Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28.960
Filter
1.
Iran J Allergy Asthma Immunol ; 23(2): 158-167, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822511

ABSTRACT

Patients with inborn errors of immunity (IEI) are among the high-risk groups regarding COVID-19. Receiving booster doses (third and fourth) in addition to the standard doses is recommended in these patients. This study investigated the antibody response before and after a booster dose of Sinopharm vaccine in IEI patients.  Thirty patients (>12 years) with antibody deficiencies, referred to Imam Khomeini Hospital and Children's Medical Center in Tehran, were enrolled in this prospective cross-sectional study. All patients were fully vaccinated with the BBIBP-CorV vaccine (2 doses of Sinopharm). Initial measurements of anti-receptor-binding domain (anti-RBD) and anti-nucleocapsid (anti-N) IgG antibody responses were conducted by enzyme-linked immunosorbent assay (ELISA). Subsequently, all patients received a booster dose of the vaccine. Four to six weeks after booster injection, the levels of antibodies were re-evaluated.  Twenty patients with common variable immunodeficiency (CVID), 7 cases with agammaglobulinemia and 3 patients with hyper IgM syndrome were studied. Anti-RBD IgG and anti-N IgG antibodies increased in all patients after the booster. Our results indicated the need of receiving booster doses of the COVID-19 vaccine in patients with antibody deficiencies, even for enhancing humoral immune response specially in patients with CVID.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunoglobulin G , SARS-CoV-2 , Humans , Male , COVID-19/immunology , COVID-19/prevention & control , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Adult , Immunoglobulin G/blood , Immunoglobulin G/immunology , Cross-Sectional Studies , Adolescent , Iran , Prospective Studies , Antibody Formation/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Child , Middle Aged , Young Adult
2.
Cancer Med ; 13(11): e7304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826094

ABSTRACT

BACKGROUND: The surge in omicron variants has caused nationwide breakthrough infections in mainland China since the December 2022. In this study, we report the neutralization profiles of serum samples from the patients with breast cancer and the patients with liver cancer who had contracted subvariant breakthrough infections. METHODS: In this real-world study, we enrolled 143 COVID-19-vaccinated (81 and 62 patients with breast and liver cancers) and 105 unvaccinated patients with cancer (58 and 47 patients with breast and liver cancers) after omicron infection. Anti-spike receptor binding domain (RBD) IgGs and 50% pseudovirus neutralization titer (pVNT50) for the preceding (wild type), circulating omicron (BA.4-BA.5, and BF.7), and new subvariants (XBB.1.5) were comprehensively analyzed. RESULTS: Patients with liver cancer receiving booster doses had higher levels of anti-spike RBD IgG against circulating omicron (BA.4-BA.5, and BF.7) and a novel subvariant (XBB.1.5) compared to patients with breast cancer after breakthrough infection. Additionally, all vaccinated patients produced higher neutralizing antibody titers against circulating omicron (BA.4-BA.5, and BF.7) compared to unvaccinated patients. However, the unvaccinated patients produced higher neutralizing antibody against XBB.1.5 than vaccinated patients after Omicron infection, with this trend being more pronounced in breast cancer than in liver cancer patients. Moreover, we found that there was no correlation between anti-spike RBD IgG against wildtype virus and the neutralizing antibody titer, but a positive correlation between anti-spike RBD IgG and the neutralizing antibody against XBB.1.5 was found in unvaccinated patients. CONCLUSION: Our study found that there may be differences in vaccine response and protective effect against COVID-19 infection in patients with liver and breast cancer. Therefore, we recommend that COVID-19 vaccine strategies should be optimized based on vaccine components and immunology profiles of different patients with cancer.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Breast Neoplasms , COVID-19 Vaccines , COVID-19 , Liver Neoplasms , SARS-CoV-2 , Humans , Female , COVID-19/immunology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Liver Neoplasms/virology , Liver Neoplasms/immunology , Liver Neoplasms/epidemiology , Breast Neoplasms/immunology , Breast Neoplasms/epidemiology , Breast Neoplasms/virology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Middle Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , China/epidemiology , COVID-19 Vaccines/immunology , Adult , Aged , Spike Glycoprotein, Coronavirus/immunology , Male , Disease Outbreaks , Immunoglobulin G/blood , Immunoglobulin G/immunology
3.
J Clin Invest ; 134(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828725

ABSTRACT

Although antibody-mediated lung damage is a major factor in transfusion-related acute lung injury (ALI), autoimmune lung disease (for example, coatomer subunit α [COPA] syndrome), and primary graft dysfunction following lung transplantation, the mechanism by which antigen-antibody complexes activate complement to induce lung damage remains unclear. In this issue of the JCI, Cleary and colleagues utilized several approaches to demonstrate that IgG forms hexamers with MHC class I alloantibodies. This hexamerization served as a key pathophysiological mechanism in alloimmune lung injury models and was mediated through the classical pathway of complement activation. Additionally, the authors provided avenues for exploring therapeutics for this currently hard-to-treat clinical entity that has several etiologies but a potentially focused mechanism.


Subject(s)
Acute Lung Injury , Complement Activation , Immunoglobulin G , Humans , Immunoglobulin G/immunology , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Complement Activation/immunology , Animals , Isoantibodies/immunology , Protein Multimerization/immunology , Histocompatibility Antigens Class I/immunology , Antigen-Antibody Complex/immunology
4.
Front Immunol ; 15: 1376456, 2024.
Article in English | MEDLINE | ID: mdl-38827736

ABSTRACT

Background: Anti-IgLON5 disease is a rare chronic autoimmune disorder characterized by IgLON5 autoantibodies predominantly of the IgG4 subclass. Distinct pathogenic effects were described for anti-IgLON5 IgG1 and IgG4, however, with uncertain clinical relevance. Methods: IgLON5-specific IgG1-4 levels were measured in 46 sera and 20 cerebrospinal fluid (CSF) samples from 13 HLA-subtyped anti-IgLON5 disease patients (six females, seven males) using flow cytometry. Intervals between two consecutive serum or CSF samplings (31 and 10 intervals, respectively) were categorized with regard to the immunomodulatory treatment active at the end of the interval, changes of anti-IgLON5 IgG1 and IgG4 levels, and disease severity. Intrathecal anti-IgLON5 IgG4 synthesis (IS) was assessed using a quantitative method. Results: The median age at onset was 66 years (range: 54-75), disease duration 10 years (range: 15-156 months), and follow-up 25 months (range: 0-83). IgLON5-specific IgG4 predominance was observed in 38 of 46 (83%) serum and 11 of 20 (55%) CSF samples. Anti-IgLON5 IgG4 levels prior clinical improvement in CSF but not serum were significantly lower than in those prior stable/progressive disease. Compared to IgLON5 IgG4 levels in serum, CSF levels in HLA-DRB1*10:01 carriers were significantly higher than in non-carriers. Indeed, IgLON5-specific IgG4 IS was demonstrated not only in four of five HLA-DRB1*10:01 carriers but also in one non-carrier. Immunotherapy was associated with decreased anti-IgGLON5 IgG serum levels. In CSF, lower anti-IgLON5 IgG was associated with immunosuppressive treatments used in combination, that is, corticosteroids and/or azathioprine plus intravenous immunoglobulins or rituximab. Conclusion: Our findings might indicate that CSF IgLON5-specific IgG4 is frequently produced intrathecally, especially in HLA-DRB1*10:01 carriers. Intrathecally produced IgG4 may be clinically relevant. While many immunotherapies reduce serum IgLON5 IgG levels, more intense immunotherapies induce clinical improvement and may be able to target intrathecally produced anti-IgLON5 IgG. Further studies need to confirm whether anti-IgLON5 IgG4 IS is a suitable prognostic and predictive biomarker in anti-IgLON5 disease.


Subject(s)
Autoantibodies , Immunoglobulin G , Humans , Female , Immunoglobulin G/cerebrospinal fluid , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Aged , Autoantibodies/blood , Autoantibodies/immunology , Autoantibodies/cerebrospinal fluid , Cell Adhesion Molecules, Neuronal/immunology , HLA Antigens/immunology , Clinical Relevance
5.
Front Immunol ; 15: 1402000, 2024.
Article in English | MEDLINE | ID: mdl-38827747

ABSTRACT

Sialic acids as terminal sugar residues on cell surface or secreted proteins have many functional roles. In particular, the presence or absence of α2,6-linked sialic acid residues at the immunoglobulin G (IgG) Fc fragment can switch IgG effector functions from pro- to anti-inflammatory activity. IgG glycosylation is considered to take place inside the plasma blast/plasma cell while the molecule travels through the endoplasmic reticulum and Golgi apparatus before being secreted. However, more recent studies have suggested that IgG sialylation may occur predominantly post-antibody secretion. To what extent this extracellular IgG sialylation process contributes to overall IgG sialylation remains unclear, however. By generating bone marrow chimeric mice with a B cell-specific deletion of ST6Gal1, the key enzyme required for IgG sialylation, we now show that sialylation of the IgG Fc fragment exclusively occurs within B cells pre-IgG secretion. We further demonstrate that B cells expressing ST6Gal1 have a developmental advantage over B cells lacking ST6Gal1 expression and thus dominate the plasma cell pool and the resulting serum IgG population in mouse models in which both ST6Gal1-sufficient and -deficient B cells are present.


Subject(s)
B-Lymphocytes , Immunoglobulin G , Sialyltransferases , Animals , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Mice , Sialyltransferases/metabolism , Sialyltransferases/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mice, Knockout , Glycosylation , Mice, Inbred C57BL , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/genetics , beta-D-Galactoside alpha 2-6-Sialyltransferase , Plasma Cells/immunology , Plasma Cells/metabolism , Antibody Formation
6.
Nat Commun ; 15(1): 4728, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830864

ABSTRACT

Due to their exceptional solubility and stability, nanobodies have emerged as powerful building blocks for research tools and therapeutics. However, their generation in llamas is cumbersome and costly. Here, by inserting an engineered llama immunoglobulin heavy chain (IgH) locus into IgH-deficient mice, we generate a transgenic mouse line, which we refer to as 'LamaMouse'. We demonstrate that LamaMice solely express llama IgH molecules without association to Igκ or λ light chains. Immunization of LamaMice with AAV8, the receptor-binding domain of the SARS-CoV-2 spike protein, IgE, IgG2c, and CLEC9A enabled us to readily select respective target-specific nanobodies using classical hybridoma and phage display technologies, single B cell screening, and direct cloning of the nanobody-repertoire into a mammalian expression vector. Our work shows that the LamaMouse represents a flexible and broadly applicable platform for a facilitated selection of target-specific nanobodies.


Subject(s)
Camelids, New World , Immunoglobulin Heavy Chains , Mice, Transgenic , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Animals , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Camelids, New World/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Mice , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Immunoglobulin E/immunology , Humans , Dependovirus/genetics , Dependovirus/immunology , Immunoglobulin G/immunology , COVID-19/immunology , B-Lymphocytes/immunology
7.
Sci Rep ; 14(1): 12725, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830902

ABSTRACT

Humoral immunity in COVID-19 includes antibodies (Abs) targeting spike (S) and nucleocapsid (N) SARS-CoV-2 proteins. Antibody levels are known to correlate with disease severity, but titers are poorly reported in mild or asymptomatic cases. Here, we analyzed the titers of IgA and IgG against SARS-CoV-2 proteins in samples from 200 unvaccinated Hospital Workers (HWs) with mild COVID-19 at two time points after infection. We analyzed the relationship between Ab titers and patient characteristics, clinical features, and evolution over time. Significant differences in IgG and IgA titers against N, S1 and S2 proteins were found when samples were segregated according to time T1 after infection, seroprevalence at T1, sex and age of HWs and symptoms at infection. We found that IgM + samples had higher titers of IgG against N antigen and IgA against S1 and S2 antigens than IgM - samples. There were significant correlations between anti-S1 and S2 Abs. Interestingly, IgM + patients with dyspnea had lower titers of IgG and IgA against N, S1 and S2 than those without dyspnea. Comparing T1 and T2, we found that IgA against N, S1 and S2 but only IgG against certain Ag decreased significantly. In conclusion, an association was established between Ab titers and the development of infection symptoms.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/blood , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , SARS-CoV-2/immunology , Female , Antibodies, Viral/immunology , Antibodies, Viral/blood , Adult , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunity, Humoral , Phosphoproteins/immunology
8.
Ital J Pediatr ; 50(1): 109, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831339

ABSTRACT

BACKGROUND: Acute bulbar palsy-plus (ABPp) syndrome is an unusual variant of Guillain-Barré syndrome (GBS). Anti-GT1a and anti-GQ1b antibodies have been reported in patients with ABPp, but without reports related to GD3 antibodies. METHODS: Clinical data of a patient diagnosed as ABPp syndrome were reviewed clinically. And we summarized the GBS patients with ABP and facial paralysis reported in the literature. RESULTS: We reported a 13-year-old girl presented with asymmetric bifacial weakness, bulbar palsy and transient limb numbness, and had positive serum IgG anti-GD3 antibody. Through reviewing the GBS patients with ABP and facial paralysis reported previously, we found that facial palsy could be unilateral or bilateral. The bilateral facial palsy could present successively or simultaneously, and could be symmetrical or asymmetrical. Other common symptoms included ophthalmoplegia, sensory abnormality and ataxia. IgG anti-GT1a and IgG anti-GQ1b antibodies were the most frequent. Most of the patients had full recovery within two weeks to one year of follow-up. CONCLUSIONS: We reported a patient with asymmetric bifacial palsy and bulbar palsy, which seemed to fit the diagnosis of ABPp syndrome. This was the first report of ABPp variant of GBS with positive serum ganglioside GD3 IgG antibody.


Subject(s)
Gangliosides , Guillain-Barre Syndrome , Immunoglobulin G , Humans , Female , Gangliosides/immunology , Adolescent , Guillain-Barre Syndrome/diagnosis , Guillain-Barre Syndrome/immunology , Guillain-Barre Syndrome/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , Autoantibodies/blood
9.
Front Immunol ; 15: 1404752, 2024.
Article in English | MEDLINE | ID: mdl-38690267

ABSTRACT

Helminths produce calreticulin (CRT) to immunomodulate the host immune system as a survival strategy. However, the structure of helminth-derived CRT and the structural basis of the immune evasion process remains unclarified. Previous study found that the tissue-dwelling helminth Trichinella spiralis produces calreticulin (TsCRT), which binds C1q to inhibit activation of the complement classical pathway. Here, we used x-ray crystallography to resolve the structure of truncated TsCRT (TsCRTΔ), the first structure of helminth-derived CRT. TsCRTΔ was observed to share the same binding region on C1q with IgG based on the structure and molecular docking, which explains the inhibitory effect of TsCRT on C1q-IgG-initiated classical complement activation. Based on the key residues in TsCRTΔ involved in the binding activity to C1q, a 24 amino acid peptide called PTsCRT was constructed that displayed strong C1q-binding activity and inhibited C1q-IgG-initiated classical complement activation. This study is the first to elucidate the structural basis of the role of TsCRT in immune evasion, providing an approach to develop helminth-derived bifunctional peptides as vaccine target to prevent parasite infections or as a therapeutic agent to treat complement-related autoimmune diseases.


Subject(s)
Calreticulin , Complement C1q , Immune Evasion , Trichinella spiralis , Trichinella spiralis/immunology , Complement C1q/immunology , Complement C1q/metabolism , Complement C1q/chemistry , Animals , Calreticulin/immunology , Calreticulin/chemistry , Calreticulin/metabolism , Crystallography, X-Ray , Protein Binding , Molecular Docking Simulation , Helminth Proteins/immunology , Helminth Proteins/chemistry , Complement Activation/immunology , Immunoglobulin G/immunology , Humans , Antigens, Helminth/immunology , Antigens, Helminth/chemistry , Trichinellosis/immunology , Trichinellosis/parasitology , Complement Pathway, Classical/immunology , Protein Conformation
10.
Front Immunol ; 15: 1361240, 2024.
Article in English | MEDLINE | ID: mdl-38698868

ABSTRACT

N-glycosylation influences the effectiveness of immune globulin G (IgG) and thus the immunological downstream responses of immune cells. This impact arises from the presence of N-glycans within the Fc region, which not only alters the conformation of IgG but also influences its steric hindrance. Consequently, these modifications affect the interaction between IgG and its binding partners within the immune system. Moreover, this posttranslational modification vary according to the physiological condition of each individual. In this study, we examined the N-glycosylation of IgG in pigs from birth to five months of age. Our analysis identified a total of 48 distinct N-glycan structures. Remarkably, we observed defined changes in the composition of these N-glycans during postnatal development. The presence of agalactosylated and sialylated structures increases in relation to the number of N-glycans terminated by galactose residues during the first months of life. This shift may indicate a transition from passively transferred antibodies from the colostrum of the sow to the active production of endogenous IgG by the pig's own immune system.


Subject(s)
Immunoglobulin G , Polysaccharides , Animals , Glycosylation , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Swine , Polysaccharides/metabolism , Polysaccharides/immunology , Protein Processing, Post-Translational , Animals, Newborn , Female
11.
Front Immunol ; 15: 1346671, 2024.
Article in English | MEDLINE | ID: mdl-38698867

ABSTRACT

IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.


Subject(s)
Autoantibodies , Autoimmune Diseases , Autoimmunity , Immunoglobulin G , Humans , Immunoglobulin G/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Animals , Autoantibodies/immunology , B-Lymphocytes/immunology , Immunoglobulin G4-Related Disease/immunology , Immunoglobulin G4-Related Disease/therapy
12.
Front Immunol ; 15: 1325171, 2024.
Article in English | MEDLINE | ID: mdl-38715598

ABSTRACT

Introduction: Muscle-specific kinase (MuSK)- myasthenia gravis (MG) is caused by pathogenic autoantibodies against MuSK that correlate with disease severity and are predominantly of the IgG4 subclass. The first-line treatment for MuSK-MG is general immunosuppression with corticosteroids, but the effect of treatment on IgG4 and MuSK IgG4 levels has not been studied. Methods: We analyzed the clinical data and sera from 52 MuSK-MG patients (45 female, 7 male, median age 49 (range 17-79) years) from Italy, the Netherlands, Greece and Belgium, and 43 AChR-MG patients (22 female, 21 male, median age 63 (range 2-82) years) from Italy, receiving different types of immunosuppression, and sera from 46 age- and sex-matched non-disease controls (with no diagnosed diseases, 38 female, 8 male, median age 51.5 (range 20-68) years) from the Netherlands. We analyzed the disease severity (assessed by MGFA or QMG score), and measured concentrations of MuSK IgG4, MuSK IgG, total IgG4 and total IgG in the sera by ELISA, RIA and nephelometry. Results: We observed that MuSK-MG patients showed a robust clinical improvement and reduction of MuSK IgG after therapy, and that MuSK IgG4 concentrations, but not total IgG4 concentrations, correlated with clinical severity. MuSK IgG and MuSK IgG4 concentrations were reduced after immunosuppression in 4/5 individuals with before-after data, but data from non-linked patient samples showed no difference. Total serum IgG4 levels were within the normal range, with IgG4 levels above threshold (1.35g/L) in 1/52 MuSK-MG, 2/43 AChR-MG patients and 1/45 non-disease controls. MuSK-MG patients improved within the first four years after disease onset, but no further clinical improvement or reduction of MuSK IgG4 were observed four years later, and only 14/52 (26.92%) patients in total, of which 13 (93.3%) received general immunosuppression, reached clinical remission. Discussion: We conclude that MuSK-MG patients improve clinically with general immunosuppression but may require further treatment to reach remission. Longitudinal testing of individual patients may be clinically more useful than single measurements of MuSK IgG4. No significant differences in the serum IgG4 concentrations and IgG4/IgG ratio between AChR- and MuSK-MG patients were found during follow-up. Further studies with larger patient and control cohorts are necessary to validate the findings.


Subject(s)
Autoantibodies , Immunoglobulin G , Myasthenia Gravis , Receptor Protein-Tyrosine Kinases , Receptors, Cholinergic , Humans , Myasthenia Gravis/immunology , Myasthenia Gravis/blood , Myasthenia Gravis/diagnosis , Male , Middle Aged , Female , Adult , Aged , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Cholinergic/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Retrospective Studies , Young Adult , Adolescent , Autoantibodies/blood , Autoantibodies/immunology , Aged, 80 and over , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Severity of Illness Index , Child
13.
Scand J Immunol ; 99(6): e13366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720518

ABSTRACT

Antiphospholipid syndrome is a rare autoimmune disease characterized by persistent antiphospholipid antibodies. Immunoglobulin G plays a vital role in disease progression, with its structure and function affected by glycosylation. We aimed to investigate the changes in the serum immunoglobulin G glycosylation pattern in antiphospholipid syndrome patients. We applied lectin microarray on samples from 178 antiphospholipid syndrome patients, 135 disease controls (including Takayasu arteritis, rheumatoid arthritis and cardiovascular disease) and 100 healthy controls. Lectin blots were performed for validation of significant differences. Here, we show an increased immunoglobulin G-binding level of soybean agglutinin (p = 0.047, preferring N-acetylgalactosamine) in antiphospholipid syndrome patients compared with healthy and disease controls. Additionally, the immunoglobulin G from antiphospholipid syndrome patients diagnosed with pregnancy events had lower levels of fucosylation (p = 0.001, recognized by Lotus tetragonolobus) and sialylation (p = 0.030, recognized by Sambucus nigra I) than those with simple thrombotic events. These results suggest the unique serum immunoglobulin G glycosylation profile of antiphospholipid syndrome patients, which may inform future studies to design biomarkers for more accurate diagnosis of antiphospholipid syndrome and even for the prediction of clinical symptoms in patients.


Subject(s)
Antiphospholipid Syndrome , Immunoglobulin G , Humans , Antiphospholipid Syndrome/immunology , Antiphospholipid Syndrome/blood , Antiphospholipid Syndrome/diagnosis , Glycosylation , Female , Male , Immunoglobulin G/blood , Immunoglobulin G/immunology , Adult , Middle Aged , Pregnancy , Lectins/blood , Lectins/metabolism , Lectins/immunology , Biomarkers/blood , Protein Array Analysis/methods , Antibodies, Antiphospholipid/blood , Antibodies, Antiphospholipid/immunology , Plant Lectins/metabolism , Plant Lectins/immunology , Aged , Glycoproteins
14.
Influenza Other Respir Viruses ; 18(5): e13290, 2024 May.
Article in English | MEDLINE | ID: mdl-38706402

ABSTRACT

BACKGROUND: Priming with ChAdOx1 followed by heterologous boosting is considered in several countries. Nevertheless, analyses comparing the immunogenicity of heterologous booster to homologous primary vaccination regimens and natural infection are lacking. In this study, we aimed to conduct a comparative assessment of the immunogenicity between homologous primary vaccination regimens and heterologous prime-boost vaccination using BNT162b2 or mRNA-1273. METHODS: We matched vaccinated naïve (VN) individuals (n = 673) with partial vaccination (n = 64), primary vaccination (n = 590), and primary series plus mRNA vaccine heterologous booster (n = 19) with unvaccinated naturally infected (NI) individuals with a documented primary SARS-CoV-2 infection (n = 206). We measured the levels of neutralizing total antibodies (NTAbs), total antibodies (TAbs), anti-S-RBD IgG, and anti-S1 IgA titers. RESULTS: Homologous primary vaccination with ChAdOx1 not only showed less potent NTAb, TAb, anti-S-RBD IgG, and anti-S1 IgA immune responses compared to primary BNT162b2 or mRNA-1273 vaccination regimens (p < 0.05) but also showed ~3-fold less anti-S1 IgA response compared to infection-induced immunity (p < 0.001). Nevertheless, a heterologous booster led to an increase of ~12 times in the immune response when compared to two consecutive homologous ChAdOx1 immunizations. Furthermore, correlation analyses revealed that both anti-S-RBD IgG and anti-S1 IgA significantly contributed to virus neutralization among NI individuals, particularly in symptomatic and pauci-symptomatic individuals, whereas among VN individuals, anti-S-RBD IgG was the main contributor to virus neutralization. CONCLUSION: The results emphasize the potential benefit of using heterologous mRNA boosters to increase antibody levels and neutralizing capacity particularly in patients who received primary vaccination with ChAdOx1.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Humans , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , Male , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , SARS-CoV-2/immunology , Adult , 2019-nCoV Vaccine mRNA-1273/immunology , Middle Aged , Immunoglobulin A/blood , Immunoglobulin A/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Young Adult , Follow-Up Studies , Vaccination , Aged , Immunogenicity, Vaccine , Antibody Formation/immunology , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/administration & dosage , Spike Glycoprotein, Coronavirus/immunology
15.
PLoS One ; 19(5): e0297272, 2024.
Article in English | MEDLINE | ID: mdl-38768163

ABSTRACT

A dynamic of virus adaptation and a mass vaccination campaign could significantly reduce the severity of clinical manifestations of COVID-19 and transmission. Hence, COVID-19 may become an endemic disease globally. Moreover, mass infection as the COVID-19 pandemic progressed affected the serology of the patients as a result of virus mutation and vaccination. Therefore, a need exists to acquire accurate serological testing to monitor the emergence of new outbreaks of COVID-19 to promptly prevent and control the disease spreading. In this study, the anti-Orf8 antibodies among samples collected in Thailand's first, fourth, and fifth waves of COVID-19 outbreaks compared with pre-epidemic sera were determined by indirect ELISA. The diagnostic sensitivity and specificity of the anti-Orf8 IgG ELISA for COVID-19 samples from the first, fourth, and fifth waves of outbreaks was found to be 100% compared with pre-epidemic sera. However, the diagnostic sensitivity and specificity of the anti-Orf8 IgG ELISA for a larger number of patient samples and controls from the fifth wave of outbreaks which were collected on day 7 and 14 after an RT-PCR positive result were 58.79 and 58.44% and 89.19 and 58.44%, respectively. Our data indicated that some of the controls might have antibodies from natural past infections. Our study highlighted the potential utility of anti-Orf8 IgG antibody testing for seroprevalence surveys but still warrants further investigations.


Subject(s)
Antibodies, Viral , COVID-19 , Disease Outbreaks , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/immunology , COVID-19/diagnosis , COVID-19/virology , Thailand/epidemiology , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Immunoglobulin G/blood , Immunoglobulin G/immunology , Adult , Female , Viral Proteins/immunology , Male , Middle Aged , Sensitivity and Specificity , Aged , COVID-19 Serological Testing/methods , Antibody Formation/immunology
16.
Viruses ; 16(5)2024 05 15.
Article in English | MEDLINE | ID: mdl-38793670

ABSTRACT

The West Nile Virus (WNV), a member of the family Flaviviridae, is an emerging mosquito-borne flavivirus causing potentially severe infections in humans and animals involving the central nervous system (CNS). Due to its emerging tendency, WNV now occurs in many areas where other flaviviruses are co-occurring. Cross-reactive antibodies with flavivirus infections or vaccination (e.g., tick-borne encephalitis virus (TBEV), Usutu virus (USUV), yellow fever virus (YFV), dengue virus (DENV), Japanese encephalitis virus (JEV)) therefore remain a major challenge in diagnosing flavivirus infections. Virus neutralization tests are considered as reference tests for the detection of specific flavivirus antibodies, but are elaborate, time-consuming and need biosafety level 3 facilities. A simple and straightforward assay for the differentiation and detection of specific WNV IgG antibodies for the routine laboratory is urgently needed. In this study, we compared two commercially available enzyme-linked immunosorbent assays (anti-IgG WNV ELISA and anti-NS1-IgG WNV), a commercially available indirect immunofluorescence assay, and a newly developed in-house ELISA for the detection of WNV-NS1-IgG antibodies. All four tests were compared to an in-house NT to determine both the sensitivity and specificity of the four test systems. None of the assays could match the specificity of the NT, although the two NS1-IgG based ELISAs were very close to the specificity of the NT at 97.3% and 94.6%. The in-house WNV-NS1-IgG ELISA had the best performance regarding sensitivity and specificity. The specificities of the ELISA assays and the indirect immunofluorescence assays could not meet the necessary specificity and/or sensitivity.


Subject(s)
Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , West Nile Fever , West Nile virus , West Nile virus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , West Nile Fever/diagnosis , West Nile Fever/immunology , Enzyme-Linked Immunosorbent Assay/methods , Serologic Tests/methods , Immunoglobulin G/blood , Immunoglobulin G/immunology , Fluorescent Antibody Technique, Indirect/methods , Cross Reactions/immunology , Animals
17.
Kidney Int ; 105(1): 54-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38707675

ABSTRACT

The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.


Subject(s)
Histocompatibility Antigens Class I , Kidney Diseases , Receptors, Fc , Humans , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Receptors, Fc/metabolism , Receptors, Fc/immunology , Receptors, Fc/genetics , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/therapy , Kidney Diseases/immunology , Animals , Kidney/metabolism , Kidney/immunology , Kidney/pathology , Podocytes/metabolism , Podocytes/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism
18.
Sci Rep ; 14(1): 10813, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734805

ABSTRACT

To evaluate the development of neutralizing Anti-Spike Protein IgG (Anti-S-IgG) during twin pregnancies before conception vs. during pregnancy. In this prospective study, three blood samples were collected from pregnant women and subjected to anti-S-IgG immunodiagnostics. The patient's medical records, including vaccination and PCR test results, were collected from the hospital's electronic database. Age-matched non-pregnant women were used as a control group. We enrolled 83 women with twin pregnancies. 49 women were vaccinated before conception, 21 women were vaccinated during pregnancy, and 13 were not vaccinated. Of the 13 women who weren't vaccinated, three became positive during pregnancy, and all three were severely ill. By contrast, in women who were vaccinated during or before pregnancy, COVID-19 infection during pregnancy caused only mild symptoms. A ten-fold lower level of neutralizing Anti-S-IgG in the 3rd trimester was observed in healthy women who were vaccinated before conception and remained healthy until discharge from the hospital after delivery 1605 (IQR: 763-2410) compared to the healthy women who were vaccinated during pregnancy 152 AU/mL (IQR: 54-360). This difference was higher among women who were infected by COVID-19 (as verified by a positive PCR test). The third-trimester level of neutralizing Ant-S-IgG in the infected group was 4770 AU/mL (4760-6100) in infected women vaccinated before conception compared to those vaccinated during pregnancy who had 70 AU/mL (IQR: 20-170) (p < 0.001). In women vaccinated at 13-16 weeks gestation, neutralizing Anti-S-IgG at 20-22 weeks went up to 372 AU/mL (IQR: 120-1598) but rapidly dropped to 112 AU/mL (IQR: 54-357) at 28-30 weeks, (p < 0.001), a faster decline than in women vaccinated at a median 22 weeks before conception. Being infected by COVID-19 before conception was linked to having low Anti-S-IgG levels during pregnancy, whereas being infected by COVID-19 during pregnancy led to a very high response in the 3rd trimester. In twin pregnancies, significantly lower neutralizing Anti-S-IgG levels were observed in women vaccinated during pregnancy compared to those vaccinated before conception, whether infected or not infected by COVID-19. A full course of vaccination before conception is recommended.Trial registration. ClinicalTrials.gov Protocol Registration and Results System (PRS) Receipt Release Date: October 4, 2021. https://clinicaltrials.gov/ ID: NCT04595214.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunoglobulin G , Pregnancy, Twin , SARS-CoV-2 , Vaccination , Humans , Female , Pregnancy , Pregnancy, Twin/immunology , Adult , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Prospective Studies , SARS-CoV-2/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Pregnancy Complications, Infectious/prevention & control , Pregnancy Complications, Infectious/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology
19.
Nat Commun ; 15(1): 4177, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755196

ABSTRACT

Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.


Subject(s)
Antibodies, Viral , COVID-19 , Interferons , SARS-CoV-2 , Signal Transduction , Humans , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Signal Transduction/immunology , Interferons/metabolism , Interferons/immunology , Female , Male , Middle Aged , Immunoglobulin G/blood , Immunoglobulin G/immunology , CD4-Positive T-Lymphocytes/immunology , Aged , Adult , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics
20.
J Clin Immunol ; 44(5): 124, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758476

ABSTRACT

PURPOSES: STAT1 is a transduction and transcriptional regulator that functions within the classical JAK/STAT pathway. In addition to chronic mucocutaneous candidiasis, bacterial infections are a common occurrence in patients with STAT1 gain-of-function (GOF) mutations. These patients often exhibit skewing of B cell subsets; however, the impact of STAT1-GOF mutations on B cell-mediated humoral immunity remains largely unexplored. It is also unclear whether these patients with IgG within normal range require regular intravenous immunoglobulin (IVIG) therapy. METHODS: Eleven patients (harboring nine different STAT1-GOF mutations) were enrolled. Reporter assays and immunoblot analyses were performed to confirm STAT1 mutations. Flow cytometry, deep sequencing, ELISA, and ELISpot were conducted to assess the impact of STAT1-GOF on humoral immunity. RESULTS: All patients exhibited increased levels of phospho-STAT1 and total STAT1 protein, with two patients carrying novel mutations. In vitro assays showed that these two novel mutations were GOF mutations. Three patients with normal total IgG levels received regular IVIG infusions, resulting in effective control of bacterial infections. Four cases showed impaired affinity and specificity of pertussis toxin-specific antibodies, accompanied by reduced generation of class-switched memory B cells. Patients also had a disrupted immunoglobulin heavy chain (IGH) repertoire, coupled with a marked reduction in the somatic hypermutation frequency of switched Ig transcripts. CONCLUSION: STAT1-GOF mutations disrupt B cell compartments and skew IGH characteristics, resulting in impaired affinity and antigen-specificity of antibodies and recurrent bacterial infections. Regular IVIG therapy can control these infections in patients, even those with normal total IgG levels.


Subject(s)
B-Lymphocytes , Bacterial Infections , Gain of Function Mutation , Immunoglobulins, Intravenous , STAT1 Transcription Factor , Humans , STAT1 Transcription Factor/genetics , Bacterial Infections/immunology , Bacterial Infections/genetics , Female , Male , Child , Immunoglobulins, Intravenous/therapeutic use , B-Lymphocytes/immunology , Adult , Immunoglobulin G/immunology , Immunoglobulin G/blood , Child, Preschool , Adolescent , Young Adult , Immunity, Humoral
SELECTION OF CITATIONS
SEARCH DETAIL
...