Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.541
Filter
1.
Se Pu ; 42(5): 410-419, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736384

ABSTRACT

Protein A affinity chromatographic materials are widely used in clinical medicine and biomedicine because of their specific interactions with immunoglobulin G (IgG). Both the characteristics of the matrix, such as its structure and morphology, and the surface modification method contribute to the affinity properties of the packing materials. The specific, orderly, and oriented immobilization of protein A can reduce its steric hindrance with the matrix and preserve its bioactive sites. In this study, four types of affinity chromatographic materials were obtained using agarose and polyglycidyl methacrylate (PGMA) spheres as substrates, and multifunctional epoxy and maleimide groups were used to fix protein A. The effects of the ethylenediamine concentration, reaction pH, buffer concentration, and other conditions on the coupling efficiency of protein A and adsorption performance of IgG were evaluated. Multifunctional epoxy materials were prepared by converting part of the epoxy groups of the agarose and PGMA matrices into amino groups using 0.2 and 1.6 mol/L ethylenediamine, respectively. Protein A was coupled to the multifunctional epoxy materials using 5 mmol/L borate buffer (pH 8) as the reaction solution. When protein A was immobilized on the substrates by maleimide groups, the agarose and PGMA substrates were activated with 25% (v/v) ethylenediamine for 16 h to convert all epoxy groups into amino groups. The maleimide materials were then converted into amino-modified materials by adding 3 mg/mL 3-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) dissolved in dimethyl sulfoxide (DMSO) and then suspended in 5 mmol/L borate buffer (pH 8). The maleimide groups reacted specifically with the C-terminal of the sulfhydryl group of recombinant protein A to achieve highly selective fixation on both the agarose and PGMA substrates. The adsorption performance of the affinity materials for IgG was improved by optimizing the bonding conditions of protein A, such as the matrix type, matrix particle size, and protein A content, and the adsorption properties of each affinity material for IgG were determined. The column pressure of the protein A affinity materials prepared using agarose or PGMA as the matrix via the maleimide method was subsequently evaluated at different flow rates. The affinity materials prepared with PGMA as the matrix exhibited superior mechanical strength compared with the materials prepared with agarose. Moreover, an excellent linear relationship between the flow rate and column pressure of 80 mL/min was observed for this affinity material. Subsequently, the effect of the particle size of the PGMA matrix on the binding capacity of IgG was investigated. Under the same protein A content, the dynamic binding capacity of the affinity materials on the PGMA matrix was higher when the particle size was 44-88 µm than when other particle sizes were used. The properties of the affinity materials prepared using the multifunctional epoxy and maleimide-modified materials were compared by synthesizing affinity materials with different protein A coupling amounts of 1, 2, 4, 6, 8, and 10 mg/mL. The dynamic and static binding capacities of each material for bovine IgG were then determined. The prepared affinity material was packed into a chromatographic column to purify IgG from bovine colostrum. Although all materials showed specific adsorption selectivity for IgG, the affinity material prepared by immobilizing protein A on the PGMA matrix with maleimide showed significantly better performance and achieved a higher dynamic binding capacity at a lower protein grafting amount. When the protein grafting amount was 15.71 mg/mL, the dynamic binding capacity of bovine IgG was 32.23 mg/mL, and the dynamic binding capacity of human IgG reached 54.41 mg/mL. After 160 cycles of alkali treatment, the dynamic binding capacity of the material reached 94.6% of the initial value, indicating its good stability. The developed method is appropriate for the production of protein A affinity chromatographic materials and shows great potential in the fields of protein immobilization and immunoadsorption material synthesis.


Subject(s)
Chromatography, Affinity , Staphylococcal Protein A , Chromatography, Affinity/methods , Staphylococcal Protein A/chemistry , Adsorption , Immunoglobulin G/chemistry , Polymethacrylic Acids/chemistry , Sepharose/chemistry
2.
J Am Chem Soc ; 146(19): 13455-13466, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703132

ABSTRACT

The classical complement pathway is activated by antigen-bound IgG antibodies. Monomeric IgG must oligomerize to activate complement via the hexameric C1q complex, and hexamerizing mutants of IgG appear as promising therapeutic candidates. However, structural data have shown that it is not necessary to bind all six C1q arms to initiate complement, revealing a symmetry mismatch between C1 and the hexameric IgG complex that has not been adequately explained. Here, we use DNA nanotechnology to produce specific nanostructures to template antigens and thereby spatially control IgG valency. These DNA-nanotemplated IgG complexes can activate complement on cell-mimetic lipid membranes, which enabled us to determine the effect of IgG valency on complement activation without the requirement to mutate antibodies. We investigated this using biophysical assays together with 3D cryo-electron tomography. Our data revealed the importance of interantigen distance on antibody-mediated complement activation, and that the cleavage of complement component C4 by the C1 complex is proportional to the number of ideally spaced antigens. Increased IgG valency also translated to better terminal pathway activation and membrane attack complex formation. Together, these data provide insights into how nanopatterning antigen-antibody complexes influence the activation of the C1 complex and suggest routes to modulate complement activation by antibody engineering. Furthermore, to our knowledge, this is the first time DNA nanotechnology has been used to study the activation of the complement system.


Subject(s)
Complement Activation , DNA , Immunoglobulin G , Nanostructures , Nanostructures/chemistry , Humans , DNA/chemistry , DNA/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/immunology
3.
J Chromatogr A ; 1726: 464975, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38735118

ABSTRACT

In conventional chromatographic ligand screening, underperforming ligands are often dismissed. However, this practice may inadvertently overlook potential opportunities. This study aims to investigate whether these underperforming ligands can be repurposed as valuable assets. Hydrophobic charge-induction chromatography (HCIC) is chosen as the validation target for its potential as an innovative chromatographic mode. A novel dual-ligand approach is employed, combining two suboptimal ligands (5-Aminobenzimidazole and Tryptamine) to explore enhanced performance and optimization prospects. Various dual-ligand HCIC resins with different ligand densities were synthesized by adjusting the ligand ratio and concentration. The resins were characterized to assess appearance, functional groups, and pore features using SEM, FTIR, and ISEC techniques. Performance assessments were conducted using single-ligand mode resins as controls, evaluating the selectivity against human immunoglobulin G and human serum albumin. Static adsorption experiments were performed to understand pH and salt influence on adsorption. Breakthrough experiments were conducted to assess dynamic adsorption capacity of the novel resin. Finally, chromatographic separation using human serum was performed to evaluate the purity and yield of the resin. Results indicated that the dual-ligand HCIC resin designed for human antibodies demonstrates exceptional selectivity, surpassing not only single ligand states but also outperforming certain high-performing ligand types, particularly under specific salt and pH conditions. Ultimately, a high yield of 83.9 % and purity of 96.7 % were achieved in the separation of hIgG from human serum with the dual-ligand HCIC, significantly superior to the single-ligand resins. In conclusion, through rational design and proper operational conditions, the dual-ligand mode can revitalize underutilized ligands, potentially introducing novel and promising chromatographic modes.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Immunoglobulin G , Ligands , Humans , Adsorption , Immunoglobulin G/chemistry , Immunoglobulin G/blood , Tryptamines/chemistry , Chromatography, Liquid/methods , Benzimidazoles/chemistry , Hydrogen-Ion Concentration
4.
Biotechnol J ; 19(5): e2400154, 2024 May.
Article in English | MEDLINE | ID: mdl-38719568

ABSTRACT

Maximizing product yield in biopharmaceutical manufacturing processes is a critical factor in determining the overall cost of goods, especially given the high value of these biological products. However, there has been relatively limited research on the quantitative analysis of protein losses due to adsorption and fouling during the different membrane filtration processes employed in typical downstream operations. This study aims to provide a comprehensive analysis of protein loss in the range of membrane systems used in downstream processing including clarification, virus removal filtration, ultrafiltration/diafiltration for formulation, and final sterile filtration, all using commercially available membranes with three model proteins (bovine serum albumin, human serum albumin, and immunoglobulin G). The correlation between protein loss and various parameters (i.e., protein type, protein concentration, throughput, membrane morphology, and protein removal mechanism) was also investigated. This study provides important insights into the nature of protein loss during membrane processes as well as a methodology for quantifying protein yield loss in bioprocesses.


Subject(s)
Membranes, Artificial , Ultrafiltration , Humans , Ultrafiltration/methods , Filtration/methods , Animals , Biological Products/chemistry , Serum Albumin, Bovine/chemistry , Immunoglobulin G/chemistry , Adsorption , Cattle , Serum Albumin, Human/chemistry
5.
Anal Chem ; 96(16): 6347-6355, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607313

ABSTRACT

The number of therapeutic monoclonal antibodies (mAbs) is growing rapidly due to their widespread use for treating various diseases and health conditions. Assessing the glycosylation profile of mAbs during production is essential to ensuring their safety and efficacy. This research aims to rapidly isolate and digest mAbs for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of glycans and monitoring of glycosylation patterns, potentially during manufacturing. Immobilization of an Fc region-specific ligand, oFc20, in a porous membrane enables the enrichment of mAbs from cell culture supernatant and efficient elution with an acidic solution. Subsequent digestion of the mAb eluate occurred in a pepsin-modified membrane within 5 min. The procedure does not require alkylation and desalting, greatly shortening the sample preparation time. Subsequent LC-MS/MS analysis identified 11 major mAb N-glycan proteoforms and assessed the relative peak areas of the glycosylated peptides. This approach is suitable for the glycosylation profiling of various human IgG mAbs, including biosimilars and different IgG subclasses. The total time required for this workflow is less than 2 h, whereas the conventional enzymatic release and labeling of glycans can take much longer. Thus, the integrated membranes are suitable for facilitating the analysis of mAb glycosylation patterns.


Subject(s)
Antibodies, Monoclonal , Tandem Mass Spectrometry , Glycosylation , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/analysis , Humans , Polysaccharides/analysis , Polysaccharides/chemistry , Chromatography, Liquid , Pepsin A/metabolism , Pepsin A/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Animals , Membranes, Artificial
6.
J Chromatogr A ; 1722: 464891, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608368

ABSTRACT

Particle size is a critical parameter of chromatographic resins that significantly affects protein separation. In this study, effects of resin particle sizes (31.26 µm, 59.85 µm and 85.22 µm named Aga-31, Aga-60 and Aga-85, respectively) on antibody adsorption capacity and separation performance of a hybrid biomimetic ligand were evaluated. Their performance was investigated through static adsorption and breakthrough assays to quantify static and dynamic binding capacity (Qmax and DBC). The static adsorption results revealed that the Qmax for hIgG was 152 mg/g resin with Aga-31, 151 mg/g resin with Aga-60, and 125 mg/g resin with Aga-85. Moreover, the DBC at 10% breakthrough for hIgG with a residence time of 2 min was determined to be 49.4 mg/mL for Aga-31, 45.9 mg/mL for Aga-60, and 38.9 mg/mL for Aga-85. The resins with smaller particle sizes exhibited significantly higher capacity compared to typical commercial agarose resins and a Protein A resin (MabSelect SuRe). Furthermore, the Aga-31 resin with the hybrid biomimetic ligand demonstrated exceptional performance in terms of IgG purity (>98%) and recovery (>96%) after undergoing 20 separation cycles from CHO cell supernatant. These findings are helpful in further chromatographic resin design for the industrial application of antibody separation and purification.


Subject(s)
Immunoglobulin G , Particle Size , Adsorption , Ligands , Immunoglobulin G/chemistry , Immunoglobulin G/isolation & purification , Chromatography, Affinity/methods , Biomimetic Materials/chemistry , Animals , Biomimetics/methods , Cricetulus , CHO Cells
7.
J Chromatogr A ; 1722: 464873, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38626540

ABSTRACT

3D printing offers the unprecedented ability to fabricate chromatography stationary phases with bespoke 3D morphology as opposed to traditional packed beds of spherical beads. The restricted range of printable materials compatible with chromatography is considered a setback for its industrial implementation. Recently, we proposed a novel ink that exhibits favourable printing performance (printing time ∼100 mL/h, resolution ∼200 µm) and broadens the possibilities for a range of chromatography applications thanks to its customisable surface chemistry. In this work, this ink was used to fabricate 3D printed ordered columns with 300 µm channels for the capture and polishing of therapeutic monoclonal antibodies. The columns were initially assessed for leachables and extractables, revealing no material propensity for leaching. Columns were then functionalised with protein A and SO3 ligands to obtain affinity and strong cation exchangers, respectively. 3D printed protein A columns showed >85 % IgG recovery from harvested cell culture fluid with purities above 98 %. Column reusability was evaluated over 20 cycles showing unaffected performance. Eluate samples were analysed for co-eluted protein A fragments, host cell protein and aggregates. Results demonstrate excellent HCP clearance (logarithmic reduction value of > 2.5) and protein A leakage in the range of commercial affinity resins (<100 ng/mg). SO3 functionalised columns employed for polishing achieved removal of leaked Protein A (down to 10 ng/mg) to meet regulatory expectations of product purity. This work is the first implementation of 3D printed columns for mAb purification and provides strong evidence for their potential in industrial bioseparations.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Immunoglobulin G , Printing, Three-Dimensional , Staphylococcal Protein A , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/chemistry , Staphylococcal Protein A/chemistry , Immunoglobulin G/isolation & purification , Immunoglobulin G/chemistry , CHO Cells , Chromatography, Affinity/methods , Animals , Chromatography, Ion Exchange/methods , Ink
8.
ACS Sens ; 9(4): 1756-1762, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38620013

ABSTRACT

Biosensing technologies are often described to provide facile, sensitive, and minimally to noninvasive detection of molecular analytes across diverse scientific, environmental, and clinical diagnostic disciplines. However, commercialization has been very limited mostly due to the difficulty of biosensor reconfiguration for different analyte(s) and limited high-throughput capabilities. The immobilization of different biomolecular probes (e.g., antibodies, peptides, and aptamers) requires the sensor surface chemistry to be tailored to provide optimal probe coupling, orientation, and passivation and prevent nonspecific interactions. To overcome these challenges, here we report the development of a solution-phase biosensor consisting of an engineered aptamer, the AptaShield, capable of universally binding to any antigen recognition site (Fab') of fluorescently labeled immunoglobulins (IgG) produced in rabbits. The resulting AptaShield biosensor relies on a low affinity dynamic equilibrium between the fluorescently tagged aptamer and IgG to generate a specific Förster resonance energy transfer (FRET) signal. As the analyte binds to the IgG, the AptaShield DNA aptamer-IgG complex dissociates, leading to an analyte concentration-dependent decrease of the FRET signal. The biosensor demonstrates high selectivity, specificity, and reproducibility for analyte quantification in different biological fluids (e.g., urine and blood serum) in a one-step and low sample volume (0.5-6.25 µL) format. The AptaShield provides a universal signal transduction mechanism as it can be coupled to different rabbit antibodies without the need for aptamer modification, therefore representing a robust high-throughput solution-phase technology suitable for point-of-care applications, overcoming the current limitations of gold standard enzyme-linked immunosorbent assays (ELISA) for molecular profiling.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Fluorescence Resonance Energy Transfer , Immunoglobulin G , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Fluorescence Resonance Energy Transfer/methods , Immunoglobulin G/blood , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Animals , Rabbits , Signal Transduction , High-Throughput Screening Assays/methods
9.
Biomater Adv ; 160: 213839, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579521

ABSTRACT

Pulmonary delivery of protein therapeutics poses significant challenges that have not been well addressed in the research literature or practice. In fact, there is currently only one commercial protein therapeutic that is delivered through aerosolization and inhalation. In this study, we propose a drug delivery strategy that enables a high-concentration dosage for the pulmonary delivery of antibodies as an aerosolizable solid powder with desired stability. We utilized zwitterionic polymers for their promising properties as drug delivery vehicles and synthesized swellable, biodegradable poly(sulfo-betaine) (pSB) microparticles. The microparticles were loaded with Immunoglobulin G (IgG) as a model antibody. We quantified the microparticle size and morphology, and the particles were found to have an average diameter of 1.6 µm, falling within the optimal range (~1-5 µm) for pulmonary drug delivery. In addition, we quantified the impact of the crosslinker to monomer ratio on particle morphology and drug loading capacity. The results showed that there is a trade-off between desired morphology and drug loading capacity as the crosslinker density increases. In addition, the particles were aerosolized, and our data indicated that the particles remained intact and retained their initial morphology and size after aerosolization. The combination of morphology, particle size, antibody loading capacity, low cytotoxicity, and ease of aerosolization support the potential use of these particles for pulmonary delivery of protein therapeutics.


Subject(s)
Aerosols , Betaine , Betaine/analogs & derivatives , Particle Size , Betaine/chemistry , Humans , Administration, Inhalation , Immunoglobulin G/chemistry , Immunoglobulin G/administration & dosage , Drug Delivery Systems/methods , Polymers/chemistry , Drug Carriers/chemistry , Animals , Antibodies/chemistry , Microspheres
10.
Mol Pharm ; 21(5): 2250-2271, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38661388

ABSTRACT

Charges and their contribution to protein-protein interactions are essential for the key structural and dynamic properties of monoclonal antibody (mAb) solutions. In fact, they influence the apparent molecular weight, the static structure factor, the collective diffusion coefficient, or the relative viscosity, and their concentration dependence. Further, charges play an important role in the colloidal stability of mAbs. There exist standard experimental tools to characterize mAb net charges, such as the measurement of the electrophoretic mobility, the second virial coefficient, or the diffusion interaction parameter. However, the resulting values are difficult to directly relate to the actual overall net charge of the antibody and to theoretical predictions based on its known molecular structure. Here, we report the results of a systematic investigation of the solution properties of a charged IgG1 mAb as a function of concentration and ionic strength using a combination of electrophoretic measurements, static and dynamic light scattering, small-angle X-ray scattering, and tracer particle-based microrheology. We analyze and interpret the experimental results using established colloid theory and coarse-grained computer simulations. We discuss the potential and limits of colloidal models for the description of the interaction effects of charged mAbs, in particular pointing out the importance of incorporating shape and charge anisotropy when attempting to predict structural and dynamic solution properties at high concentrations.


Subject(s)
Antibodies, Monoclonal , Colloids , Immunoglobulin G , Colloids/chemistry , Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Viscosity , Solutions/chemistry , Osmolar Concentration , Scattering, Small Angle , Dynamic Light Scattering , Computer Simulation , X-Ray Diffraction/methods
11.
Food Chem ; 449: 139272, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604030

ABSTRACT

This study presents a novel approach toward the one-pot green synthesis of ZIF-8/IgG composite, focusing on its precise orientation and protection of the anti-aflatoxins antibody. The antibody orientation is achieved through the specific binding of IgG to the Fc region of the antibody, while the antibody protection is accomplished by the structural change restriction of ZIF-8 framework to the antibody. Consequently, the antibody exhibits enhanced target capability and significantly improved tolerance to organic solvents. The ZIF-8/IgG/anti-AFT was employed for the purification and detection of AFTs by coupling with UPLC. Under optimized conditions, the recoveries of spiked AFTs in peanut oils are between 86.1% and 106.4%, with relative standard deviations (RSDs) ranging from 0.8% to 8.8%. The linearity range is 0.5-20.0 ng for AFB1 and AFG1, 0.125-5.0 ng for AFB2 and AFG2, the limit of detection is 0.1 ng for AFB1 and AFG1, 0.03 ng for AFB2 and AFG2.


Subject(s)
Aflatoxins , Food Contamination , Green Chemistry Technology , Immunoglobulin G , Peanut Oil , Aflatoxins/analysis , Aflatoxins/immunology , Aflatoxins/isolation & purification , Food Contamination/analysis , Peanut Oil/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/chemistry , Antibodies/immunology , Antibodies/chemistry , Chromatography, High Pressure Liquid
12.
Mol Pharm ; 21(5): 2212-2222, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38572979

ABSTRACT

The development, storage, transport, and subcutaneous delivery of highly concentrated monoclonal antibody formulations pose significant challenges due to the high solution viscosity and low diffusion of the antibody molecules in crowded environments. These issues often stem from the self-associating behavior of the antibody molecules, potentially leading to aggregation. In this work, we used a dissipative particle dynamics-based coarse-grained model to investigate the diffusion behavior of IgG1 antibody molecules in aqueous solutions with 15 and 32 mM NaCl and antibody concentrations ranging from 10 to 400 mg/mL. We determined the coarse-grained interaction parameters by matching the calculated structure factor with the computational and experimental data from the literature. Our results indicate Fickian diffusion for antibody concentrations of 10 and 25 mg/mL and anomalous diffusion for concentrations exceeding 50 mg/mL. The anomalous diffusion was observed for ∼0.33 to 0.4 µs, followed by Fickian diffusion for all antibody concentrations. We observed a strong linear correlation between the diffusion behavior of the antibody molecules (diffusion coefficient D and anomalous diffusion exponent α) and the amount of aggregates present in the solution and between the amount of aggregates and the Coulomb interaction energy. The investigation of underlying mechanisms for anomalous diffusion revealed that in crowded environments at high antibody concentrations, the attractive interaction between electrostatically complementary regions of the antibody molecules could further bring the neighboring molecules closer to one another, ultimately resulting in aggregate formation. Further, the Coulomb attraction can continue to draw more molecules together, forming larger aggregates.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Diffusion , Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Viscosity , Protein Aggregates
13.
Nanoscale ; 16(19): 9348-9360, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38651870

ABSTRACT

Understanding nanoparticle-cell interaction is essential for advancing research in nanomedicine and nanotoxicology. Apart from the transcytotic pathway mediated by cellular recognition and energetics, nanoparticles (including nanomedicines) may harness the paracellular route for their transport by inducing endothelial leakiness at cadherin junctions. This phenomenon, termed as NanoEL, is correlated with the physicochemical properties of the nanoparticles in close association with cellular signalling, membrane mechanics, as well as cytoskeletal remodelling. However, nanoparticles in biological systems are transformed by the ubiquitous protein corona and yet the potential effect of the protein corona on NanoEL remains unclear. Using confocal fluorescence microscopy, biolayer interferometry, transwell, toxicity, and molecular inhibition assays, complemented by molecular docking, here we reveal the minimal to significant effects of the anionic human serum albumin and fibrinogen, the charge neutral immunoglobulin G as well as the cationic lysozyme on negating gold nanoparticle-induced endothelial leakiness in vitro and in vivo. This study suggests that nanoparticle-cadherin interaction and hence the extent of NanoEL may be partially controlled by pre-exposing the nanoparticles to plasma proteins of specific charge and topology to facilitate their biomedical applications.


Subject(s)
Cadherins , Fibrinogen , Gold , Metal Nanoparticles , Protein Corona , Protein Corona/chemistry , Protein Corona/metabolism , Humans , Cadherins/metabolism , Cadherins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Fibrinogen/chemistry , Fibrinogen/metabolism , Animals , Human Umbilical Vein Endothelial Cells , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Muramidase/chemistry , Muramidase/metabolism , Molecular Docking Simulation , Mice
14.
Nat Commun ; 15(1): 3600, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678029

ABSTRACT

Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25. Despite having reduced binding, the IgG3 version promotes stronger phagocytosis of bacteria. Using atomic simulations, we show that IgG3's Fc tail has extensive movement in 3D space due to its extended hinge region, possibly facilitating interactions with immune cells. We replaced the hinge of IgG1 with four different IgG3-hinge segment subclasses, IgGhxx. Hinge-engineering does not diminish binding as with IgG3 but enhances opsonic function, where a 47 amino acid hinge is comparable to IgG3 in function. IgGh47 shows improved protection against S. pyogenes in a systemic infection mouse model, suggesting that IgGh47 has promise as a preclinical therapeutic candidate. Importantly, the enhanced opsonic function of IgGh47 is generalizable to diverse S. pyogenes strains from clinical isolates. We generated IgGh47 versions of anti-SARS-CoV-2 mAbs to broaden the biological applicability, and these also exhibit strongly enhanced opsonic function compared to the IgG1 subclass. The improved function of the IgGh47 subclass in two distant biological systems provides new insights into antibody function.


Subject(s)
COVID-19 , Immunoglobulin Fc Fragments , Immunoglobulin G , SARS-CoV-2 , Streptococcus pyogenes , Animals , Humans , Mice , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Mice, Inbred BALB C , Phagocytosis , Protein Engineering/methods , SARS-CoV-2/immunology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcus pyogenes/immunology
15.
J Biol Chem ; 300(5): 107245, 2024 May.
Article in English | MEDLINE | ID: mdl-38569940

ABSTRACT

The IgG-specific endoglycosidases EndoS and EndoS2 from Streptococcus pyogenes can remove conserved N-linked glycans present on the Fc region of host antibodies to inhibit Fc-mediated effector functions. These enzymes are therefore being investigated as therapeutics for suppressing unwanted immune activation, and have additional application as tools for antibody glycan remodeling. EndoS and EndoS2 differ in Fc glycan substrate specificity due to structural differences within their catalytic glycosyl hydrolase domains. However, a chimeric EndoS enzyme with a substituted glycosyl hydrolase from EndoS2 loses catalytic activity, despite high structural homology between the two enzymes, indicating either mechanistic divergence of EndoS and EndoS2, or improperly-formed domain interfaces in the chimeric enzyme. Here, we present the crystal structure of the EndoS2-IgG1 Fc complex determined to 3.0 Å resolution. Comparison of complexed and unliganded EndoS2 reveals relative reorientation of the glycosyl hydrolase, leucine-rich repeat and hybrid immunoglobulin domains. The conformation of the complexed EndoS2 enzyme is also different when compared to the earlier EndoS-IgG1 Fc complex, and results in distinct contact surfaces between the two enzymes and their Fc substrate. These findings indicate mechanistic divergence of EndoS2 and EndoS. It will be important to consider these differences in the design of IgG-specific enzymes, developed to enable customizable antibody glycosylation.


Subject(s)
Bacterial Proteins , Glycoside Hydrolases , Immunoglobulin G , Streptococcus pyogenes , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Streptococcus pyogenes/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Humans , Protein Conformation , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/metabolism , Substrate Specificity , Models, Molecular
16.
PLoS One ; 19(4): e0300964, 2024.
Article in English | MEDLINE | ID: mdl-38557973

ABSTRACT

Human immunoglobulin G (IgG) exists as four subclasses IgG1-4, each of which has two Fab subunits joined by two hinges to a Fc subunit. IgG4 has the shortest hinge with 12 residues. The Fc subunit has two glycan chains, but the importance of glycosylation is not fully understood in IgG4. Here, to evaluate the stability and structure of non-glycosylated IgG4, we performed a multidisciplinary structural study of glycosylated and deglycosylated human IgG4 A33 for comparison with our similar study of human IgG1 A33. After deglycosylation, IgG4 was found to be monomeric by analytical ultracentrifugation; its sedimentation coefficient of 6.52 S was reduced by 0.27 S in reflection of its lower mass. X-ray and neutron solution scattering showed that the overall Guinier radius of gyration RG and its cross-sectional values after deglycosylation were almost unchanged. In the P(r) distance distribution curves, the two M1 and M2 peaks that monitor the two most common distances within IgG4 were unchanged following deglycosylation. Further insight from Monte Carlo simulations for glycosylated and deglycosylated IgG4 came from 111,382 and 117,135 possible structures respectively. Their comparison to the X-ray and neutron scattering curves identified several hundred best-fit models for both forms of IgG4. Principal component analyses showed that glycosylated and deglycosylated IgG4 exhibited different conformations from each other. Within the constraint of unchanged RG and M1-M2 values, the glycosylated IgG4 models showed more restricted Fc conformations compared to deglycosylated IgG4, but no other changes. Kratky plots supported this interpretation of greater disorder upon deglycosylation, also observed in IgG1. Overall, these more variable Fc conformations may demonstrate a generalisable impact of deglycosylation on Fc structures, but with no large conformational changes in IgG4 unlike those seen in IgG1.


Subject(s)
Immunoglobulin Fc Fragments , Immunoglobulin G , Humans , Immunoglobulin G/chemistry , Cross-Sectional Studies , Models, Molecular , Immunoglobulin Fc Fragments/chemistry
17.
Bioconjug Chem ; 35(4): 465-471, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38499390

ABSTRACT

A versatile chemo-enzymatic tool to site-specifically modify native (nonengineered) antibodies is using transglutaminase (TGase, E.C. 2.3.2.13). With various amines as cosubstrates, this enzyme converts the unsubstituted side chain amide of glutamine (Gln or Q) in peptides and proteins into substituted amides (i.e., conjugates). A pleasant surprise is that only a single conserved glutamine (Gln295) in the Fc region of IgG is modified by microbial TGase (mTGase, EC 2.3.2.13), thereby providing a highly specific and generally applicable conjugation method. However, prior to the transamidation (access to the glutamine residue by mTGase), the steric hindrance from the nearby conserved N-glycan (Asn297 in IgG1) must be reduced. In previous approaches, amidase (PNGase F, EC 3.5.1.52) was used to completely remove the N-glycan. However, PNGase F also converts a net neutral asparagine (Asn297) to a negatively charged aspartic acid (Asp297). This charge alteration may markedly change the structure, function, and immunogenicity of an IgG antibody. In contrast, in our new method presented herein, the N-glycan is trimmed by an endoglycosidase (EndoS2, EC 3.2.1.96), hence retaining both the core N-acetylglucosamine (GlcNAc) moiety and the neutral asparaginyl amide. The trimmed glycan also reduces or abolishes Fc receptor-mediated functions, which results in better imaging agents by decreasing nonspecific binding to other cells (e.g., immune cells). Moreover, the remaining core glycan allows further derivatization such as glycan remodeling and dual conjugation. Practical and robust, our method generates conjugates in near quantitative yields, and both enzymes are commercially available.


Subject(s)
Glutamine , Glycoside Hydrolases , Glutamine/chemistry , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Transglutaminases/metabolism , Immunoglobulin G/chemistry , Polysaccharides/chemistry , Amides
18.
MAbs ; 16(1): 2334783, 2024.
Article in English | MEDLINE | ID: mdl-38536719

ABSTRACT

Aggregates are recognized as one of the most critical product-related impurities in monoclonal antibody (mAb)-based therapeutics due to their negative impact on the stability and safety of the drugs. So far, investigational efforts have primarily focused on understanding the causes and effects of mAb self-aggregation, including both internal and external factors. In this study, we focused on understanding mAb stability in the presence of its monovalent fragment, formed through hinge cleavage and loss of one Fab unit (referred to as "Fab/c"), a commonly observed impurity during manufacturing and stability. The Fab/c fragments were generated using a limited IgdE digestion that specifically cleaves above the IgG1 mAb hinge region, followed by hydrophobic interaction chromatographic (HIC) enrichment. Two IgG1 mAbs containing different levels of Fab/c fragments were incubated under thermally accelerated conditions. A method based on size exclusion chromatography coupled with native mass spectrometry (SEC-UV-native MS) was developed and used to characterize the stability samples and identified the formation of heterogeneous dimers, including intact dimer, mAb-Fab/c dimer, Fab/c-Fab/c dimer, and mAb-Fab dimer. Quantitative analyses on the aggregation kinetics suggested that the impact of Fab/c fragment on the aggregation rate of individual dimer differs between a glycosylated mAb (mAb1) and a non-glycosylated mAb (mAb2). An additional study of deglycosylated mAb1 under 25°C accelerated stability conditions suggests no significant impact of the N-glycan on mAb1 total aggregation rate. This study also highlighted the power of SEC-UV-native MS method in the characterization of mAb samples with regard to separating, identifying, and quantifying mAb aggregates and fragments.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Immunoglobulin Fab Fragments , Chromatography, Gel , Mass Spectrometry/methods
19.
Langmuir ; 40(11): 5858-5868, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38445553

ABSTRACT

Throughout bioprocessing, transportation, and storage, therapeutic monoclonal antibodies (mAbs) experience stress conditions that may cause protein unfolding and/or chemical modifications. Such structural changes may lead to the formation of aggregates, which reduce mAb potency and may cause harmful immunogenic responses in patients. Therefore, aggregates need to be detected and removed or ideally prevented from forming. Air-liquid interfaces, which arise during various stages of bioprocessing, are one of the stress factors causing mAb aggregation. In this study, the behavior of an immunoglobulin G (IgG) at the air-liquid interface was investigated under flow using macro attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging. This chemically specific imaging technique allows observation of adsorption of IgG to the air-liquid interface and detection of associated secondary structural changes. Chemical images revealed that IgG rapidly accumulated around an injected air bubble under flow at 45 °C; however, no such increase was observed at 25 °C. Analysis of the second derivative spectra of IgG at the air-liquid interface revealed changes in the protein secondary structure associated with increased intermolecular ß-sheet content, indicative of aggregated IgG. The addition of 0.01% w/v polysorbate 80 (PS80) reduced the amount of IgG at the air-liquid interface in a static setup at 30 °C; however, this protective effect was lost at 45 °C. These results suggest that the presence of air-liquid interfaces under flow may be detrimental to mAb stability at elevated temperatures and demonstrate the power of ATR-FTIR spectroscopic imaging for studying the structural integrity of mAbs under bioprocessing conditions.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Humans , Antibodies, Monoclonal/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Protein Structure, Secondary , Immunoglobulin G/chemistry , Protein Unfolding , Ataxia Telangiectasia Mutated Proteins
20.
Eur Biophys J ; 53(3): 159-170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493432

ABSTRACT

Protein-protein interactions (PPI) have emerged as valuable targets in medicinal chemistry due to their key roles in important biological processes. The modulation of PPI by small peptides offers an excellent opportunity to develop drugs against human diseases. Here, we exploited the knowledge of the binding interface of the IgG-protein G complex (PDB:1FCC) for designing peptides that can inhibit these complexes. Herein, we have designed several closely related peptides, and the comparison of results from experiments and computational studies indicated that all the peptides bind close to the expected binding site on IgG and the complexes are stable. A minimal sequence consisting of 11 amino acids (P5) with binding constants in the range of 100 nM was identified. We propose that the main affinity differences across the series of peptides arose from the presence of polar amino acid residues. Further, the molecular dynamic studies helped to understand the dynamic properties of complexes in terms of flexibility of residues and structural stability at the interface. The ability of P5 to compete with the protein G in recognizing IgG can help in the detection and purification of antibodies. Further, it can serve as a versatile tool for a better understanding of protein-protein interactions.


Subject(s)
Amino Acids , Peptides , Humans , Peptides/chemistry , Amino Acid Sequence , Binding Sites , Amino Acids/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Protein Binding , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...