These findings suggest the potential involvement of the peripheral and central PD-1/PD-L1 pathways in regulating chronic itch and itch sensitization induced by imiquimod.


Subject(s)
B7-H1 Antigen , Imiquimod , Programmed Cell Death 1 Receptor , Pruritus , Psoriasis , Animals , Imiquimod/pharmacology , Imiquimod/adverse effects , Pruritus/chemically induced , Pruritus/metabolism , Psoriasis/chemically induced , Psoriasis/complications , Psoriasis/metabolism , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/metabolism , Male , Mice , Signal Transduction/drug effects , Skin/metabolism , Skin/pathology , Mice, Inbred C57BL , Chronic Disease
19.
J Pharm Biomed Anal ; 245: 116163, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657365

ABSTRACT

Psoriasis is a refractory inflammatory skin disorder in which keratinocyte hyperproliferation is a crucial pathogenic factor. Up to now, it is commonly acknowledged that psoriasis has a tight connection with metabolic disorders. Withanolides from Datura metel L. (DML) have been proved to possess anti-inflammatory and anti-proliferative properties in multiple diseases including psoriasis. Withanolide B (WB) is one of the abundant molecular components in DML. However, existing experimental studies regarding the potential effects and mechanisms of WB on psoriasis still remain lacking. Present study aimed to integrate network pharmacology and untargeted metabolomics strategies to investigate the therapeutic effects and mechanisms of WB on metabolic disorders in psoriasis. In our study, we observed that WB might effectively improve the symptoms of psoriasis and alleviate the epidermal hyperplasia in imiquimod (IMQ)-induced psoriasis-like mice. Both network pharmacology and untargeted metabolomics results suggested that arachidonic acid metabolism and arginine and proline metabolism pathways were linked to the treatment of psoriasis with WB. Meanwhile, we also found that WB may affect the expression of regulated enzymes 5-lipoxygenase (5-LOX), 12-LOX, ornithine decarboxylase 1 (ODC1) and arginase 1 (ARG1) in the arachidonic acid metabolism and arginine and proline metabolism pathways. In summary, this paper showed the potential metabolic mechanisms of WB against psoriasis and suggested that WB would have greater potential in psoriasis treatment.


Subject(s)
Metabolomics , Network Pharmacology , Psoriasis , Withanolides , Psoriasis/drug therapy , Psoriasis/metabolism , Withanolides/pharmacology , Metabolomics/methods , Animals , Mice , Network Pharmacology/methods , Male , Disease Models, Animal , Datura metel/chemistry , Imiquimod , Anti-Inflammatory Agents/pharmacology , Mice, Inbred BALB C
20.
Clin Cancer Res ; 30(9): 1768-1777, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38592381

ABSTRACT

PURPOSE: We report the results of a randomized phase II trial of imiquimod, a topical immune-response modulator versus imiquimod plus a 9-valent human papillomavirus (HPV) vaccine (9vHPV) versus clinical surveillance in cervical intraepithelial neoplasia (CIN2/3) patients. PATIENTS AND METHODS: We randomly allocated 133 patients with untreated CIN2/3 in equal proportions to a 4-month treatment with self-applied vaginal suppositories containing imiquimod (Arm B) or imiquimod plus a 9vHPV (Arm C) versus clinical surveillance (Arm A). The main outcome was efficacy, defined as histologic regression to CIN1 or less. Secondary outcomes were HPV clearance and tolerability. Exploratory objectives included the comparison of cervical CD4/CD8 T-cell infiltration at baseline, mid-study, and posttreatment by flow cytometry among study arms. RESULTS: Of the 114 evaluable patients 77% and 23% harbored CIN2 and CIN3, respectively. Regression to CIN1 or less was observed in 95% of patients in the imiquimod group (Arm B) compared with 79% in the control/surveillance (Arm A); P = 0.043 and 84% in the imiquimod+9vHPV group (Arm C; P = 0.384 vs. Arm A). Neither of the treatment-arm differences from Arm A reached the prespecified α = 0.025 significance level. No significant differences were noted in the secondary outcome of rate of HPV clearance. The number of tissue-resident memory CD4/CD8 T cells in cytobrush samples demonstrated a >5-fold increase in Arm B/imiquimod when compared with Arm A/surveillance (P < 0.01). In contrast, there was no significant difference in T-cell responses among participants in Arm C when compared with Arm A. Imiquimod treatment was well tolerated. CONCLUSIONS: Although imiquimod induced a higher regression to CIN1 or less and significant increases in CD4/CD8 T cells infiltrating the cervix, it did not meet its prespecified statistical outcome for efficacy. A higher regression rate than expected was observed in the surveillance arm of this prospective trial. Future clinical trials with imiquimod targeting CIN3 patients are warranted.


Subject(s)
Imiquimod , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Humans , Imiquimod/administration & dosage , Female , Papillomavirus Vaccines/administration & dosage , Adult , Uterine Cervical Dysplasia/immunology , Uterine Cervical Dysplasia/drug therapy , Uterine Cervical Dysplasia/pathology , Uterine Cervical Dysplasia/virology , Papillomavirus Infections/immunology , Papillomavirus Infections/complications , Papillomavirus Infections/virology , Middle Aged , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , Aminoquinolines/administration & dosage , Aminoquinolines/adverse effects , Aminoquinolines/therapeutic use , Treatment Outcome , CD8-Positive T-Lymphocytes/immunology , Precancerous Conditions/drug therapy , Precancerous Conditions/pathology , Precancerous Conditions/immunology , Neoplasm Grading , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...