Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66.348
Filter
1.
Arch Virol ; 169(6): 133, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829449

ABSTRACT

Akabane virus (AKAV), Aino virus, Peaton virus, Sathuperi virus, and Shamonda virus are arthropod-borne viruses belonging to the order Elliovirales, family Peribunyaviridae, genus Orthobunyavirus. These viruses cause or may cause congenital malformations in ruminants, including hydranencephaly, poliomyelitis, and arthrogryposis, although their pathogenicity may vary among field cases. AKAV may cause relatively severe congenital lesions such as hydranencephaly in calves. Furthermore, strains of AKAV genogroups I and II exhibit different disease courses. Genogroup I strains predominantly cause postnatal viral encephalomyelitis, while genogroup II strains are primarily detected in cases of congenital malformation. However, the biological properties of AKAV and other orthobunyaviruses are insufficiently investigated in hosts in the field and in vitro. Here, we used an immortalized bovine brain cell line (FBBC-1) to investigate viral replication efficiency, cytopathogenicity, and host innate immune responses. AKAV genogroup II and Shamonda virus replicated to higher titers in FBBC-1 cells compared with the other viruses, and only AKAV caused cytopathic effects. These results may be associated with the severe congenital lesions in the brain caused by AKAV genogroup II. AKAV genogroup II strains replicated to higher titers in FBBC-1 cells than AKAV genogroup I strains, suggesting that genogroup II strains replicated more efficiently in fetal brain cells, accounting for the detection of the latter strains mainly in fetal infection cases. Therefore, FBBC-1 cells may serve as a valuable tool for investigating the virulence and tropism of the orthobunyaviruses for bovine neonatal brain tissues in vitro.


Subject(s)
Brain , Bunyaviridae Infections , Orthobunyavirus , Virus Replication , Animals , Cattle , Orthobunyavirus/pathogenicity , Orthobunyavirus/genetics , Orthobunyavirus/physiology , Orthobunyavirus/classification , Brain/virology , Brain/pathology , Cell Line , Bunyaviridae Infections/virology , Bunyaviridae Infections/veterinary , Bunyaviridae Infections/pathology , Cattle Diseases/virology , Fetus/virology , Cytopathogenic Effect, Viral , Immunity, Innate
2.
Proc Natl Acad Sci U S A ; 121(24): e2312837121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838013

ABSTRACT

Through immune memory, infections have a lasting effect on the host. While memory cells enable accelerated and enhanced responses upon rechallenge with the same pathogen, their impact on susceptibility to unrelated diseases is unclear. We identify a subset of memory T helper 1 (Th1) cells termed innate acting memory T (TIA) cells that originate from a viral infection and produce IFN-γ with innate kinetics upon heterologous challenge in vivo. Activation of memory TIA cells is induced in response to IL-12 in combination with IL-18 or IL-33 but is TCR independent. Rapid IFN-γ production by memory TIA cells is protective in subsequent heterologous challenge with the bacterial pathogen Legionella pneumophila. In contrast, antigen-independent reactivation of CD4+ memory TIA cells accelerates disease onset in an autoimmune model of multiple sclerosis. Our findings demonstrate that memory Th1 cells can acquire additional TCR-independent functionality to mount rapid, innate-like responses that modulate susceptibility to heterologous challenges.


Subject(s)
Immunity, Innate , Immunologic Memory , Interferon-gamma , Th1 Cells , Th1 Cells/immunology , Animals , Immunologic Memory/immunology , Mice , Interferon-gamma/metabolism , Interferon-gamma/immunology , Memory T Cells/immunology , Mice, Inbred C57BL , Legionella pneumophila/immunology , Multiple Sclerosis/immunology , Interleukin-12/metabolism , Interleukin-12/immunology
3.
Sci Adv ; 10(23): eadm9589, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838142

ABSTRACT

DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.


Subject(s)
DNA Replication , Immunity, Innate , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Signal Transduction , Arginine/metabolism , Arginine/analogs & derivatives , Stress, Physiological , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Damage , Transcription Factors/metabolism , Transcription Factors/genetics
4.
J Matern Fetal Neonatal Med ; 37(1): 2334850, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38839425

ABSTRACT

OBJECTIVES: Scientific evidence provides a widened view of differences in immune response between male and female neonates. The X-chromosome codes for several genes important in the innate immune response and neonatal innate immune cells express receptors for, and are inhibited by, maternal sex hormones. We hypothesized that sex differences in innate immune responses may be present in the neonatal population which may contribute to the increased susceptibility of premature males to sepsis. We aimed to examine the in vitro effect of pro-inflammatory stimuli and hormones in neutrophils and monocytes of male and female neonates, to examine the expression of X-linked genes involved in innate immunity and the miRNA profiles in these populations. METHODS: Preterm infants (n = 21) and term control (n = 19) infants were recruited from the Coombe Women and Infants University Hospital Dublin with ethical approval and explicit consent. The preterm neonates (eight female, 13 male) were recruited with a mean gestation at birth (mean ± SD) of 28 ± 2 weeks and corrected gestation at the time of sampling was 30 + 2.6 weeks. The mean birth weight of preterm neonates was 1084 ± 246 g. Peripheral blood samples were used to analyze immune cell phenotypes, miRNA human panel, and RNA profiles for inflammasome and inflammatory genes. RESULTS: Dividing neutrophil results by sex showed no differences in baseline CD11b between sexes among either term or preterm neonates. Examining monocyte CD11b by sex shows, that at baseline, total and classical monocytes have higher CD11b in preterm females than preterm males. Neutrophil TLR2 did not differ between sexes at baseline or following lipopolysaccharide (LPS) exposure. CD11b expression was higher in preterm male non-classical monocytes following Pam3CSK treatment when compared to females, a finding which is unique to our study. Preterm neonates had higher TLR2 expression at baseline in total monocytes, classical monocytes and non-classical monocytes than term. A sex difference was evident between preterm females and term females in TLR2 expression only. Hormone treatment showed no sex differences and there was no detectable difference between males and females in X-linked gene expression. Two miRNAs, miR-212-3p and miR-218-2-3p had significantly higher expression in preterm female than preterm male neonates. CONCLUSIONS: This study examined immune cell phenotypes and x-linked gene expression in preterm neonates and stratified according to gender. Our findings suggest that the responses of females mature with advancing gestation, whereas male term and preterm neonates have very similar responses. Female preterm neonates have improved monocyte activation than males, which likely reflects improved innate immune function as reflected clinically by their lower risk of sepsis. Dividing results by sex showed changes in preterm and term infants at baseline and following LPS stimulation, a difference which is reflected clinically by infection susceptibility. The sex difference noted is novel and may be limited to the preterm or early neonatal population as TLR2 expression on monocytes of older children does not differ between males and females. The differences shown in female and male innate immune cells likely reflect a superior innate immune defense system in females with sex differences in immune cell maturation. Existing human studies on sex differences in miRNA expression do not include preterm patients, and most frequently use either adult blood or cord blood. Our findings suggest that miRNA profiles are similar in neonates of opposite sexes at term but require further investigation in the preterm population. Our findings, while novel, provide only very limited insights into sex differences in infection susceptibility in the preterm population leaving many areas that require further study. These represent important areas for ongoing clinical and laboratory study and our findings represent an important contribution to exiting literature.


Subject(s)
Immunity, Innate , Infant, Premature , Humans , Female , Male , Infant, Newborn , Immunity, Innate/genetics , Infant, Premature/immunology , Case-Control Studies , Neutrophils/metabolism , Neutrophils/immunology , Sex Factors , Monocytes/immunology , Monocytes/metabolism , MicroRNAs/genetics , Gonadal Steroid Hormones/blood , Genes, X-Linked
6.
Front Immunol ; 15: 1379754, 2024.
Article in English | MEDLINE | ID: mdl-38835761

ABSTRACT

An increasing number of studies have highlighted the existence of a sex-specific immune response, wherein men experience a worse prognosis in cases of acute inflammatory diseases. Initially, this sex-dependent inflammatory response was attributed to the influence of sex hormones. However, a growing body of evidence has shifted the focus toward the influence of chromosomes rather than sex hormones in shaping these inflammatory sex disparities. Notably, certain pattern recognition receptors, such as Toll-like receptors (TLRs), and their associated immune pathways have been implicated in driving the sex-specific immune response. These receptors are encoded by genes located on the X chromosome. TLRs are pivotal components of the innate immune system, playing crucial roles in responding to infectious diseases, including bacterial and viral pathogens, as well as trauma-related conditions. Importantly, the TLR-mediated inflammatory responses, as indicated by the production of specific proteins and cytokines, exhibit discernible sex-dependent patterns. In this review, we delve into the subject of sex bias in TLR activation and explore its clinical implications relatively to both the X chromosome and the hormonal environment. The overarching objective is to enhance our understanding of the fundamental mechanisms underlying these sex differences.


Subject(s)
Inflammation , Toll-Like Receptors , Animals , Female , Humans , Male , Gonadal Steroid Hormones/metabolism , Gonadal Steroid Hormones/immunology , Immunity, Innate , Inflammation/immunology , Sex Factors , Signal Transduction , Toll-Like Receptors/metabolism , Toll-Like Receptors/immunology
7.
Front Immunol ; 15: 1368545, 2024.
Article in English | MEDLINE | ID: mdl-38835764

ABSTRACT

There is a rapidly growing interest in how the avian intestine is affected by dietary components and feed additives. The paucity of physiologically relevant models has limited research in this field of poultry gut health and led to an over-reliance on the use of live birds for experiments. The development of complex 3D intestinal organoids or "mini-guts" has created ample opportunities for poultry research in this field. A major advantage of the floating chicken intestinal organoids is the combination of a complex cell system with an easily accessible apical-out orientation grown in a simple culture medium without an extracellular matrix. The objective was to investigate the impact of a commercial proprietary blend of organic acids and essential oils (OA+EO) on the innate immune responses and kinome of chicken intestinal organoids in a Salmonella challenge model. To mimic the in vivo prolonged exposure of the intestine to the product, the intestinal organoids were treated for 2 days with 0.5 or 0.25 mg/mL OA+EO and either uninfected or infected with Salmonella and bacterial load in the organoids was quantified at 3 hours post infection. The bacteria were also treated with OA+EO for 1 day prior to challenge of the organoids to mimic intestinal exposure. The treatment of the organoids with OA+EO resulted in a significant decrease in the bacterial load compared to untreated infected organoids. The expression of 88 innate immune genes was investigated using a high throughput qPCR array, measuring the expression of 88 innate immune genes. Salmonella invasion of the untreated intestinal organoids resulted in a significant increase in the expression of inflammatory cytokine and chemokines as well as genes involved in intracellular signaling. In contrast, when the organoids were treated with OA+EO and challenged with Salmonella, the inflammatory responses were significantly downregulated. The kinome array data suggested decreased phosphorylation elicited by the OA+EO with Salmonella in agreement with the gene expression data sets. This study demonstrates that the in vitro chicken intestinal organoids are a new tool to measure the effect of the feed additives in a bacterial challenge model by measuring innate immune and protein kinases responses.


Subject(s)
Animal Feed , Chickens , Intestines , Organoids , Animals , Intestines/immunology , Intestines/drug effects , Intestines/microbiology , Immunity, Innate , Oils, Volatile/pharmacology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Poultry Diseases/microbiology , Poultry Diseases/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects
8.
Front Immunol ; 15: 1391395, 2024.
Article in English | MEDLINE | ID: mdl-38835773

ABSTRACT

Sepsis is a clinical syndrome caused by uncontrollable immune dysregulation triggered by pathogen infection, characterized by high incidence, mortality rates, and disease burden. Current treatments primarily focus on symptomatic relief, lacking specific therapeutic interventions. The core mechanism of sepsis is believed to be an imbalance in the host's immune response, characterized by early excessive inflammation followed by late immune suppression, triggered by pathogen invasion. This suggests that we can develop immunotherapeutic treatment strategies by targeting and modulating the components and immunological functions of the host's innate and adaptive immune systems. Therefore, this paper reviews the mechanisms of immune dysregulation in sepsis and, based on this foundation, discusses the current state of immunotherapy applications in sepsis animal models and clinical trials.


Subject(s)
Immunotherapy , Sepsis , Sepsis/immunology , Sepsis/therapy , Humans , Animals , Immunotherapy/methods , Adaptive Immunity , Immunity, Innate , Disease Models, Animal
9.
Front Immunol ; 15: 1358853, 2024.
Article in English | MEDLINE | ID: mdl-38835780

ABSTRACT

Introduction: Innate immunity is crucial to reducing parasite burden and contributing to survival in severe malaria. Monocytes are key actors in the innate response and, like macrophages, are plastic cells whose function and phenotype are regulated by the signals from the microenvironment. In the context of cerebral malaria (CM), monocyte response constitutes an important issue to understand. We previously demonstrated that decreased percentages of nonclassical monocytes were associated with death outcomes in CM children. In the current study, we postulated that monocyte phagocytosis function is impacted by the severity of malaria infection. Methods: To study this hypothesis, we compared the opsonic and nonopsonic phagocytosis capacity of circulant monocytes from Beninese children with uncomplicated malaria (UM) and CM. For the CM group, samples were obtained at inclusion (D0) and 3 and 30 days after treatment (D3, D30). The phagocytosis capacity of monocytes and their subsets was characterized by flow cytometry and transcriptional profiling by studying genes known for their functional implication in infected-red blood cell (iRBC) elimination or immune escape. Results: Our results confirm our hypothesis and highlight the higher capacity of nonclassical monocytes to phagocyte iRBC. We also confirm that a low number of nonclassical monocytes is associated with CM outcome when compared to UM, suggesting a mobilization of this subpopulation to the cerebral inflammatory site. Finally, our results suggest the implication of the inhibitory receptors LILRB1, LILRB2, and Tim3 in phagocytosis control. Discussion: Taken together, these data provide a better understanding of the interplay between monocytes and malaria infection in the pathogenicity of CM.


Subject(s)
Malaria, Cerebral , Monocytes , Phagocytosis , Humans , Malaria, Cerebral/immunology , Malaria, Cerebral/parasitology , Monocytes/immunology , Male , Child, Preschool , Female , Child , Infant , Plasmodium falciparum/immunology , Opsonin Proteins/metabolism , Opsonin Proteins/immunology , Erythrocytes/parasitology , Erythrocytes/immunology , Immunity, Innate
10.
Nat Commun ; 15(1): 4792, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839760

ABSTRACT

Innate lymphoid cell precursors (ILCPs) develop into distinct subsets of innate lymphoid cells (ILCs) with specific functions. The epigenetic program underlying the differentiation of ILCPs into ILC subsets remains poorly understood. Here, we reveal the genome-wide distribution and dynamics of the DNA methylation and hydroxymethylation in ILC subsets and their respective precursors. Additionally, we find that the DNA hydroxymethyltransferase TET1 suppresses ILC1 but not ILC2 or ILC3 differentiation. TET1 deficiency promotes ILC1 differentiation by inhibiting TGF-ß signaling. Throughout ILCP differentiation at postnatal stage, gut microbiota contributes to the downregulation of TET1 level. Microbiota decreases the level of cholic acid in the gut, impairs TET1 expression and suppresses DNA hydroxymethylation, ultimately resulting in an expansion of ILC1s. In adult mice, TET1 suppresses the hyperactivation of ILC1s to maintain intestinal homeostasis. Our findings provide insights into the microbiota-mediated epigenetic programming of ILCs, which links microbiota-DNA methylation crosstalk to ILC differentiation.


Subject(s)
Cell Differentiation , DNA Methylation , DNA-Binding Proteins , Immunity, Innate , Lymphocytes , Proto-Oncogene Proteins , Animals , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Lymphocytes/metabolism , Lymphocytes/immunology , Mice, Inbred C57BL , Gastrointestinal Microbiome , Epigenesis, Genetic , Mice, Knockout , Transforming Growth Factor beta/metabolism , Signal Transduction
11.
Front Immunol ; 15: 1388176, 2024.
Article in English | MEDLINE | ID: mdl-38840908

ABSTRACT

The tumor microenvironment is closely linked to the initiation, promotion, and progression of solid tumors. Among its constitutions, immunologic cells emerge as critical players, facilitating immune evasion and tumor progression. Apart from their indirect impact on anti-tumor immunity, immunocytes directly influence neoplastic cells, either bolstering or impeding tumor advancement. However, current therapeutic modalities aimed at alleviating immunosuppression from regulatory cells on effector immune cell populations may not consistently yield satisfactory results in various solid tumors, such as breast carcinoma, colorectal cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils, and tumor-associated macrophages on tumor cells within the tumor microenvironment. The review also delves into the underlying mechanisms involved and presents the outcomes of clinical trials based on these direct effects, aiming to propose innovative and efficacious therapeutic strategies for addressing solid tumors.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Animals , Immunity, Innate , Cell Communication/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor Escape , Immunotherapy/methods
12.
Front Cell Infect Microbiol ; 14: 1392015, 2024.
Article in English | MEDLINE | ID: mdl-38841113

ABSTRACT

Trehalose-6-phosphate synthase (TPS1) was identified as a virulence factor for Cryptococcus neoformans and a promising therapeutic target. This study reveals previously unknown roles of TPS1 in evasion of host defenses during pulmonary and disseminated phases of infection. In the pulmonary infection model, TPS1-deleted (tps1Δ) Cryptococci are rapidly cleared by mouse lungs whereas TPS1-sufficent WT (H99) and revertant (tps1Δ:TPS1) strains expand in the lungs and disseminate, causing 100% mortality. Rapid pulmonary clearance of tps1Δ mutant is T-cell independent and relies on its susceptibility to lung resident factors and innate immune factors, exemplified by tps1Δ but not H99 inhibition in a coculture with dispersed lung cells and its rapid clearance coinciding with innate leukocyte infiltration. In the disseminated model of infection, which bypasses initial lung-fungus interactions, tps1Δ strain remains highly attenuated. Specifically, tps1Δ mutant is unable to colonize the lungs from the bloodstream or expand in spleens but is capable of crossing into the brain, where it remains controlled even in the absence of T cells. In contrast, strains H99 and tps1Δ:TPS1 rapidly expand in all studied organs, leading to rapid death of the infected mice. Since the rapid pulmonary clearance of tps1Δ mutant resembles a response to acapsular strains, the effect of tps1 deletion on capsule formation in vitro and in vivo was examined. Tps1Δ cryptococci form capsules but with a substantially reduced size. In conclusion, TPS1 is an important virulence factor, allowing C. neoformans evasion of resident pulmonary and innate defense mechanisms, most likely via its role in cryptococcal capsule formation.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Disease Models, Animal , Glucosyltransferases , Lung , Virulence Factors , Animals , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/genetics , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/immunology , Cryptococcosis/microbiology , Cryptococcosis/immunology , Mice , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Lung/microbiology , Lung/pathology , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism , Host-Pathogen Interactions , Brain/microbiology , Spleen/microbiology , Female , Mice, Inbred C57BL , Immunity, Innate , Immune Evasion , Gene Deletion
13.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38830771

ABSTRACT

Dengue fever, a neglected tropical arboviral disease, has emerged as a global health concern in the past decade. Necessitating a nuanced comprehension of the intricate dynamics of host-virus interactions influencing disease severity, we analysed transcriptomic patterns using bulk RNA-seq from 112 age- and gender-matched NS1 antigen-confirmed hospital-admitted dengue patients with varying severity. Severe cases exhibited reduced platelet count, increased lymphocytosis, and neutropenia, indicating a dysregulated immune response. Using bulk RNA-seq, our analysis revealed a minimal overlap between the differentially expressed gene and transcript isoform, with a distinct expression pattern across the disease severity. Severe patients showed enrichment in retained intron and nonsense-mediated decay transcript biotypes, suggesting altered splicing efficiency. Furthermore, an up-regulated programmed cell death, a haemolytic response, and an impaired interferon and antiviral response at the transcript level were observed. We also identified the potential involvement of the RBM39 gene among others in the innate immune response during dengue viral pathogenesis, warranting further investigation. These findings provide valuable insights into potential therapeutic targets, underscoring the importance of exploring transcriptomic landscapes between different disease sub-phenotypes in infectious diseases.


Subject(s)
Alternative Splicing , Dengue Virus , Severe Dengue , Humans , Alternative Splicing/genetics , Female , Male , Dengue Virus/genetics , Adult , Severe Dengue/genetics , Severe Dengue/immunology , Severe Dengue/virology , Middle Aged , Transcriptome/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Gene Expression Profiling/methods , Immunity, Innate/genetics , Dengue/genetics , Dengue/immunology , Dengue/virology , Young Adult , Severity of Illness Index , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology
14.
Nat Commun ; 15(1): 4724, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830855

ABSTRACT

Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.


Subject(s)
Galectin 3 , Lipopolysaccharides , Mice, Inbred C57BL , Neutrophils , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Galectin 3/metabolism , Galectin 3/genetics , Neutrophils/immunology , Neutrophils/metabolism , Humans , Mice , Pseudomonas Infections/immunology , Male , Female , Respiratory Insufficiency/metabolism , Mice, Knockout , Phagocytosis , Immunity, Innate , Galectins/metabolism , Galectins/genetics
15.
Cell Commun Signal ; 22(1): 305, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831299

ABSTRACT

As a major component of innate immunity and a positive regulator of interferons, the Stimulator of interferon gene (STING) has an immunotherapy potential to govern a variety of infectious diseases. Despite the recent advances regarding vaccines against COVID-19, nontoxic novel adjuvants with the potential to enhance vaccine efficacy are urgently desired. In this connection, it has been well-documented that STING agonists are applied to combat COVID-19. This approach is of major significance for boosting immune responses most likely through an autophagy-dependent manner in susceptible individuals against infection induced by severe acute respiratory syndrome Coronavirus (SARS­CoV­2). Given that STING agonists exert substantial immunomodulatory impacts under a wide array of pathologic conditions, these agents could be considered novel adjuvants for enhancing immunogenicity against the SARS-related coronavirus. Here, we intend to discuss the recent advances in STING agonists' recruitment to boost innate immune responses upon vaccination against SARS-related coronavirus infections. In light of the primordial role of autophagy modulation, the potential of being an antiviral vaccine adjuvant was also explored.


Subject(s)
Autophagy , COVID-19 , Membrane Proteins , SARS-CoV-2 , Autophagy/immunology , Autophagy/drug effects , Humans , Membrane Proteins/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Animals , COVID-19 Vaccines/immunology , Immunity, Innate/drug effects , Adjuvants, Vaccine/therapeutic use , Adjuvants, Vaccine/pharmacology , Adjuvants, Immunologic/pharmacology
16.
J Nanobiotechnology ; 22(1): 310, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831378

ABSTRACT

Radiotherapy (RT), including external beam radiation therapy (EBRT) and radionuclide therapy (RNT), realizes physical killing of local tumors and activates systemic anti-tumor immunity. However, these effects need to be further strengthened and the difference between EBRT and RNT should be discovered. Herein, bacterial outer membrane (OM) was biomineralized with manganese oxide (MnO2) to obtain OM@MnO2-PEG nanoparticles for enhanced radio-immunotherapy via amplifying EBRT/RNT-induced immunogenic cell death (ICD) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation. OM@MnO2-PEG can react with H2O2 and then gradually produce O2, Mn2+ and OM fragments in the tumor microenvironment. The relieved tumor hypoxia improves the radio-sensitivity of tumor cells, resulting in enhanced ICD and DNA damage. Mn2+ together with the DNA fragments in the cytoplasm activate the cGAS-STING pathway, further exhibiting a positive role in various aspects of innate immunity and adaptive immunity. Besides, OM fragments promote tumor antigen presentation and anti-tumor macrophages polarization. More importantly, our study reveals that OM@MnO2-PEG-mediated RNT triggers much stronger cGAS-STING pathway-involved immunotherapy than that of EBRT, owing to the duration difference of RT. Therefore, this study develops a powerful sensitizer of radio-immunotherapy and uncovers some differences between EBRT and RNT in the activation of cGAS-STING pathway-related anti-tumor immunity.


Subject(s)
Bacterial Outer Membrane , Immunotherapy , Manganese Compounds , Membrane Proteins , Nucleotidyltransferases , Oxides , Nucleotidyltransferases/metabolism , Manganese Compounds/chemistry , Membrane Proteins/metabolism , Mice , Immunotherapy/methods , Oxides/chemistry , Animals , Bacterial Outer Membrane/metabolism , Tumor Microenvironment , Cell Line, Tumor , Signal Transduction , Humans , Radiotherapy/methods , Nanoparticles/chemistry , Biomineralization , Immunogenic Cell Death/drug effects , Neoplasms/therapy , Hydrogen Peroxide/metabolism , Immunity, Innate
17.
Front Immunol ; 15: 1385101, 2024.
Article in English | MEDLINE | ID: mdl-38725998

ABSTRACT

Background: Immunopathology in food allergy is characterized by an uncontrolled type 2 immune response and specific-IgE production. Recent studies have determined that group 2 innate lymphoid cells (ILC2) participate in the food allergy pathogenic mechanism and their severity. Our objective was to investigate the role of ILC2 in peach-allergic patients due to non-specific lipid transfer protein (Pru p 3) sensitization. Methods: The immune response in peripheral blood mononuclear cells was characterized in lipid transfer protein-allergic patients and healthy controls. We have analyzed the Pru p 3 uptake on ILC2, the expression of costimulatory molecules, and their involvement on the T-cell proliferative response and cytokine production under different experimental conditions: cytokines involved in group 2 innate lymphoid cell activation (IL-33 and IL-25), Pru p 3 as main food allergen, and the combination of both components (IL-33/IL-25+Pru p 3) using cell sorting, EliSpot, flow cytometry, and confocal microscopy. Results: Our results show that Pru p 3 allergen is taken up by group 2 innate lymphoid cells, regulating their costimulatory molecule expression (CD83 and HLA-DR) depending on the presence of Pru p 3 and its combination with IL-33/IL-25. The Pru p 3-stimulated ILC2 induced specific GATA3+Th2 proliferation and cytokine (IL-4, IL-5, and IL-13) production in lipid transfer protein-allergic patients in a cell contact-dependent manner with no changes in Tbet+Th1- and FOXP3+Treg cell differentiation. Conclusions: The results indicate that in lipid transfer protein-allergic patients, the responsible allergen, Pru p 3, interacts with group 2 innate lymphoid cells, promoting a Th2 cell response. Our results might be of interest in vivo, as they show a role of group 2 innate lymphoid cells as antigen-presenting cells, contributing to the development of food allergy. Consequently, group 2 innate lymphoid cells may be considered as potential therapeutic targets.


Subject(s)
Antigens, Plant , Carrier Proteins , Food Hypersensitivity , Immunity, Innate , Humans , Food Hypersensitivity/immunology , Female , Antigens, Plant/immunology , Carrier Proteins/immunology , Male , Adult , Cytokines/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Plant Proteins/immunology , Lymphocyte Activation/immunology , Young Adult , Middle Aged
18.
Front Immunol ; 15: 1248907, 2024.
Article in English | MEDLINE | ID: mdl-38720893

ABSTRACT

Introduction: Sepsis remains a major cause of death in Intensive Care Units. Sepsis is a life-threatening multi-organ dysfunction caused by a dysregulated systemic inflammatory response. Pattern recognition receptors, such as TLRs and NLRs contribute to innate immune responses. Upon activation, some NLRs form multimeric protein complexes in the cytoplasm termed "inflammasomes" which induce gasdermin d-mediated pyroptotic cell death and the release of mature forms of IL-1ß and IL-18. The NLRP6 inflammasome is documented to be both a positive and a negative regulator of host defense in distinct infectious diseases. However, the role of NLRP6 in polymicrobial sepsis remains elusive. Methods: We have used NLRP6 KO mice and human septic spleen samples to examine the role of NLRP6 in host defense in sepsis. Results: NLRP6 KO mice display enhanced survival, reduced bacterial burden in the organs, and reduced cytokine/chemokine production. Co-housed WT and KO mice following sepsis show decreased bacterial burden in the KO mice as observed in singly housed groups. NLRP6 is upregulated in CD3, CD4, and CD8 cells of septic patients and septic mice. The KO mice showed a higher number of CD3, CD4, and CD8 positive T cell subsets and reduced T cell death in the spleen following sepsis. Furthermore, administration of recombinant IL-18, but not IL-1ß, elicited excessive inflammation and reversed the survival advantages observed in NLRP6 KO mice. Conclusion: These results unveil NLRP6 as a negative regulator of host defense during sepsis and offer novel insights for the development of new treatment strategies for sepsis.


Subject(s)
Mice, Knockout , Sepsis , Animals , Sepsis/immunology , Sepsis/microbiology , Humans , Mice , Inflammasomes/metabolism , Inflammasomes/immunology , Mice, Inbred C57BL , Male , Cytokines/metabolism , Female , Immunity, Innate , Disease Models, Animal , Spleen/immunology , Receptors, Cell Surface , Intracellular Signaling Peptides and Proteins
19.
Front Immunol ; 15: 1287415, 2024.
Article in English | MEDLINE | ID: mdl-38707899

ABSTRACT

Background: The dysregulated immune response to sepsis still remains unclear. Stratification of sepsis patients into endotypes based on immune indicators is important for the future development of personalized therapies. We aimed to evaluate the immune landscape of sepsis and the use of immune clusters for identifying sepsis endotypes. Methods: The indicators involved in innate, cellular, and humoral immune cells, inhibitory immune cells, and cytokines were simultaneously assessed in 90 sepsis patients and 40 healthy controls. Unsupervised k-means cluster analysis of immune indicator data were used to identify patient clusters, and a random forest approach was used to build a prediction model for classifying sepsis endotypes. Results: We depicted that the impairment of innate and adaptive immunity accompanying increased inflammation was the most prominent feature in patients with sepsis. However, using immune indicators for distinguishing sepsis from bacteremia was difficult, most likely due to the considerable heterogeneity in sepsis patients. Cluster analysis of sepsis patients identified three immune clusters with different survival rates. Cluster 1 (36.7%) could be distinguished from the other clusters as being an "effector-type" cluster, whereas cluster 2 (34.4%) was a "potential-type" cluster, and cluster 3 (28.9%) was a "dysregulation-type" cluster, which showed the lowest survival rate. In addition, we established a prediction model based on immune indicator data, which accurately classified sepsis patients into three immune endotypes. Conclusion: We depicted the immune landscape of patients with sepsis and identified three distinct immune endotypes with different survival rates. Cluster membership could be predicted with a model based on immune data.


Subject(s)
Sepsis , Humans , Sepsis/immunology , Sepsis/diagnosis , Sepsis/mortality , Male , Female , Middle Aged , Aged , Cluster Analysis , Adult , Cytokines/immunology , Cytokines/metabolism , Biomarkers , Immunity, Innate , Adaptive Immunity
20.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(5): 485-489, 2024 May 12.
Article in Chinese | MEDLINE | ID: mdl-38706074

ABSTRACT

Programmed cell death 1 (PD-1) and its ligands, PD-L1 and PD-L2, expressed on a variety of immune cells, play multiple regulatory roles in the host immune response to Mycobacterium tuberculosis infection. In this study, we reviewed that the regulatory roles of PD-1/PD-L1, PD-L2 signaling in the host adaptive immune response, such as the innate response of macrophages, and the interaction between T cells and macrophages in response to MTB. In addition, during MTB infection, PD-1/PD-L1, PD-L2 signaling is also involved in the host inflammatory response, as well as the potential roles of PD-1/PD-L1, PD-L2 in the diagnosis and treatment of tuberculosis.


Subject(s)
B7-H1 Antigen , Macrophages , Mycobacterium tuberculosis , Programmed Cell Death 1 Ligand 2 Protein , Programmed Cell Death 1 Receptor , Signal Transduction , Tuberculosis , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Mycobacterium tuberculosis/immunology , Macrophages/immunology , Macrophages/metabolism , Immunity, Innate , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Adaptive Immunity
SELECTION OF CITATIONS
SEARCH DETAIL
...