Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.143
Filter
1.
Front Immunol ; 15: 1401728, 2024.
Article in English | MEDLINE | ID: mdl-38827749

ABSTRACT

Background: Immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now widespread; however, the degree of cross-immunity between SARS-CoV-2 and endemic, seasonal human coronaviruses (HCoVs) remains unclear. Methods: SARS-CoV-2 and HCoV cross-immunity was evaluated in adult participants enrolled in a US sub-study in the phase III, randomized controlled trial (NCT04516746) of AZD1222 (ChAdOx1 nCoV-19) primary-series vaccination for one-year. Anti-HCoV spike-binding antibodies against HCoV-229E, HCoV-HKU1, HCoV-OC43, and HCoV-NL63 were evaluated in participants following study dosing and, in the AZD1222 group, after a non-study third-dose booster. Timing of SARS-CoV-2 seroconversion (assessed via anti-nucleocapsid antibody levels) and incidence of COVID-19 were evaluated in those who received AZD1222 primary-series by baseline anti-HCoV titers. Results: We evaluated 2,020/21,634 participants in the AZD1222 group and 1,007/10,816 in the placebo group. At the one-year data cutoff (March 11, 2022) mean duration of follow up was 230.9 (SD: 106.36, range: 1-325) and 94.3 (74.12, 1-321) days for participants in the AZD1222 (n = 1,940) and placebo (n = 962) groups, respectively. We observed little elevation in anti-HCoV humoral titers post study-dosing or post-boosting, nor evidence of waning over time. The occurrence and timing of SARS-CoV-2 seroconversion and incidence of COVID-19 were not largely impacted by baseline anti-HCoV titers. Conclusion: We found limited evidence for cross-immunity between SARS-CoV-2 and HCoVs following AZD1222 primary series and booster vaccination. Susceptibility to future emergence of novel coronaviruses will likely persist despite a high prevalence of SARS-CoV-2 immunity in global populations.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , ChAdOx1 nCoV-19 , Immunity, Humoral , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , ChAdOx1 nCoV-19/immunology , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Male , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Middle Aged , Immunity, Humoral/drug effects , Cross Reactions/immunology , Seasons , Young Adult , Vaccination , Double-Blind Method
2.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791279

ABSTRACT

Immunosuppressive treatment in patients with rheumatic diseases can maintain disease remission but also increase risk of infection. Their response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is frequently blunted. In this study we evaluated the effect of immunosuppression exposure on humoral and T cell immune responses to SARS-CoV-2 infection and vaccination in two distinct cohorts of patients; one during acute SARS-CoV-2 infection and 3 months later during convalescence, and another prior to SARS-CoV-2 vaccination, with follow up sampling 6 weeks after vaccination. Results were compared between rituximab-exposed (in previous 6 months), immunosuppression-exposed (in previous 3 months), and non-immunosuppressed groups. The immune cell phenotype was defined by flow cytometry and ELISA. Antigen specific T cell responses were estimated using a whole blood stimulation interferon-γ release assay. A focused post-vaccine assessment of rituximab-treated patients using high dimensional spectral cytometry was conducted. Acute SARS-CoV-2 infection was characterised by T cell lymphopenia, and a reduction in NK cells and naïve CD4 and CD8 cells, without any significant differences between immunosuppressed and non-immunosuppressed patient groups. Conversely, activated CD4 and CD8 cell counts increased in non-immunosuppressed patients with acute SARS-CoV-2 infection but this response was blunted in the presence of immunosuppression. In rituximab-treated patients, antigen-specific T cell responses were preserved in SARS-CoV-2 vaccination, but patients were unable to mount an appropriate humoral response.


Subject(s)
COVID-19 Vaccines , COVID-19 , Rituximab , SARS-CoV-2 , Vaccination , Humans , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2/immunology , Male , Female , Middle Aged , COVID-19 Vaccines/immunology , Rituximab/therapeutic use , Rituximab/pharmacology , Aged , Adult , Immunosuppression Therapy , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Antibodies, Viral/immunology , Immunity, Humoral/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Immunity, Cellular/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology
3.
Int J Biol Macromol ; 269(Pt 2): 132172, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719009

ABSTRACT

Adjuvants including aluminum adjuvant (Alum) and oil-water emulsion have been widely used in inactivated pseudorabies virus (PRV) vaccines to improve their performance, however, they are not sufficient to protect from PRV infection because of the weak immune response and poor Th1-type immune response. Divalent manganese ion (Mn2+) has been reported to increase the cellular immune response significantly. In this work, a xanthan gum and carbomer-dispersed Mn2+-loaded tannic acid-polyethylene glycol (TPMnXC) nanoparticle colloid is developed and used as an adjuvant to improve the performance of the inactivated PRV vaccine. The good in vitro and in vivo biocompatibility of the developed TPMnXC colloid has been confirmed by the cell viability assay, erythrocyte hemolysis, blood routine analysis, and histological analysis of mouse organs and injection site. The TPMnXC-adjuvanted inactivated PRV vaccine (TPMnXC@PRV) significantly promotes higher and more balanced immune responses indicating with an increased specific total IgG antibody and IgG2a/IgG1 ratio, efficient splenocytes proliferation, and elevated Th1- and Th2-type cytokine secretion than those of control groups. Wild PRV challenge experiment is performed using mice as a model animal, achieving a protection rate of up to 86.67 %, which is much higher than those observed from the commercial Alum. This work not only demonstrates the high potentiality of TPMnXC in practical applications but also provides a new way to develop the Mn2+-loaded nanoadjuvant for veterinary vaccines.


Subject(s)
Adjuvants, Immunologic , Herpesvirus 1, Suid , Immunity, Cellular , Immunity, Humoral , Manganese , Nanoparticles , Polysaccharides, Bacterial , Tannins , Animals , Mice , Adjuvants, Immunologic/pharmacology , Nanoparticles/chemistry , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Tannins/chemistry , Tannins/pharmacology , Manganese/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/immunology , Herpesvirus 1, Suid/immunology , Pseudorabies Vaccines/immunology , Vaccines, Inactivated/immunology , Pseudorabies/prevention & control , Pseudorabies/immunology , Female , Cytokines/metabolism , Mice, Inbred BALB C , Antibodies, Viral/blood , Antibodies, Viral/immunology , Polyphenols
4.
Toxicology ; 505: 153836, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768702

ABSTRACT

Caramel color is a widely used food pigment, and 2-Acetyl-4-tetrahydroxybutylimidazole (THI) is a by-products of Class III caramel color. Some studies have shown that THI can reduce the number of peripheral blood lymphocytes. However, the comprehensive mechanism of THI immunotoxicity requires further study. In this study, the effects of THI on lymphocyte count, humoral immunity, cellular immunity and nonspecific immunity were determined and the effect of the nutritional status of VB6 on THI immunotoxicity was evaluated. Female BALB/c mice were divided into 3 groups and fed chow containing different doses of VB6: VB6-normal (6 mg/kg VB6), VB6-deprived (0.5 mg/kg VB6) or VB6-enhanced (12 mg/kg VB6) feed. Each group was further divided into 4 subgroups and treated with THI (0.5, 2.5 or 12.5 mg/kg bw) or the solvent control by gavage for 30 days. The thymic cortical thickness was measured with ViewPoint; the proportions of major immune cells and T cells in peripheral blood and tissues were detected via flow cytometry; the transformation and proliferation abilities of T and B cells were detected via T and B lymphocyte proliferation assays; NK cell activity was assessed via lactate dehydrogenase assays; humoral immune function was assessed via plaque-forming cell assays; and the immune function of T lymphocytes was assessed via delayed type hypersensitivity assays. The results showed that compared with those in the corresponding control group, the white blood cell count and lymphocyte count decreased significantly in all the VB6-deprived groups, in the 2.5 and 12.5 mg/kg VB6 groups, and in the 12.5 mg/kg VB6-enhanced group. With increasing THI dose, the thymic cortical layer became thinner. In the thymus, THI increased the proportions of CD3+ T cells and mature CD8+ T cells and decreased the proportions of immature double-positive, double-negative T cells and CD69-expressing lymphocytes. The proportions of naïve T cells and Tcm (central memory T) cells related to homing decreased. The proportion of mature T cells in the spleen decreased significantly. The proliferation of T cells stimulated by ConA decreased after THI exposure. VB6-deficient mice were more sensitive to THI immunotoxicity, and supplementation with VB6 had a certain protective effect on these mice. The results of the PFC and NK cell activity assays indicated that THI exposure might not affect humoral immune or innate immune function.


Subject(s)
Imidazoles , Immunity, Humoral , Mice, Inbred BALB C , Vitamin B 6 , Animals , Female , Mice , Imidazoles/toxicity , Imidazoles/pharmacology , Immunity, Humoral/drug effects , Vitamin B 6/pharmacology , Vitamin B 6/administration & dosage , Lymphocyte Count , Nutritional Status/drug effects , Thymus Gland/drug effects , Thymus Gland/immunology , Immunity, Cellular/drug effects , Spleen/drug effects , Spleen/immunology , Food Coloring Agents/toxicity , Cell Proliferation/drug effects , Lymphocytes/drug effects , Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
5.
Biomed Pharmacother ; 174: 116611, 2024 May.
Article in English | MEDLINE | ID: mdl-38643540

ABSTRACT

BACKGROUND: The emergence of drug-resistant strains of Klebsiella pneumoniae (K. pneumoniae) has become a significant challenge in the field of infectious diseases, posing an urgent need for the development of highly protective vaccines against this pathogen. METHODS AND RESULTS: In this study, we identified three immunogenic extracellular loops based on the structure of five candidate antigens using sera from K. pneumoniae infected mice. The sequences of these loops were linked to the C-terminal of an alpha-hemolysin mutant (mHla) from Staphylococcus aureus to generate a heptamer, termed mHla-EpiVac. In vivo studies confirmed that fusion with mHla significantly augmented the immunogenicity of EpiVac, and it elicited both humoral and cellular immune responses in mice, which could be further enhanced by formulation with aluminum adjuvant. Furthermore, immunization with mHla-EpiVac demonstrated enhanced protective efficacy against K. pneumoniae channeling compared to EpiVac alone, resulting in reduced bacterial burden, secretion of inflammatory factors, histopathology and lung injury. Moreover, mHla fusion facilitated antigen uptake by mouse bone marrow-derived cells (BMDCs) and provided sustained activation of these cells. CONCLUSIONS: These findings suggest that mHla-EpiVac is a promising vaccine candidate against K. pneumoniae, and further validate the potential of mHla as a versatile carrier protein and adjuvant for antigen design.


Subject(s)
Bacterial Vaccines , Epitopes , Klebsiella Infections , Klebsiella pneumoniae , Animals , Klebsiella pneumoniae/immunology , Klebsiella Infections/prevention & control , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Mice , Female , Epitopes/immunology , Mice, Inbred BALB C , Antigens, Bacterial/immunology , Lung/microbiology , Lung/immunology , Lung/pathology , Immunity, Cellular/drug effects , Staphylococcus aureus/immunology , Adjuvants, Immunologic/pharmacology , Immunity, Humoral/drug effects
7.
Int Immunopharmacol ; 132: 111909, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38554446

ABSTRACT

Adjuvants enhance the body's immune response to a vaccine, often leading to better protection against diseases. Monophosphoryl lipid A analogues (MPLA, TLR4 agonists), α-galactosylceramide analogues (NKT cell agonists), and imidazoquinoline compounds (TLR7/8 agonists) are emerging novel adjuvants on market or under clinical trials. Despite significant interest in these adjuvants, a direct comparison of their adjuvant activities remains unexplored. We initially assessed the activities of various adjuvants from three distinct categories using the SARS-CoV-2 RBD trimer antigen. TLR4 and TLR7/8 agonists are discovered to elicit robust IgG2a/2b antibodies, which is crucial for eliciting antibody dependent cytotoxicity. While α-galactosylceramide analogs induced mainly IgG1 antibody. Then, because of the flexibility of the TLR7/8 agonist, we designed and synthesized a tri-component self-adjuvanting SARS-CoV-2 RBD vaccine, featuring a covalent TLR7 agonist and targeting mannoside. Animal studies indicated that this vaccine generated antigen-specific humoral immunity. Yet, its immunogenicity seems compromised, indicating the complexity of the vaccine.


Subject(s)
Adjuvants, Immunologic , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Toll-Like Receptor 7 , Toll-Like Receptor 7/agonists , Animals , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Adjuvants, Immunologic/pharmacology , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Female , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunogenicity, Vaccine , Adjuvants, Vaccine , Spike Glycoprotein, Coronavirus/immunology , Mice, Inbred BALB C , Immunity, Humoral/drug effects , Immunoglobulin G/blood , Immunoglobulin G/immunology
8.
Adv Healthc Mater ; 13(13): e2303619, 2024 May.
Article in English | MEDLINE | ID: mdl-38340040

ABSTRACT

The convergence strategies of antigenic subunits and synthetic nanoparticle scaffold platform improve the vaccine production efficiency and enhance vaccine-induced immunogenicity. Selecting the appropriate nanoparticle scaffold is crucial to controlling target antigens immunologically. Lumazine synthase (LS) is an attractive candidate for a vaccine display system due to its thermostability, modification tolerance, and morphological plasticity. Here, the first development of a multivalent thermostable scaffold, LS-SUMO (SUMO, small ubiquitin-likemodifier), and a divalent nanovaccine covalently conjugated with Chikungunya virus E2 and Zika virus EDIII antigens, is reported. Compared with antigen monomers, LS-SUMO nanoparticle vaccines elicit a higher humoral response and neutralizing antibodies against both antigen targets in mouse sera. Mice immunized with LS-SUMO conjugates produce CD4+ T cell-mediated Th2-biased responses and promote humoral immunity. Importantly, LS-SUMO conjugates possess equivalent humoral immunogenicity after heat treatment. Taken together, LS-SUMO is a powerful biotargeting nanoplatform with high-yield production, thermal stability and opens a new avenue for multivalent presentation of various antigens.


Subject(s)
Chikungunya virus , Zika Virus , Animals , Mice , Chikungunya virus/immunology , Zika Virus/immunology , Nanoparticles/chemistry , Viral Vaccines/immunology , Viral Vaccines/chemistry , Mice, Inbred BALB C , Female , Chikungunya Fever/immunology , Chikungunya Fever/prevention & control , Immunity, Humoral/drug effects , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Antigens, Viral/chemistry , Nanovaccines , Multienzyme Complexes
11.
Br J Haematol ; 198(4): 668-679, 2022 08.
Article in English | MEDLINE | ID: mdl-35655410

ABSTRACT

Allogeneic haematopoietic stem cell transplant (HSCT) recipients remain at high risk of adverse outcomes from coronavirus disease 2019 (COVID-19) and emerging variants. The optimal prophylactic vaccine strategy for this cohort is not defined. T cell-mediated immunity is a critical component of graft-versus-tumour effect and in determining vaccine immunogenicity. Using validated anti-spike (S) immunoglobulin G (IgG) and S-specific interferon-gamma enzyme-linked immunospot (IFNγ-ELIspot) assays we analysed response to a two-dose vaccination schedule (either BNT162b2 or ChAdOx1) in 33 HSCT recipients at ≤2 years from transplant, alongside vaccine-matched healthy controls (HCs). After two vaccines, infection-naïve HSCT recipients had a significantly lower rate of seroconversion compared to infection-naïve HCs (25/32 HSCT vs. 39/39 HCs no responders) and had lower S-specific T-cell responses. The HSCT recipients who received BNT162b2 had a higher rate of seroconversion compared to ChAdOx1 (89% vs. 74%) and significantly higher anti-S IgG titres (p = 0.022). S-specific T-cell responses were seen after one vaccine in HCs and HSCT recipients. However, two vaccines enhanced S-specific T-cell responses in HCs but not in the majority of HSCT recipients. These data demonstrate limited immunogenicity of two-dose vaccination strategies in HSCT recipients, bolstering evidence of the need for additional boosters and/or alternative prophylactic measures in this group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hematopoietic Stem Cell Transplantation , Age Factors , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , Bone Marrow Transplantation/adverse effects , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Seroconversion , Transplantation, Homologous/adverse effects , Vaccination/adverse effects
12.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216301

ABSTRACT

Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.


Subject(s)
COVID-19 Vaccines/chemistry , COVID-19 Vaccines/pharmacology , Immunity, Humoral/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Animals , Binding Sites , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Dextrans/chemistry , Female , HEK293 Cells , Humans , Mice, Inbred BALB C , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spermidine/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology , Vero Cells
14.
ESMO Open ; 7(1): 100359, 2022 02.
Article in English | MEDLINE | ID: mdl-34973510

ABSTRACT

BACKGROUND: The durability of immunogenicity of SARS-CoV-2 vaccination in cancer patients remains to be elucidated. We prospectively evaluated the immunogenicity of the vaccine in triggering both the humoral and the cell-mediated immune response in cancer patients treated with anti-programmed cell death protein 1/programmed death-ligand 1 with or without chemotherapy 6 months after BNT162b2 vaccine. PATIENTS AND METHODS: In the previous study, 88 patients were enrolled, whereas the analyses below refer to the 60 patients still on immunotherapy at the time of the follow-up. According to previous SARS-CoV-2 exposure, patients were classified as SARS-CoV-2-naive (without previous SARS-CoV-2 exposure) and SARS-CoV-2-experienced (with previous SARS-CoV-2 infection). Neutralizing antibody (NT Ab) titer against the B.1.1 strain and total anti-spike immunoglobulin G concentration were quantified in serum samples. The enzyme-linked immunosorbent spot assay was used for quantification of anti-spike interferon-γ (IFN-γ)-producing cells/106 peripheral blood mononuclear cells. Fifty patients (83.0%) were on immunotherapy alone, whereas 10 patients (7%) were on chemo-immunotherapy. We analyzed separately patients on immunotherapy and patients on chemo-immunotherapy. RESULTS: The median T-cell response at 6 months was significantly lower than that measured at 3 weeks after vaccination [50 interquartile range (IQR) 20-118.8 versus 175 IQR 67.5-371.3 IFN-γ-producing cells/106 peripheral blood mononuclear cells; P < 0.0001]. The median reduction of immunoglobulin G concentration was 88% in SARS-CoV-2-naive subjects and 2.1% in SARS-CoV-2-experienced subjects. SARS-CoV-2 NT Ab titer was maintained in SARS-CoV-2-experienced subjects, whereas a significant decrease was observed in SARS-CoV-2-naive subjects (from median 1 : 160, IQR 1 : 40-1 : 640 to median 1 : 20, IQR 1 : 10-1 : 40; P < 0.0001). A weak correlation was observed between SARS-CoV-2 NT Ab titer and spike-specific IFN-γ-producing cells at both 6 months and 3 weeks after vaccination (r = 0.467; P = 0.0002 and r = 0.428; P = 0.0006, respectively). CONCLUSIONS: Our work highlights a reduction in the immune response in cancer patients, particularly in SARS-CoV-2-naive subjects. Our data support administering a third dose of COVID-19 vaccine to cancer patients treated with programmed cell death protein 1/programmed death-ligand 1 inhibitors.


Subject(s)
B7-H1 Antigen , BNT162 Vaccine , COVID-19 , Immune Checkpoint Inhibitors , Neoplasms , Programmed Cell Death 1 Receptor , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Follow-Up Studies , Humans , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/immunology , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology
15.
J Med Chem ; 65(3): 2558-2570, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35073081

ABSTRACT

Safe and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are the best approach to successfully combat the COVID-19 pandemic. The receptor-binding domain (RBD) of the viral spike protein is a major target to develop candidate vaccines. α-Galactosylceramide (αGalCer), a potent invariant natural killer T cell (iNKT) agonist, was site-specifically conjugated to the N-terminus of the RBD to form an adjuvant-protein conjugate, which was anchored on the liposome surface. This is the first time that an iNKT cell agonist was conjugated to the protein antigen. Compared to the unconjugated RBD/αGalCer mixture, the αGalCer-RBD conjugate induced significantly stronger humoral and cellular responses. The conjugate vaccine also showed effective cross-neutralization to all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results suggest that the self-adjuvanting αGalCer-RBD has great potential to be an effective COVID-19 vaccine candidate, and this strategy might be useful for designing various subunit vaccines.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/therapy , Galactosylceramides/therapeutic use , Peptide Fragments/therapeutic use , SARS-CoV-2/immunology , Vaccines, Conjugate/therapeutic use , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Female , Galactosylceramides/chemistry , Galactosylceramides/immunology , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Interferon-gamma/metabolism , Liposomes/chemistry , Liposomes/immunology , Liposomes/therapeutic use , Mice, Inbred BALB C , Peptide Fragments/chemistry , Peptide Fragments/immunology , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/therapeutic use , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/immunology
18.
Ann Rheum Dis ; 81(3): 416-421, 2022 03.
Article in English | MEDLINE | ID: mdl-34844927

ABSTRACT

OBJECTIVES: To assess the kinetics of humoral response after the first and second dose of messenger RNA (mRNA) vaccines in patients with inflammatory joint diseases compared with healthy controls (HC). To analyse factors influencing the quantity of the immune response. METHODS: We enrolled patients with rheumatoid arthritis (RA) and seronegative spondyloarthritis (SpA), excluding those receiving B-cell depleting therapies and assessed the humoral response to mRNA vaccines after the first and the second dose of the vaccine in terms of seroconversion rate and titre. We compared the results to a HC group and analysed the influence of therapies as well as other characteristics on the humoral response. RESULTS: Samples from 53 patients with RA, 46 patients with SpA and 169 healthy participants were analysed. Seroconversion rates after the first immunisation were only 54% in patients with inflammatory arthritis compared with 98% in the HC group. However, seroconversion rates were 100% in all groups after second immunisation. Patients developed reduced antibody titres after the first vaccination compared with HC, but there was no difference after the second dose. While disease modifying anti-rheumatic drug (DMARD) monotherapy did not affect antibody levels, seroconversion rates as well as titre levels were reduced in patients receiving a combination of DMARDs compared with HC. CONCLUSIONS: Patients with inflammatory joint diseases under DMARD therapy show impaired humoral responses to the first vaccine dose but excellent final responses to vaccination with mRNA vaccines. Therefore, the full course of two immunisations is necessary for efficient vaccination responses in patients with inflammatory arthritis under DMARD therapy.


Subject(s)
Arthritis, Rheumatoid/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spondylarthritis/immunology , Antirheumatic Agents/immunology , Arthritis, Rheumatoid/drug therapy , COVID-19/immunology , Case-Control Studies , Female , Humans , Immunity, Humoral/drug effects , Immunogenicity, Vaccine/drug effects , Male , Middle Aged , Seroconversion/drug effects , Spondylarthritis/drug therapy
19.
Ann Rheum Dis ; 81(4): 575-583, 2022 04.
Article in English | MEDLINE | ID: mdl-34607791

ABSTRACT

OBJECTIVES: Our aim was to evaluate systemic lupus erythematosus (SLE) disease activity and SARS-CoV-2-specific immune responses after BNT162b2 vaccination. METHODS: In this prospective study, disease activity and clinical assessments were recorded from the first dose of vaccine until day 15 after the second dose in 126 patients with SLE. SARS-CoV-2 antibody responses were measured against wild-type spike antigen, while serum-neutralising activity was assessed against the SARS-CoV-2 historical strain and variants of concerns (VOCs). Vaccine-specific T cell responses were quantified by interferon-γ release assay after the second dose. RESULTS: BNT162b2 was well tolerated and no statistically significant variations of BILAG (British Isles Lupus Assessment Group) and SLEDAI (SLE Disease Activity Index) scores were observed throughout the study in patients with SLE with active and inactive disease at baseline. Mycophenolate mofetil (MMF) and methotrexate (MTX) treatments were associated with drastically reduced BNT162b2 antibody response (ß=-78, p=0.007; ß=-122, p<0.001, respectively). Anti-spike antibody response was positively associated with baseline total immunoglobulin G serum levels, naïve B cell frequencies (ß=2, p=0.018; ß=2.5, p=0.003) and SARS-CoV-2-specific T cell response (r=0.462, p=0.003). In responders, serum neutralisation activity decreased against VOCs bearing the E484K mutation but remained detectable in a majority of patients. CONCLUSION: MMF, MTX and poor baseline humoral immune status, particularly low naïve B cell frequencies, are independently associated with impaired BNT162b2 mRNA antibody response, delineating patients with SLE who might need adapted vaccine regimens and follow-up.


Subject(s)
Antirheumatic Agents/adverse effects , BNT162 Vaccine/immunology , Immunity, Humoral/drug effects , Lupus Erythematosus, Systemic/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , Antirheumatic Agents/immunology , COVID-19/prevention & control , Female , Humans , Immunogenicity, Vaccine/drug effects , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/virology , Male , Methotrexate/adverse effects , Methotrexate/immunology , Middle Aged , Mycophenolic Acid/adverse effects , Mycophenolic Acid/immunology , Prospective Studies , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...