Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.121
Filter
1.
Nat Commun ; 15(1): 3860, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719824

ABSTRACT

Dual blocker therapy (DBT) has the enhanced antitumor benefits than the monotherapy. Yet, few effective biomarkers are developed to monitor the therapy response. Herein, we investigate the DBT longitudinal plasma proteome profiling including 113 longitudinal samples from 22 patients who received anti-PD1 and anti-CTLA4 DBT therapy. The results show the immune response and cholesterol metabolism are upregulated after the first DBT cycle. Notably, the cholesterol metabolism is activated in the disease non-progressive group (DNP) during the therapy. Correspondingly, the clinical indicator prealbumin (PA), free triiodothyronine (FT3) and triiodothyronine (T3) show significantly positive association with the cholesterol metabolism. Furthermore, by integrating proteome and radiology approach, we observe the high-density lipoprotein partial remodeling are activated in DNP group and identify a candidate biomarker APOC3 that can reflect DBT response. Above, we establish a machine learning model to predict the DBT response and the model performance is validated by an independent cohort with balanced accuracy is 0.96. Thus, the plasma proteome profiling strategy evaluates the alteration of cholesterol metabolism and identifies a panel of biomarkers in DBT.


Subject(s)
Cholesterol , Proteome , Humans , Cholesterol/blood , Cholesterol/metabolism , Proteome/metabolism , Female , Male , Middle Aged , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/blood , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/blood , Biomarkers/blood , Aged , Triiodothyronine/blood , Machine Learning , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/blood , Neoplasms/metabolism , Proteomics/methods
2.
Nat Commun ; 15(1): 3884, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719909

ABSTRACT

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Subject(s)
B7-1 Antigen , B7-H1 Antigen , Extracellular Vesicles , Programmed Cell Death 1 Receptor , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Mice , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Tolerance , Mice, Inbred C57BL , Male , Tumor Microenvironment/immunology
3.
Investig Clin Urol ; 65(3): 300-310, 2024 May.
Article in English | MEDLINE | ID: mdl-38714521

ABSTRACT

PURPOSE: We developed immune checkpoint molecules to target recombinant dendritic cells (DCs) and verified their anti-tumor efficacy and immune response against prostate cancer. MATERIALS AND METHODS: DCs were generated from mononuclear cells in the tibia and femur bone marrow of mice. We knocked down the programmed death ligand 1 (PD-L1) on monocyte-derived DCs through siRNA PD-L1. Cell surface antigens were immune fluorescently stained through flow cytometry to analyze cultured cell phenotypes. Furthermore, we evaluated the efficacy of monocyte-derived DCs and recombinant DCs in a prostate cancer mouse model with subcutaneous TRAMP-C1 cells. Lastly, DC-induced mixed lymphocyte and lymphocyte-only proliferations were compared to determine cultured DCs' function. RESULTS: Compared to the control group, siRNA PD-L1 therapeutic DC-treated mice exhibited significantly inhibited tumor volume and increased tumor cell apoptosis. Remarkably, this treatment substantially augmented interferon-gamma and interleukin-2 production by stimulating T-cells in an allogeneic mixed lymphocyte reaction. Moreover, we demonstrated that PD-L1 gene silencing improved cell proliferation and cytokine production. CONCLUSIONS: We developed monocyte-derived DCs transfected with PD-L1 siRNA from mouse bone marrow. Our study highlights that PD-L1 inhibition in DCs increases antigen-specific immune responses, corroborating previous immunotherapy methodology findings regarding castration-resistant prostate cancer.


Subject(s)
B7-H1 Antigen , Dendritic Cells , Prostatic Neoplasms , Dendritic Cells/immunology , Animals , Male , Mice , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/genetics , Mice, Inbred C57BL , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods
4.
HLA ; 103(5): e15472, 2024 May.
Article in English | MEDLINE | ID: mdl-38699870

ABSTRACT

Immunotherapy using immune checkpoint inhibitors (ICIs) has shown superior efficacy compared with conventional chemotherapy in certain cancer types, establishing immunotherapy as the fourth standard treatment alongside surgical intervention, chemotherapy, and radiotherapy. In cancer immunotherapy employing ICIs, CD8-positive cytotoxic T lymphocytes are recognized as the primary effector cells. For effective clinical outcomes, it is essential that the targeted cancer cells express HLA class I molecules to present antigenic peptides derived from the tumor. However, cancer cells utilize various mechanisms to downregulate or lose HLA class I molecules from their surface, resulting in evasion from immune surveillance. Correlations between prognosis and the integrity of HLA class I molecules expressed by cancer cells have been consistently found across different types of cancer. This paper provides an overview of the regulatory mechanisms of HLA class I molecules and their role in cancer immunotherapy, with a particular emphasis on the significance of utilizing pathological tissues to evaluate HLA class I molecules expressed in cancer cells.


Subject(s)
Histocompatibility Antigens Class I , Immunotherapy , Neoplasms , Humans , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
5.
Sci Rep ; 14(1): 10396, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710724

ABSTRACT

Regulatory T cells (Tregs) is a subtype of CD4+ T cells that produce an inhibitory action against effector cells. In the present work we interrogated genomic datasets to explore the transcriptomic profile of breast tumors with high expression of Tregs. Only 0.5% of the total transcriptome correlated with the presence of Tregs and only four transcripts, BIRC6, MAP3K2, USP4 and SMG1, were commonly shared among the different breast cancer subtypes. The combination of these genes predicted favorable outcome, and better prognosis in patients treated with checkpoint inhibitors. Twelve up-regulated genes coded for proteins expressed at the cell membrane that included functions related to neutrophil activation and regulation of macrophages. A positive association between MSR1 and CD80 with macrophages in basal-like tumors and between OLR1, ABCA1, ITGAV, CLEC5A and CD80 and macrophages in HER2 positive tumors was observed. Expression of some of the identified genes correlated with favorable outcome and response to checkpoint inhibitors: MSR1, CD80, OLR1, ABCA1, TMEM245, and ATP13A3 predicted outcome to anti PD(L)1 therapies, and MSR1, CD80, OLR1, ANO6, ABCA1, TMEM245, and ATP13A3 to anti CTLA4 therapies, including a subgroup of melanoma treated patients. In this article we provide evidence of genes strongly associated with the presence of Tregs that modulates the response to check point inhibitors.


Subject(s)
Breast Neoplasms , T-Lymphocytes, Regulatory , Transcriptome , Humans , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/drug effects , Female , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Profiling , Prognosis
6.
Front Immunol ; 15: 1382576, 2024.
Article in English | MEDLINE | ID: mdl-38779661

ABSTRACT

Monoclonal antibodies targeting immune checkpoints have revolutionized oncology. Yet, the effectiveness of these treatments varies significantly among patients, and they are associated with unexpected adverse events, including hyperprogression. The murine research model used in drug development fails to recapitulate both the functional human immune system and the population heterogeneity. Hence, a novel model is urgently needed to study the consequences of immune checkpoint blockade. Dogs appear to be uniquely suited for this role. Approximately 1 in 4 companion dogs dies from cancer, yet no antibodies are commercially available for use in veterinary oncology. Here we characterize two novel antibodies that bind canine PD-1 with sub-nanomolar affinity as measured by SPR. Both antibodies block the clinically crucial PD-1/PD-L1 interaction in a competitive ELISA assay. Additionally, the antibodies were tested with a broad range of assays including Western Blot, ELISA, flow cytometry, immunofluorescence and immunohistochemistry. The antibodies appear to bind two distinct epitopes as predicted by molecular modeling and peptide phage display. Our study provides new tools for canine oncology research and a potential veterinary therapeutic.


Subject(s)
Antibodies, Monoclonal , Programmed Cell Death 1 Receptor , Dogs , Animals , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Antibodies, Monoclonal/immunology , Humans , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/pharmacology , B7-H1 Antigen/immunology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Epitopes/immunology , Dog Diseases/immunology , Dog Diseases/drug therapy , Protein Binding , Neoplasms/immunology , Neoplasms/veterinary , Neoplasms/drug therapy
7.
Front Immunol ; 15: 1365894, 2024.
Article in English | MEDLINE | ID: mdl-38779680

ABSTRACT

Background: Increased levels of plasminogen activator inhibitor-1 (PAI-1) in tumors have been found to correlate with poor clinical outcomes in patients with cancer. Although abundant data support the involvement of PAI-1 in cancer progression, whether PAI-1 contributes to tumor immune surveillance remains unclear. The purposes of this study are to determine whether PAI-1 regulates the expression of immune checkpoint molecules to suppresses the immune response to cancer and demonstrate the potential of PAI-1 inhibition for cancer therapy. Methods: The effects of PAI-1 on the expression of the immune checkpoint molecule programmed cell death ligand 1 (PD-L1) were investigated in several human and murine tumor cell lines. In addition, we generated tumor-bearing mice and evaluated the effects of a PAI-1 inhibitor on tumor progression or on the tumor infiltration of cells involved in tumor immunity either alone or in combination with immune checkpoint inhibitors. Results: PAI-1 induces PD-L1 expression through the JAK/STAT signaling pathway in several types of tumor cells and surrounding cells. Blockade of PAI-1 impedes PD-L1 induction in tumor cells, significantly reducing the abundance of immunosuppressive cells at the tumor site and increasing cytotoxic T-cell infiltration, ultimately leading to tumor regression. The anti-tumor effect elicited by the PAI-1 inhibitor is abolished in immunodeficient mice, suggesting that PAI-1 blockade induces tumor regression by stimulating the immune system. Moreover, combining a PAI-1 inhibitor with an immune checkpoint inhibitor significantly increases tumor regression. Conclusions: PAI-1 protects tumors from immune surveillance by increasing PD-L1 expression; hence, therapeutic PAI-1 blockade may prove valuable in treating malignant tumors.


Subject(s)
B7-H1 Antigen , Plasminogen Activator Inhibitor 1 , Tumor Escape , Animals , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Mice , Cell Line, Tumor , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Neoplasms/immunology , Neoplasms/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Signal Transduction , Female , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/immunology , Immune Evasion , Mice, Inbred C57BL
8.
Biomolecules ; 14(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786004

ABSTRACT

Current anti-cancer immune checkpoint therapy relies on antibodies that primarily target the PD-1/PD-L1(-L2) negative regulatory pathway. Although very successful in some cases for certain cancers, these antibodies do not help most patients who, presumably, should benefit from this type of therapy. Therefore, an unmet clinical need for novel, more effective drugs targeting immune checkpoints remains. We have developed a series of high-potency peptide inhibitors interfering with PD-1/PD-L1(-L2) protein-protein interaction. Our best peptide inhibitors are 12 and 14 amino acids long and show sub-micromolar IC50 inhibitory activity in the in vitro assay. The positioning of the peptides within the PD-1 binding site is explored by extensive modeling. It is further supported by 2D NMR studies of PD-1/peptide complexes. These results reflect substantial progress in the development of immune checkpoint inhibitors using peptidomimetics.


Subject(s)
Immune Checkpoint Inhibitors , Peptides , Programmed Cell Death 1 Ligand 2 Protein , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/therapeutic use , Humans , Peptides/chemistry , Peptides/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Ligand 2 Protein/antagonists & inhibitors , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Protein Binding , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Binding Sites , Neoplasms/drug therapy , Neoplasms/immunology
9.
J Biochem Mol Toxicol ; 38(6): e23719, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764138

ABSTRACT

Cancer stem cells (CSCs) are associated with the tumor microenvironment (TME). CSCs induce tumorigenesis, tumor recurrence and progression, and resistance to standard therapies. Indeed, CSCs pose an increasing challenge to current cancer therapy due to their stemness or self-renewal properties. The molecular and cellular interactions between heterogeneous CSCs and surrounding TME components and tumor-supporting immune cells show synergistic effects toward treatment failure. In the immunosuppressive TME, CSCs express various immunoregulatory proteins, growth factors, metabolites and cytokines, and also produce exosomes, a type of extracellular vesicles, to protect themselves from host immune surveillance. Among these, the identification and application of CSC-derived exosomes could be considered for the development of therapeutic approaches to eliminate CSCs or cancer, in addition to targeting the modulators that remodel the composition of the TME, as reviewed in this study. Here, we introduce the role of CSCs and how their interaction with TME complicates immunotherapies, and then present the CSC-based immunotherapy and the limitation of these therapies. We describe the biology and role of tumor/CSC-derived exosomes that induce immune suppression in the TME, and finally, introduce their potentials for the development of CSC-based targeted immunotherapy in the future.


Subject(s)
Dendritic Cells , Exosomes , Immune Checkpoint Inhibitors , Immunotherapy , Neoplastic Stem Cells , Tumor Microenvironment , Humans , Exosomes/immunology , Exosomes/metabolism , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Immunotherapy/methods , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Receptors, Chimeric Antigen/immunology , Neoplasms/immunology , Neoplasms/therapy , Cancer Vaccines/immunology , Animals
10.
Int J Med Sci ; 21(6): 1176-1186, 2024.
Article in English | MEDLINE | ID: mdl-38774752

ABSTRACT

Background: To uncover the potential significance of JAK-STAT-SOCS1 axis in penile cancer, our study was the pioneer in exploring the altered expression processes of JAK-STAT-SOCS1 axis in tumorigenesis, malignant progression and lymphatic metastasis of penile cancer. Methods: In current study, the comprehensive analysis of JAK-STAT-SOCS1 axis in penile cancer was analyzed via multiple analysis approaches based on GSE196978 data, single-cell data (6 cancer samples) and bulk RNA data (7 cancer samples and 7 metastasis lymph nodes). Results: Our study observed an altered molecular expression of JAK-STAT-SOCS1 axis during three different stages of penile cancer, from tumorigenesis to malignant progression to lymphatic metastasis. STAT4 was an important dominant molecule in penile cancer, which mediated the immunosuppressive tumor microenvironment by driving the apoptosis of cytotoxic T cell and was also a valuable biomarker of immune checkpoint inhibitor treatment response. Conclusions: Our findings revealed that the complexity of JAK-STAT-SOCS1 axis and the predominant role of STAT4 in penile cancer, which can mediate tumorigenesis, malignant progression, and lymphatic metastasis. This insight provided valuable information for developing precise treatment strategies for patients with penile cancer.


Subject(s)
Disease Progression , Janus Kinases , Lymphatic Metastasis , Penile Neoplasms , STAT4 Transcription Factor , Suppressor of Cytokine Signaling 1 Protein , Humans , Male , Penile Neoplasms/pathology , Penile Neoplasms/genetics , Penile Neoplasms/metabolism , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Lymphatic Metastasis/pathology , Lymphatic Metastasis/genetics , Janus Kinases/metabolism , STAT4 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic , Carcinogenesis/genetics , Carcinogenesis/pathology , Signal Transduction , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
11.
Clin Nutr ESPEN ; 61: 308-315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777449

ABSTRACT

BACKGROUND: Esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), remains a significant global health challenge with limited survival rates. This study aimed to elucidate the combined effects of immune-modulating nutrition (IMN) with Ω-3 polyunsaturated fatty acid (PUFA) supplementation and anti-programmed cell death protein 1 (PD-1) treatment on tumor growth and immune responses in a xenograft model of ESCC. METHODS: A total of 36 C57BL/6 mice were used to construct a xenograft model using the mouse esophageal cancer cell line AKR. Mice were subjected to treatment with anti- PD-1 antibody combined with either Ω-3 PUFA-rich or Ω-3 PUFA-deficient nutrition. Tumor growth, immune markers, cytokine profiles, and metabolic changes were evaluated. RESULTS: The combination of anti-PD-1 and Ω-3 PUFA supplementation significantly inhibited tumor growth more effectively than anti-PD-1 treatment alone. Enhanced expression of immune markers PD-L1 and CD3 was observed in Ω-3 PUFA-fed mice. Additionally, compared with anti-PD-1 therapy and anti-PD-1 plus Ω-3 PUFA-deficient nutrition, Ω-3 PUFAs intensified alterations in key chemokines and cytokines, including elevated IL-12, IFN-γ, and GM-CSF levels, and reduced CXCL12 levels. However, Ω-3 PUFAs did not significantly alter the glycolysis and tryptophan metabolic program induced by anti-PD-1. CONCLUSION: Our findings indicated the potential synergetic therapeutic benefits of combining anti-PD-1 treatment with Ω-3 PUFA supplementation in ESCC, which offered promising avenue for further research.


Subject(s)
Dietary Supplements , Esophageal Neoplasms , Fatty Acids, Omega-3 , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Animals , Fatty Acids, Omega-3/pharmacology , Esophageal Neoplasms/drug therapy , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Cytokines/metabolism , Humans , Disease Models, Animal , Immune Checkpoint Inhibitors/pharmacology
12.
Sci Rep ; 14(1): 11569, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773258

ABSTRACT

Combining radiation therapy with immunotherapy is a strategy to improve both treatments. The purpose of this study was to compare responses for two syngeneic head and neck cancer (HNC) tumor models in mice following X-ray or proton irradiation with or without immune checkpoint inhibition (ICI). MOC1 (immunogenic) and MOC2 (less immunogenic) tumors were inoculated in the right hind leg of each mouse (C57BL/6J, n = 398). Mice were injected with anti-PDL1 (10 mg/kg, twice weekly for 2 weeks), and tumors were treated with single-dose irradiation (5-30 Gy) with X-rays or protons. MOC2 tumors grew faster and were more radioresistant than MOC1 tumors, and all mice with MOC2 tumors developed metastases. Irradiation reduced the tumor volume in a dose-dependent manner. ICI alone reduced the tumor volume for MOC1 with 20% compared to controls, while no reduction was seen for MOC2. For MOC1, there was a clear treatment synergy when combining irradiation with ICI for radiation doses above 5 Gy and there was a tendency for X-rays being slightly more biologically effective compared to protons. For MOC2, there was a tendency of protons being more effective than X-rays, but both radiation types showed a small synergy when combined with ICI. Although the responses and magnitudes of the therapeutic effect varied, the optimal radiation dose for maximal synergy appeared to be in the order of 10-15 Gy, regardless of tumor model.


Subject(s)
Immunotherapy , Proton Therapy , Animals , Mice , Proton Therapy/methods , Immunotherapy/methods , Mouth Neoplasms/radiotherapy , Mouth Neoplasms/therapy , Mouth Neoplasms/immunology , Mouth Neoplasms/pathology , Mice, Inbred C57BL , Cell Line, Tumor , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , X-Rays , Combined Modality Therapy/methods , X-Ray Therapy , Female , Disease Models, Animal
13.
Cell ; 187(11): 2690-2702.e17, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38723627

ABSTRACT

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Mice, Inbred C57BL , Tumor Microenvironment , Animals , CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Humans , Tumor Microenvironment/immunology , Mice , Immunotherapy/methods , Circadian Rhythm , Melanoma/immunology , Melanoma/therapy , Melanoma/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Female , Cell Line, Tumor , Circadian Clocks , Male , Endothelial Cells/immunology
14.
J Med Chem ; 67(10): 7995-8019, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38739112

ABSTRACT

Based on the close relationship between programmed death protein ligand 1 (PD-L1) and epidermal growth factor receptor (EGFR) in glioblastoma (GBM), we designed and synthesized a series of small molecules as potential dual inhibitors of EGFR and PD-L1. Among them, compound EP26 exhibited the highest inhibitory activity against EGFR (IC50 = 37.5 nM) and PD-1/PD-L1 interaction (IC50 = 1.77 µM). In addition, EP26 displayed superior in vitro antiproliferative activities and in vitro immunomodulatory effects by promoting U87MG cell death in a U87MG/Jurkat cell coculture model. Furthermore, EP26 possessed favorable pharmacokinetic properties (F = 22%) and inhibited tumor growth (TGI = 92.0%) in a GBM mouse model more effectively than Gefitinib (77.2%) and NP19 (82.8%). Moreover, EP26 increased CD4+ cells and CD8+ cells in tumor microenvironment. Collectively, these results suggest that EP26 represents the first small-molecule-based PD-L1/EGFR dual inhibitor deserving further investigation as an immunomodulating agent for cancer treatment.


Subject(s)
Antineoplastic Agents , B7-H1 Antigen , ErbB Receptors , Glioblastoma , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/chemical synthesis , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacokinetics , Immunotherapy/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
15.
Clin Transl Med ; 14(5): e1655, 2024 May.
Article in English | MEDLINE | ID: mdl-38711203

ABSTRACT

BACKGROUND: Uterine leiomyosarcomas (uLMS) are aggressive tumours with poor prognosis and limited treatment options. Although immune checkpoint blockade (ICB) has proven effective in some 'challenging-to-treat' cancers, clinical trials showed that uLMS do not respond to ICB. Emerging evidence suggests that aberrant PI3K/mTOR signalling can drive resistance to ICB. We therefore explored the relevance of the PI3K/mTOR pathway for ICB treatment in uLMS and explored pharmacological inhibition of this pathway to sensitise these tumours to ICB. METHODS: We performed an integrated multiomics analysis based on TCGA data to explore the correlation between PI3K/mTOR dysregulation and immune infiltration in 101 LMS. We assessed response to PI3K/mTOR inhibitors in immunodeficient and humanized uLMS patient-derived xenografts (PDXs) by evaluating tumour microenvironment modulation using multiplex immunofluorescence. We explored response to single-agent and a combination of PI3K/mTOR inhibitors with PD-1 blockade in humanized uLMS PDXs. We mapped intratumoural dynamics using single-cell RNA/TCR sequencing of serially collected biopsies. RESULTS: PI3K/mTOR over-activation (pS6high) associated with lymphocyte depletion and wound healing immune landscapes in (u)LMS, suggesting it contributes to immune evasion. In contrast, PI3K/mTOR inhibition induced profound tumour microenvironment remodelling in an ICB-resistant humanized uLMS PDX model, fostering adaptive anti-tumour immune responses. Indeed, PI3K/mTOR inhibition induced macrophage repolarisation towards an anti-tumourigenic phenotype and increased antigen presentation on dendritic and tumour cells, but also promoted infiltration of PD-1+ T cells displaying an exhausted phenotype. When combined with anti-PD-1, PI3K/mTOR inhibition led to partial or complete tumour responses, whereas no response to single-agent anti-PD-1 was observed. Combination therapy reinvigorated exhausted T cells and induced clonal hyper-expansion of a cytotoxic CD8+ T-cell population supported by a CD4+ Th1 niche. CONCLUSIONS: Our findings indicate that aberrant PI3K/mTOR pathway activation contributes to immune escape in uLMS and provides a rationale for combining PI3K/mTOR inhibition with ICB for the treatment of this patient population.


Subject(s)
Leiomyosarcoma , Tumor Microenvironment , Uterine Neoplasms , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Leiomyosarcoma/drug therapy , Humans , Female , Uterine Neoplasms/drug therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Animals , Mice , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use
16.
World J Gastroenterol ; 30(16): 2195-2208, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38690024

ABSTRACT

As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.


Subject(s)
Esophageal Neoplasms , Immunotherapy , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/therapy , Immunotherapy/methods , Signal Transduction/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Cytokines/metabolism , Cytokines/immunology , Tumor Escape , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
17.
Sci Rep ; 14(1): 10873, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740918

ABSTRACT

In addition to presenting significant diagnostic and treatment challenges, lung adenocarcinoma (LUAD) is the most common form of lung cancer. Using scRNA-Seq and bulk RNA-Seq data, we identify three genes referred to as HMR, FAM83A, and KRT6A these genes are related to necroptotic anoikis-related gene expression. Initial validation, conducted on the GSE50081 dataset, demonstrated the model's ability to categorize LUAD patients into high-risk and low-risk groups with significant survival differences. This model was further applied to predict responses to PD-1/PD-L1 blockade therapies, utilizing the IMvigor210 and GSE78220 cohorts, and showed strong correlation with patient outcomes, highlighting its potential in personalized immunotherapy. Further, LUAD cell lines were analyzed using quantitative PCR (qPCR) and Western blot analysis to confirm their expression levels, further corroborating the model's relevance in LUAD pathophysiology. The mutation landscape of these genes was also explored, revealing their broad implication in various cancer types through a pan-cancer analysis. The study also delved into molecular subclustering, revealing distinct expression profiles and associations with different survival outcomes, emphasizing the model's utility in precision oncology. Moreover, the diversity of immune cell infiltration, analyzed in relation to the necroptotic anoikis signature, suggested significant implications for immune evasion mechanisms in LUAD. While the findings present a promising stride towards personalized LUAD treatment, especially in immunotherapy, limitations such as the retrospective nature of the datasets and the need for larger sample sizes are acknowledged. Prospective clinical trials and further experimental research are essential to validate these findings and enhance the clinical applicability of our prognostic model.


Subject(s)
Adenocarcinoma of Lung , Anoikis , B7-H1 Antigen , Immunotherapy , Lung Neoplasms , Programmed Cell Death 1 Receptor , RNA-Seq , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/mortality , Anoikis/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Prognosis , Immunotherapy/methods , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Single-Cell Analysis , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Biomarkers, Tumor/genetics
18.
Sci Immunol ; 9(95): eadi5374, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758808

ABSTRACT

The gut microbiota and tumor-associated macrophages (TAMs) affect tumor responses to anti-programmed cell death protein 1 (PD-1) immune checkpoint blockade. Reprogramming TAM by either blocking or deleting the macrophage receptor triggering receptor on myeloid cells 2 (TREM2) attenuates tumor growth, and lack of functional TREM2 enhances tumor elimination by anti-PD-1. Here, we found that anti-PD-1 treatment combined with TREM2 deficiency in mice induces proinflammatory programs in intestinal macrophages and a concomitant expansion of Ruminococcus gnavus in the gut microbiota. Gavage of wild-type mice with R. gnavus enhanced anti-PD-1-mediated tumor elimination, recapitulating the effect occurring in the absence of TREM2. A proinflammatory intestinal environment coincided with expansion, increased circulation, and migration of TNF-producing CD4+ T cells to the tumor bed. Thus, TREM2 remotely controls anti-PD-1 immune checkpoint blockade through modulation of the intestinal immune environment and microbiota, with R. gnavus emerging as a potential probiotic agent for increasing responsiveness to anti-PD-1.


Subject(s)
Gastrointestinal Microbiome , Immunotherapy , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Receptors, Immunologic/immunology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Mice , Gastrointestinal Microbiome/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Macrophages/immunology , Immune Checkpoint Inhibitors/pharmacology , Mice, Knockout , Female , Intestines/immunology
19.
Proc Natl Acad Sci U S A ; 121(20): e2312855121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713626

ABSTRACT

The immune landscape of bladder cancer progression is not fully understood, and effective therapies are lacking in advanced bladder cancer. Here, we visualized that bladder cancer cells recruited neutrophils by secreting interleukin-8 (IL-8); in turn, neutrophils played dual functions in bladder cancer, including hepatocyte growth factor (HGF) release and CCL3highPD-L1high super-immunosuppressive subset formation. Mechanistically, c-Fos was identified as the mediator of HGF up-regulating IL-8 transcription in bladder cancer cells, which was central to the positive feedback of neutrophil recruitment. Clinically, compared with serum IL-8, urine IL-8 was a better biomarker for bladder cancer prognosis and clinical benefit of immune checkpoint blockade (ICB). Additionally, targeting neutrophils or hepatocyte growth factor receptor (MET) signaling combined with ICB inhibited bladder cancer progression and boosted the antitumor effect of CD8+ T cells in mice. These findings reveal the mechanism by which tumor-neutrophil cross talk orchestrates the bladder cancer microenvironment and provide combination strategies, which may have broad impacts on patients suffering from malignancies enriched with neutrophils.


Subject(s)
Disease Progression , Interleukin-8 , Neutrophils , Tumor Microenvironment , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/immunology , Tumor Microenvironment/immunology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Animals , Mice , Interleukin-8/metabolism , Cell Line, Tumor , Hepatocyte Growth Factor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Female , Male , Neutrophil Infiltration
20.
Cancer Immunol Immunother ; 73(7): 131, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748299

ABSTRACT

PURPOSE: The variable responses to immunotherapy observed in gastric cancer (GC) patients can be attributed to the intricate nature of the tumor microenvironment. Glutathione (GSH) metabolism significantly influences the initiation and progression of gastric cancer. Consequently, targeting GSH metabolism holds promise for improving the effectiveness of Immune checkpoints inhibitors (ICIs). METHODS: We investigated 16 genes related to GSH metabolism, sourced from the MSigDB database, using pan-cancer datasets from TCGA. The most representative prognosis-related gene was identified for further analysis. ScRNA-sequencing analysis was used to explore the tumor heterogeneity of GC, and the results were confirmed by  Multiplex immunohistochemistry (mIHC). RESULTS: Through DEGs, LASSO, univariate and multivariate Cox regression analyses, and survival analysis, we identified GGT5 as the hub gene in GSH metabolism with the potential to promote GC. Combining CIBERSORT, ssGSEA, and scRNA analysis, we constructed the immune architecture of GC. The subpopulations of T cells were isolated, revealing a strong association between GGT5 and memory CD8+ T cells. Furthermore, specimens from 10 GC patients receiving immunotherapy were collected. mIHC was used to assess the expression levels of GGT5 and memory CD8+ T cell markers. Our results established a positive correlation between GGT5 expression, the enrichment of memory CD8+ T cells, and a suboptimal response to immunotherapy. CONCLUSIONS: Our study identifies GGT5, a hub gene in GSH metabolism, as a potential therapeutic target for inhibiting the response to immunotherapy in GC patients. These findings offer new insights into strategies for optimizing immunotherapy of GC.


Subject(s)
CD8-Positive T-Lymphocytes , Glutathione , Immunotherapy , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Glutathione/metabolism , Immunotherapy/methods , Tumor Microenvironment/immunology , Prognosis , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Female , Biomarkers, Tumor/metabolism , Male , gamma-Glutamyltransferase/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...