Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.541
Filter
1.
Sci Adv ; 10(22): eadk1894, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820153

ABSTRACT

Antibody drug conjugates (ADCs) have made impressive strides in the clinic in recent years with 11 Food and Drug Administration approvals, including 6 for the treatment of patients with solid tumors. Despite this success, the development of new agents remains challenging with a high failure rate in the clinic. Here, we show that current approved ADCs for the treatment of patients with solid tumors can all show substantial efficacy in some mouse models when administered at a similar weight-based [milligrams per kilogram (mg/kg)] dosing in mice that is tolerated in the clinic. Mechanistically, equivalent mg/kg dosing results in a similar drug concentration in the tumor and a similar tissue penetration into the tumor due to the unique delivery features of ADCs. Combined with computational approaches, which can account for the complex distribution within the tumor microenvironment, these scaling concepts may aid in the evaluation of new agents and help design therapeutics with maximum clinical efficacy.


Subject(s)
Immunoconjugates , Neoplasms , Animals , Immunoconjugates/administration & dosage , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Humans , Xenograft Model Antitumor Assays , Translational Research, Biomedical , Disease Models, Animal , Tumor Microenvironment/drug effects , Cell Line, Tumor , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Drug Evaluation, Preclinical
3.
ESMO Open ; 9(5): 102924, 2024 May.
Article in English | MEDLINE | ID: mdl-38796287

ABSTRACT

BACKGROUND: DESTINY-Breast03 is a randomized, multicenter, open-label, phase III study of trastuzumab deruxtecan (T-DXd) versus trastuzumab emtansine (T-DM1) in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) previously treated with trastuzumab and a taxane. A statistically significant improvement in progression-free survival (PFS) versus T-DM1 was reported in the primary analysis. Here, we report exploratory efficacy data in patients with and without brain metastases (BMs) at baseline. PATIENTS AND METHODS: Patients were randomly assigned 1 : 1 to receive T-DXd 5.4 mg/kg or T-DM1 3.6 mg/kg. Patients with clinically inactive/asymptomatic BMs were eligible. Lesions were measured as per modified RECIST, version 1.1. Outcomes included PFS by blinded independent central review (BICR), objective response rate (ORR), and intracranial ORR as per BICR. RESULTS: As of 21 May 2021, 43/261 patients randomized to T-DXd and 39/263 patients randomized to T-DM1 had BMs at baseline, as per investigator assessment. Among patients with baseline BMs, 20/43 in the T-DXd arm and 19/39 in the T-DM1 arm had not received prior local BM treatment. For patients with BMs, median PFS was 15.0 months [95% confidence interval (CI) 12.5-22.2 months] for T-DXd versus 3.0 months (95% CI 2.8-5.8 months) for T-DM1; hazard ratio (HR) 0.25 (95% CI 0.13-0.45). For patients without BMs, median PFS was not reached (95% CI 22.4 months-not estimable) for T-DXd versus 7.1 months (95% CI 5.6-9.7 months) for T-DM1; HR 0.30 (95% CI 0.22-0.40). Confirmed systemic ORR was 67.4% for T-DXd versus 20.5% for T-DM1 and 82.1% for T-DXd versus 36.6% for T-DM1 for patients with and without BMs, respectively. Intracranial ORR was 65.7% with T-DXd versus 34.3% with T-DM1. CONCLUSIONS: Patients with HER2-positive mBC whose disease progressed after trastuzumab and a taxane achieved a substantial benefit from treatment with T-DXd compared with T-DM1, including those with baseline BMs.


Subject(s)
Ado-Trastuzumab Emtansine , Brain Neoplasms , Breast Neoplasms , Receptor, ErbB-2 , Trastuzumab , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Middle Aged , Ado-Trastuzumab Emtansine/therapeutic use , Ado-Trastuzumab Emtansine/pharmacology , Receptor, ErbB-2/metabolism , Adult , Aged , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Camptothecin/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Progression-Free Survival
4.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786084

ABSTRACT

Relevant advances have been made in the management of relapsed/refractory (r/r) Hodgkin Lymphomas (HL) with the use of the anti-CD30 antibody-drug conjugate (ADC) brentuximab-vedotin (Bre-Ved). Unfortunately, most patients eventually progress despite the excellent response rates and tolerability. In this report, we describe an ADC composed of the aminobisphosphonate zoledronic acid (ZA) conjugated to Bre-Ved by binding the free amino groups of this antibody with the phosphoric group of ZA. Liquid chromatography-mass spectrometry, inductively coupled plasma-mass spectrometry, and matrix-assisted laser desorption ionization-mass spectrometry analyses confirmed the covalent linkage between the antibody and ZA. The novel ADC has been tested for its reactivity with the HL/CD30+ lymphoblastoid cell lines (KMH2, L428, L540, HS445, and RPMI6666), showing a better titration than native Bre-Ved. Once the HL-cells are entered, the ADC co-localizes with the lysosomal LAMP1 in the intracellular vesicles. Also, this ADC exerted a stronger anti-proliferative and pro-apoptotic (about one log fold) effect on HL-cell proliferation compared to the native antibody Bre-Ved. Eventually, Bre-Ved-ZA ADC, in contrast with the native antibody, can trigger the proliferation and activation of cytolytic activity of effector-memory Vδ2 T-lymphocytes against HL-cell lines. These findings may support the potential use of this ADC in the management of r/r HL.


Subject(s)
Brentuximab Vedotin , Immunoconjugates , Ki-1 Antigen , Zoledronic Acid , Humans , Zoledronic Acid/pharmacology , Zoledronic Acid/therapeutic use , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry , Brentuximab Vedotin/pharmacology , Brentuximab Vedotin/therapeutic use , Ki-1 Antigen/metabolism , Ki-1 Antigen/immunology , Cell Line, Tumor , Hodgkin Disease/drug therapy , Hodgkin Disease/pathology , Hodgkin Disease/immunology , Apoptosis/drug effects , Cell Proliferation/drug effects
5.
J Nanobiotechnology ; 22(1): 256, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755613

ABSTRACT

BACKGROUND: Gastric cancer represents a highly lethal malignancy with an elevated mortality rate among cancer patients, coupled with a suboptimal postoperative survival prognosis. Nectin-4, an overexpressed oncological target for various cancers, has been exploited to create antibody-drug conjugates (ADCs) to treat solid tumors. However, there is limited research on Nectin-4 ADCs specifically for gastric cancer, and conventional immunoglobulin G (IgG)-based ADCs frequently encounter binding site barriers. Based on the excellent tumor penetration capabilities inherent in nanobodies (Nbs), we developed Nectin-4-targeting Nb drug conjugates (NDCs) for the treatment of gastric cancer. RESULTS: An immunized phage display library was established and employed for the selection of Nectin-4-specific Nbs using phage display technology. Subsequently, these Nbs were engineered into homodimers to enhance Nb affinity. To prolong in vivo half-life and reduce immunogenicity, we fused an Nb targeting human serum albumin (HSA), resulting in the development of trivalent humanized Nbs. Further, we site-specifically conjugated a monomethyl auristatin E (MMAE) at the C-terminus of the trivalent Nbs, creating Nectin-4 NDC (huNb26/Nb26-Nbh-MMAE) with a drug-to-antibody ratio (DAR) of 1. Nectin-4 NDC demonstrated excellent in vitro cell-binding activities and cytotoxic efficacy against cells with high Nectin-4 expression. Subsequent administration of Nectin-4 NDC to mice bearing NCI-N87 human gastric cancer xenografts demonstrated rapid tissue penetration and high tumor uptake through in vivo imaging. Moreover, Nectin-4 NDC exhibited noteworthy dose-dependent anti-tumor efficacy in in vivo studies. CONCLUSION: We have engineered a Nectin-4 NDC with elevated affinity and effective tumor uptake, further establishing its potential as a therapeutic agent for gastric cancer.


Subject(s)
Antineoplastic Agents , Cell Adhesion Molecules , Immunoconjugates , Mice, Nude , Single-Domain Antibodies , Stomach Neoplasms , Stomach Neoplasms/drug therapy , Humans , Animals , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Mice , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Immunoconjugates/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Female , Xenograft Model Antitumor Assays , Oligopeptides/chemistry , Oligopeptides/pharmacology , Nectins
6.
Mol Cancer ; 23(1): 97, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730427

ABSTRACT

DLL3 acts as an inhibitory ligand that downregulates Notch signaling and is upregulated by ASCL1, a transcription factor prevalent in the small-cell lung cancer (SCLC) subtype SCLC-A. Currently, the therapeutic strategies targeting DLL3 are varied, including antibody-drug conjugates (ADCs), bispecific T-cell engagers (BiTEs), and chimeric antigen receptor (CAR) T-cell therapies. Although rovalpituzumab tesirine (Rova-T) showed promise in a phase II study, it failed to produce favorable results in subsequent phase III trials, leading to the cessation of its development. Conversely, DLL3-targeted BiTEs have garnered significant clinical interest. Tarlatamab, for instance, demonstrated enhanced response rates and progression-free survival compared to the standard of care in a phase II trial; its biologics license application (BLA) is currently under US Food and Drug Administration (FDA) review. Numerous ongoing phase III studies aim to further evaluate tarlatamab's clinical efficacy, alongside the development of novel DLL3-targeted T-cell engagers, both bispecific and trispecific. CAR-T cell therapies targeting DLL3 have recently emerged and are undergoing various preclinical and early-phase clinical studies. Additionally, preclinical studies have shown promising efficacy for DLL3-targeted radiotherapy, which employs ß-particle-emitting therapeutic radioisotopes conjugated to DLL3-targeting antibodies. DLL3-targeted therapies hold substantial potential for SCLC management. Future clinical trials will be crucial for comparing treatment outcomes among various approaches and exploring combination therapies to improve patient survival outcomes.


Subject(s)
Immunoconjugates , Intracellular Signaling Peptides and Proteins , Lung Neoplasms , Radioimmunotherapy , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/radiotherapy , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Radioimmunotherapy/methods , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Membrane Proteins/metabolism , Immunotherapy/methods , Precision Medicine , Molecular Targeted Therapy
7.
Expert Rev Anticancer Ther ; 24(6): 379-395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798125

ABSTRACT

INTRODUCTION: Modern immunotherapy approaches are revolutionizing the treatment scenario of relapsed/refractory (RR) multiple myeloma (MM) patients, providing an opportunity to reach deep level of responses and extend survival outcomes. AREAS COVERED: Antibody-drug conjugates (ADCs) and T-cell redirecting treatments, including bispecific antibodies (BsAbs) and chimeric antigen receptor (CAR) T cells therapy, have been recently introduced in the treatment of RRMM. Some agents have already received regulatory approval, while newer constructs, novel combinations, and applications in earlier lines of therapy are currently being explored. This review discusses the current landscape and possible development of ADCs, BsAbs and CAR-T cells immunotherapies. EXPERT OPINION: ADCs, BsAbs, and CAR-T therapy have demonstrated substantial activity in heavily pretreated, triple-class exposed (TCE) MM patients, and T-cell redirecting treatments represent new standards of care after third (European Medicines Agency, EMA), or fourth (Food and Drug Administration, FDA), line of therapy. All these three immunotherapies carry advantages and disadvantages, with different accessibility and new toxicities that require appropriate management and guidelines. Multiple on-going programs include combinations therapies and applications in earlier lines of treatment, as well as the development of novel agents or construct to enhance potency, reduce toxicity and facilitate administration. Sequencing is a challenge, with few data available and mechanisms of resistance still to be unraveled.


Subject(s)
Antibodies, Bispecific , Immunoconjugates , Immunotherapy, Adoptive , Multiple Myeloma , Humans , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/pharmacology , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Multiple Myeloma/drug therapy , Immunoconjugates/pharmacology , Immunoconjugates/administration & dosage , Immunotherapy, Adoptive/methods , Animals , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Survival Rate , Immunotherapy/methods , Drug Development
8.
Nat Rev Cancer ; 24(6): 399-426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740967

ABSTRACT

The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to normal cells. Targeted therapy has been developed to meet that challenge, showing a substantially increased therapeutic index compared with conventional cancer therapies. Antibodies are important members of the family of targeted therapeutic agents because of their extraordinarily high specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets on cancer cells. This was followed by advancements in linker technologies that allowed the production of antibody-drug conjugates (ADCs) that guide cytotoxic payloads to the cancer cells. Improvement in our understanding of the biology of T cells led to the production of immune checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells of a patient to kill the cancer cells. In this Review, we summarize the different approaches used by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the structural basis for target specificity, clinical applications and the ongoing research to improve efficacy and reduce toxicity.


Subject(s)
Immunoconjugates , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/drug therapy , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Animals , T-Lymphocytes/immunology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology
9.
Crit Rev Oncol Hematol ; 198: 104355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621469

ABSTRACT

Trastuzumab deruxtecan (T-DXd) is an antibody-drug conjugate (ADC) consisting of a humanised, anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody covalently linked to a topoisomerase I inhibitor cytotoxic payload (DXd). The high drug-to-antibody ratio (8:1) ensures a high DXd concentration is delivered to target tumour cells, following internalisation of T-DXd and subsequent cleavage of its tetrapeptide-based linker. DXd's membrane-permeable nature enables it to cross cell membranes and potentially exert antitumour activity on surrounding tumour cells regardless of HER2 expression. T-DXd's unique mechanism of action is reflected in its efficacy in clinical trials in patients with HER2-positive advanced breast cancer (in heavily pretreated populations and in those previously treated with a taxane and trastuzumab), as well as HER2-low metastatic breast cancer. Thus, ADCs such as T-DXd have the potential to change the treatment paradigm of targeting HER2 in metastatic breast cancer, including eventually within the adjuvant/neoadjuvant setting.


Subject(s)
Breast Neoplasms , Camptothecin , Immunoconjugates , Trastuzumab , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Trastuzumab/therapeutic use , Female , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology
10.
Life Sci ; 347: 122676, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38688384

ABSTRACT

Antibody-drug conjugates (ADCs) are immunoconjugates that combine the specificity of monoclonal antibodies with a cytotoxic agent. The most appealing aspects of ADCs include their potential additive or synergistic effects of the innate backbone antibody and cytotoxic effects of the payload on tumors without the severe toxic side effects often associated with traditional chemotherapy. Recent advances in identifying new targets with tumor-specific expression, along with improved bioactive payloads and novel linkers, have significantly expanded the scope and optimism for ADCs in cancer therapeutics. In this paper, we will first provide a brief overview of antibody specificity and the structure of ADCs. Next, we will discuss the mechanisms of action and the development of resistance to ADCs. Finally, we will explore opportunities for enhancing ADC efficacy, overcoming drug resistance, and offer future perspectives on leveraging ADCs to improve the outcome of ADC therapy for cancer treatment.


Subject(s)
Immunoconjugates , Neoplasms , Humans , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Antibody Specificity
11.
Clin Pharmacokinet ; 63(4): 423-438, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38609704

ABSTRACT

Enfortumab vedotin is an antibody-drug conjugate comprised of a human monoclonal antibody directed to Nectin-4 and monomethyl auristatin E (MMAE), a microtubule-disrupting agent. The objectives of this review are to summarize the clinical pharmacology of enfortumab vedotin monotherapy and demonstrate that the appropriate dose has been selected for clinical use. Pharmacokinetics (PK) of enfortumab vedotin (antibody-drug conjugate and total antibody) and free MMAE were evaluated in five clinical trials of patients with locally advanced or metastatic urothelial carcinoma (n = 748). Intravenous enfortumab vedotin 0.5-1.25 mg/kg on days 1, 8, and 15 of a 28-day cycle showed linear, dose-proportional PK. No significant differences in exposure or safety of enfortumab vedotin and free MMAE were observed in mild, moderate, or severe renal impairment versus normal renal function. Patients with mildly impaired versus normal hepatic function had a 37% increase in area under the concentration-time curve (0-28 days), a 31% increase in maximum concentration of free MMAE, and a similar adverse event profile. No clinically significant PK differences were observed based on race/ethnicity with weight-based dosing, and no clinically meaningful QT prolongation was observed. Concomitant use with dual P-glycoprotein and strong cytochrome P450 3A4 inhibitors may increase MMAE exposure and the risk of adverse events. Approximately 3% of patients developed antitherapeutic antibodies against enfortumab vedotin 1.25 mg/kg. These findings support enfortumab vedotin 1.25 mg/kg monotherapy on days 1, 8, and 15 of a 28-day cycle. No dose adjustments are required for patients with renal impairment or mild hepatic impairment, or by race/ethnicity.


Subject(s)
Antibodies, Monoclonal , Immunoconjugates , Nectins , Humans , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Immunoconjugates/pharmacokinetics , Immunoconjugates/administration & dosage , Immunoconjugates/pharmacology , Immunoconjugates/adverse effects , Immunoconjugates/therapeutic use , Oligopeptides/pharmacokinetics , Oligopeptides/administration & dosage , Oligopeptides/therapeutic use , Oligopeptides/pharmacology , Oligopeptides/adverse effects , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology , Dose-Response Relationship, Drug , Carcinoma, Transitional Cell/drug therapy , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
12.
J Immunother ; 47(5): 149-159, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38557756

ABSTRACT

Antibody-drug conjugates (ADCs) combine the high specificity of antibodies with the cytotoxicity of payloads and have great potential in pan-cancer immunotherapy. However, the current payloads for clinical uses have limited the therapeutic window due to their uncontrollable off-site toxicity. There is unmet needs to develop more potent ADC payloads with better safety and efficacy profiles. Nitric oxide (NO) is a special molecule that has low toxicity itself, which can kill tumor cells effectively when highly concentrated, has broad application prospects. Previously, we prepared for the first time an antibody-nitric oxide conjugate (ANC)-HN01, which showed inhibitory activity against hepatocellular carcinoma. However, the random conjugation method made HN01 highly heterogeneous and unstable. Here, we used site-specific conjugation-based engineered cysteine sites (CL-V211C) of anti-CD24 antibody to prepare a second-generation ANC with a drug-to-antibody ratio of 2. The homogeneous ANC, HN02 was stable in human plasma, shown in vitro bystander effect to neighboring cells and antiproliferative activity to CD24-targeted tumor cells. Compared with HN01, HN02 significantly prolonged the survival of tumor-bearing mice. In summary, we developed a stable and homogeneous site-specific conjugated ANC, which showed good antitumor activity and improved safety profile both in vitro and in vivo. This study provides new insight into the development of next generation of ADC candidates.


Subject(s)
Immunoconjugates , Nitric Oxide , Xenograft Model Antitumor Assays , Humans , Animals , Immunoconjugates/pharmacology , Immunoconjugates/chemistry , Immunoconjugates/therapeutic use , Mice , Nitric Oxide/metabolism , Cell Line, Tumor , CD24 Antigen/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/chemistry , Cell Proliferation/drug effects , Liver Neoplasms/drug therapy , Neoplasms/drug therapy
13.
ESMO Open ; 9(5): 102995, 2024 May.
Article in English | MEDLINE | ID: mdl-38636292

ABSTRACT

BACKGROUND: Fifteen to thirty percent of all patients with metastatic breast cancer (MBC) develop brain metastases (BCBMs). Recently, the antibody-drug conjugates (ADCs) sacituzumab govitecan (SG) and trastuzumab deruxtecan (T-DXd) have shown to be highly effective in the treatment of MBC. However, there are only limited data whether these macromolecules are also effective in patients with BCBMs. We therefore aimed to examine the efficacy of SG and T-DXd in patients with stable and active BCBMs in a multicenter real-world analysis. PATIENTS AND METHODS: Female patients with stable or active BCBMs who were treated with either SG or T-DXd at three breast centers in Germany before 30 June 2023 were included. As per local clinical praxis, chemotherapy efficacy was evaluated by whole-body computed tomography and cranial magnetic resonance imaging at baseline and at least every 3 months according to local standards. Growth dynamics of BCBMs were assessed by board-certified neuroradiologists. RESULTS: Of 26 patients, with a median of 2.5 prior therapy lines in the metastatic setting (range 2-15), 12 (43%) and 16 (57%) patients received SG and T-DXd, respectively. Out of the 12 patients who received SG, 2 (17%) were subsequently treated with T-DXd. Five out of 12 (42%) and 5 out of 16 (31%) patients treated with SG and T-DXd, respectively, had active BCBMs at treatment initiation. The intracranial disease control rate was 42% [95% confidence interval (CI) 13% to 71%] for patients treated with SG and 88% (95% CI 72% to 100%) for patients treated with T-DXd. After a median follow-up of 12.7 months, median intracranial progression-free survival was 2.7 months (95% CI 1.6-10.5 months) for SG and 11.2 months (95% CI 7.5-23.7 months) for T-DXd. CONCLUSIONS: SG and T-DXd showed promising clinical activity in both stable and active BCBMs. Further prospective clinical studies designed to investigate the efficacy of modern ADCs on active and stable BCBMs are urgently needed.


Subject(s)
Antibodies, Monoclonal, Humanized , Brain Neoplasms , Breast Neoplasms , Camptothecin , Immunoconjugates , Trastuzumab , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Middle Aged , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Adult , Aged , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Camptothecin/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Retrospective Studies
14.
Curr Oncol ; 31(4): 2316-2327, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38668075

ABSTRACT

The treatment landscape of genitourinary cancers has significantly evolved over the past few years. Renal cell carcinoma, bladder cancer, and prostate cancer are the most common genitourinary malignancies. Recent advancements have produced new targeted therapies, particularly antibody-drug conjugates (ADCs), due to a better understanding of the underlying oncogenic factors and molecular mechanisms involved. ADCs function as a 'drug delivery into the tumor' system. They are composed of an antigen-directed antibody linked to a cytotoxic drug that releases cytotoxic components after binding to the tumor cell's surface antigen. ADCs have been proven to be extremely promising in the treatment of several cancer types. For GU cancers, this novel treatment has only benefited patients with metastatic urothelial cancer (mUC). The rest of the GU cancer paradigm does not have any FDA-approved ADC treatment options available yet. In this study, we have thoroughly completed a narrative review of the current literature and summarized preclinical studies and clinical trials that evaluated the utility, activity, and toxicity of ADCs in GU cancers, the prospects of ADC development, and the ongoing clinical trials. Prospective clinical trials, retrospective studies, case reports, and scoping reviews were included.


Subject(s)
Immunoconjugates , Urogenital Neoplasms , Humans , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Urogenital Neoplasms/drug therapy , Male
15.
Target Oncol ; 19(3): 321-332, 2024 May.
Article in English | MEDLINE | ID: mdl-38683495

ABSTRACT

BACKGROUND: MEDI7247 is a first-in-class antibody-drug conjugate (ADC) consisting of an anti-sodium-dependent alanine-serine-cysteine transporter 2 antibody-conjugated to a pyrrolobenzodiazepine dimer. OBJECTIVE: This first-in-human phase 1 trial evaluated MEDI7247 in patients with hematological malignancies. PATIENTS AND METHODS: Adults with acute myeloid leukemia (AML), multiple myeloma (MM), or diffuse large B-cell lymphoma (DLBCL) relapsed or refractory (R/R) to standard therapies, or for whom no standard therapy exists, were eligible. Primary endpoints were safety and determination of the maximum tolerated dose (MTD). Secondary endpoints included assessments of antitumor activity, pharmacokinetics (PK), and immunogenicity. RESULTS: As of 26 March 2020, 67 patients were treated (AML: n = 27; MM: n = 18; DLBCL: n = 22). The most common MEDI7247-related adverse events (AEs) were thrombocytopenia (41.8%), neutropenia (35.8%), and anemia (28.4%). The most common treatment-related grade 3/4 AEs were thrombocytopenia (38.8%), neutropenia (34.3%), and anemia (22.4%). Anticancer activity (number of responders/total patients evaluated) was observed in 11/67 (16.4%) patients. No correlation was observed between ASCT2 expression and clinical response. Between-patient variability of systemic exposure of MEDI7247 ADC and total antibody were high (AUCinf geometric CV%: 62.3-134.2, and 74.8-126.1, respectively). SG3199 (PBD dimer) plasma concentrations were below the limit of quantification for all patients after Study Day 8. Anti-drug antibody (ADA) prevalence was 7.7%, ADA incidence was 1.9%, and persistent-positive ADA was 5.8%. CONCLUSIONS: Thrombocytopenia and neutropenia limited repeat dosing. Although limited clinical activity was detected, the dose-escalation phase was stopped early without establishing an MTD. The study was registered with ClinicalTrials.gov (NCT03106428).


Subject(s)
Hematologic Neoplasms , Immunoconjugates , Humans , Male , Female , Middle Aged , Aged , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Immunoconjugates/pharmacokinetics , Adult , Hematologic Neoplasms/drug therapy , Aged, 80 and over , Amino Acid Transport System ASC , Minor Histocompatibility Antigens
16.
Anticancer Res ; 44(5): 1837-1844, 2024 May.
Article in English | MEDLINE | ID: mdl-38677753

ABSTRACT

BACKGROUND/AIM: Although there are curative treatment options for non-muscle-invasive bladder cancer, the recurrence of this tumor is high. Therefore, novel targeted therapies are needed for the complete removal of bladder cancer cells in stages of localized disease, in order to avoid local recurrence, to spare bladder cancer patients from stressful and expensive treatment procedures and to increase their quality of life and life expectancy. This study tested a new approach for the photoimmunotherapy (PIT) of bladder cancer. MATERIALS AND METHODS: We generated a cysteine modified recombinant version of the antibody cetuximab targeting the epidermal growth factor receptor (EGFR) on the surface of bladder cancer cells. Then, we coupled the novel photoactivatable phthalocyanine dye WB692-CB1 via a maleimide linker to the free cysteines of the antibody. PIT was performed by incubating bladder cancer cells with the antibody dye conjugate followed by irradiation with visible red light. RESULTS: The conjugate was able to induce specific cytotoxicity in EGFR-positive bladder cancer cells in a light dose-dependent manner. Enhanced cytotoxicity in RT112 bladder cancer cells was evoked by addition of a second antibody dye conjugate targeting HER2 or by repeated cycles of PIT. CONCLUSION: Our new antibody dye conjugate targeting EGFR-expressing bladder cancer cells is a promising candidate for the future PIT of bladder cancer patients.


Subject(s)
ErbB Receptors , Immunoconjugates , Immunotherapy , Receptor, ErbB-2 , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , ErbB Receptors/immunology , ErbB Receptors/antagonists & inhibitors , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Immunotherapy/methods , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Cell Line, Tumor , Cetuximab/pharmacology , Cetuximab/therapeutic use , Cetuximab/chemistry , Phototherapy/methods
17.
Biomed Pharmacother ; 174: 116522, 2024 May.
Article in English | MEDLINE | ID: mdl-38565055

ABSTRACT

In recent decades, there has been a surge in the approval of monoclonal antibodies for treating a wide range of hematological and solid malignancies. These antibodies exhibit exceptional precision in targeting the surface antigens of tumors, heralding a groundbreaking approach to cancer therapy. Nevertheless, monoclonal antibodies alone do not show sufficient lethality against cancerous cells compared to chemotherapy. Consequently, a new class of anti-tumor medications, known as antibody-drug conjugates (ADCs), has been developed to bridge the divide between monoclonal antibodies and cytotoxic drugs, enhancing their therapeutic potential. ADCs are chemically synthesized by binding tumor-targeting monoclonal antibodies with cytotoxic payloads through linkers that are susceptible to cleavage by intracellular proteases. They combined the accurate targeting of monoclonal antibodies with the potent efficacy of cytotoxic chemotherapy drugs while circumventing systemic toxicity and boasting superior lethality over standalone targeted drugs. The human epidermal growth factor receptor (HER) family, which encompasses HER1 (also known as EGFR), HER2, HER3, and HER4, plays a key role in regulating cellular proliferation, survival, differentiation, and migration. HER2 overexpression in various tumors is one of the most frequently targeted antigens for ADC therapy in HER2-positive cancers. HER2-directed ADCs have emerged as highly promising treatment modalities for patients with HER2-positive cancers. This review focuses on three approved anti-HER2 ADCs (T-DM1, DS-8201a, and RC48) and reviews ongoing clinical trials and failed trials based on anti-HER2 ADCs. Finally, we address the notable challenges linked to ADC development and underscore potential future avenues for tackling these hurdles.


Subject(s)
Immunoconjugates , Neoplasms , Receptor, ErbB-2 , Humans , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Neoplasms/drug therapy , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
18.
J Transl Med ; 22(1): 362, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632563

ABSTRACT

BACKGROUND: HER3 (ErbB3), a member of the human epidermal growth factor receptor family, is frequently overexpressed in various cancers. Multiple HER3-targeting antibodies and antibody-drug conjugates (ADCs) were developed for the solid tumor treatment, however none of HER3-targeting agent has been approved for tumor therapy yet. We developed DB-1310, a HER3 ADC composed of a novel humanized anti-HER3 monoclonal antibody covalently linked to a proprietary DNA topoisomerase I inhibitor payload (P1021), and evaluate the efficacy and safety of DB-1310 in preclinical models. METHODS: The binding of DB-1310 to Her3 and other HER families were measured by ELISA and SPR. The competition of binding epitope for DB-1310 and patritumab was tested by FACS. The sensitivity of breast, lung, prostate and colon cancer cell lines to DB-1310 was evaluated by in vitro cell killing assay. In vivo growth inhibition study evaluated the sensitivity of DB-1310 to Her3 + breast, lung, colon and prostate cancer xenograft models. The safety profile was also measured in cynomolgus monkey. RESULTS: DB-1310 binds HER3 via a novel epitope with high affinity and internalization capacity. In vitro, DB-1310 exhibited cytotoxicity in numerous HER3 + breast, lung, prostate and colon cancer cell lines. In vivo studies in HER3 + HCC1569 breast cancer, NCI-H441 lung cancer and Colo205 colon cancer xenograft models showed DB-1310 to have dose-dependent tumoricidal activity. Tumor suppression was also observed in HER3 + non-small cell lung cancer (NSCLC) and prostate cancer patient-derived xenograft (PDX) models. Moreover, DB-1310 showed stronger tumor growth-inhibitory activity than patritumab deruxtecan (HER3-DXd), which is another HER3 ADC in clinical development at the same dose. The tumor-suppressive activity of DB-1310 synergized with that of EGFR tyrosine kinase inhibitor, osimertinib, and exerted efficacy also in osimertinib-resistant PDX model. The preclinical assessment of safety in cynomolgus monkeys further revealed DB-1310 to have a good safety profile with a highest non severely toxic dose (HNSTD) of 45 mg/kg. CONCLUSIONS: These finding demonstrated that DB-1310 exerted potent antitumor activities against HER3 + tumors in in vitro and in vivo models, and showed acceptable safety profiles in nonclinical species. Therefore, DB-1310 may be effective for the clinical treatment of HER3 + solid tumors.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Colonic Neoplasms , Immunoconjugates , Indoles , Lung Neoplasms , Prostatic Neoplasms , Pyrimidines , Topoisomerase I Inhibitors , Animals , Humans , Male , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Epitopes , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Lung Neoplasms/drug therapy , Macaca fascicularis/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Receptor, ErbB-3 , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , Xenograft Model Antitumor Assays
20.
Ars pharm ; 65(2): 146-158, mar. 2024. ilus, tab
Article in Spanish | IBECS | ID: ibc-231952

ABSTRACT

Introducción: el tratamiento del cáncer supone uno de los grandes desafíos a los que se enfrenta la sociedad cien-tífica actual. En esta lucha sanitaria, se desarrollan los anticuerpos conjugados a fármacos, capaces de lograr la muerte celular mediante el transporte y liberación de compuestos citotóxicos selectivamente sobre células tumorales. Se componen de un anticuerpo monoclonal (de naturaleza proteica) unido a un fármaco citotóxico (de carácter lipófilo) mediante un enlazador. Las formulaciones se han de diseñar para mantener dicha unión durante su almacenamiento y administración. Objetivo: identificar los medicamentos comercializados en España cuyo principio activo es un anticuerpo conjugado a fármaco, estudiando diferentes aspectos tecnofarmacéuticos, en especial los componentes de sus formulaciones. Método: dado que este tipo de medicamento pertenece al grupo ATC L01F, han sido identificados a través del bus-cador de la Agencia Española de Medicamentos y Productos Sanitarios. La consulta de sus fichas técnicas, artículos de revisión e investigación relacionados con el tema así como el Handbook of Pharmaceuticals Excipients, ha permitido realizar el estudio tecnofarmacéutico. Resultados: se han analizado distintos aspectos tecnofarmacéuticos: forma farmacéutica, vía de administración, conservación y, en especial, sus formulaciones. Se ha estudiado en profundidad la naturaleza del principio activo y los requisitos de las formulaciones en base a sus características. Conclusiones: los ocho anticuerpos conjugados a fármacos aprobados en España se presentan en forma de polvo liofilizado en vial que se deben almacenar entre 2-8 ºC. Para su administración, se reconstituyen obteniéndose inicialmente un concentrado, que posteriormente se diluye y administra en forma de perfusión intravenosa o goteo. Su formulación tipo incluye un lioprotector, un antiagregante, un regulador del pH y eventualmente antioxidantes o reductores de la viscosidad. (AU)


Introduction: cancer treatment is one of the great challenges facing today’s scientific society. In this health fight, drug-conjugated antibodies (ADCs) are being developed, drugs capable of causing cell death by transporting and releasing cytotoxic compounds into tumor cells. They are composed of a monoclonal antibody (of protein nature) linked to a cytotoxic drug (of lipophilic character) through a linker. Formulations must be designed to maintain this binding during storage and administration.Objective: identify the medicines marketed in Spain whose active ingredient is an antibody-drug conjugate, studying techno pharmaceutical aspects, especially the components of their formulations. Method: since this type of drugs belongs to the ATC group L01F, they have been identified through the search engine of the Spanish Agency of Medicines and Health Products. The search for their technical sheets, along with articles of review and research related to the topic, as well as the Handbook of Pharmaceuticals Excipients, has enabled the execution of the techno pharmaceutical study.the formulation of the tested conjugates to drugs marketed in Spain belonging to the ATC L01F group corresponding to “monoclonal antibodies and tested conjugated to drugs” identified through the search engine of the Spanish Agency of Medicines and Health Products has been studied. Results: different aspects of this group of drugs have been analyzed, such as the pharmaceutical form, the route of administration, conservation and especially the techno pharmaceutical formulation. The nature of the active ingredient and the requirements of the formulations based on their characteristics have been studied in depth. Conclusions: the eight antibody-drug conjugates approved in Spain are presented in the form of lyophilized powder in a vial and should be stored between 2-8 ºC... (AU)


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/pharmacology , Immunoconjugates/administration & dosage , Immunoconjugates/analysis , Immunoconjugates/pharmacology , Drug Compounding , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...