Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Proc Natl Acad Sci U S A ; 119(32): e2200879119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35925889

ABSTRACT

The value of anti-CTLA-4 antibodies in cancer therapy is well established. However, the broad application of currently available anti-CTLA-4 therapeutic antibodies is hampered by their narrow therapeutic index. It is therefore challenging and attractive to develop the next generation of anti-CTLA-4 therapeutics with improved safety and efficacy. To this end, we generated fully human heavy chain-only antibodies (HCAbs) against CTLA-4. The hIgG1 Fc domain of the top candidate, HCAb 4003-1, was further engineered to enhance its regulatory T (Treg) cell depletion effect and to decrease its half-life, resulting in HCAb 4003-2. We tested these HCAbs in in vitro and in vivo experiments in comparison with ipilimumab and other anti-CTLA4 antibodies. The results show that human HCAb 4003-2 binds human CTLA-4 with high affinity and potently blocks the binding of B7-1 (CD80) and B7-2 (CD86) to CTLA-4. The results also show efficient tumor penetration. HCAb 4003-2 exhibits enhanced antibody-dependent cellular cytotoxicity function, lower serum exposure, and more potent anti-tumor activity than ipilimumab in murine tumor models, which is partly driven by a substantial depletion of intratumoral Tregs. Importantly, the enhanced efficacy combined with the shorter serum half-life and less systemic drug exposure in vivo potentially provides an improved therapeutic window in cynomolgus monkeys and preliminary clinical applications. With its augmented efficacy via Treg depletion and improved safety profile, HCAb 4003-2 is a promising candidate for the development of next generation anti-CTLA-4 therapy.


Subject(s)
Immunoglobulin Heavy Chains , Immunotherapy , Neoplasms , T-Lymphocytes, Regulatory , Animals , Antibody-Dependent Cell Cytotoxicity , CTLA-4 Antigen/immunology , Humans , Immunoglobulin Heavy Chains/pharmacology , Ipilimumab/pharmacology , Mice , Neoplasms/pathology , Neoplasms/therapy
2.
Biochem Biophys Res Commun ; 565: 1-7, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34077827

ABSTRACT

Streptococcus pyogenes causes a wide range of human infections. Currently, antibiotics are the main treatment for S. pyogenes infection, but serious anti-microbial resistance requires alternative treatment options. To develop a novel strategy for treatment, we physicochemically characterized SPs0871, a putative maltose/maltodextrin-binding protein that is thought to have important roles in the pathogenesis of invasive streptococci. We obtained a variable domain of heavy chain of heavy-chain antibody, the smallest unit of an antibody, which specifically binds to SPs0871. Although the VHH completely inhibited the binding of maltodextrins to SPs0871, the inhibition did not lead to growth suppression of the bacteria. Our results provide important insights for development of VHH as an anti-streptococcal therapeutic.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Immunoglobulin Heavy Chains/pharmacology , Polysaccharides/antagonists & inhibitors , Streptococcus pyogenes/drug effects , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Immunoglobulin Heavy Chains/chemistry , Microbial Sensitivity Tests , Polysaccharides/chemistry , Streptococcus pyogenes/chemistry
3.
Viruses ; 12(10)2020 10 08.
Article in English | MEDLINE | ID: mdl-33049994

ABSTRACT

Broadly neutralizing monoclonal antibodies (bNAbs) against conserved domains in the influenza hemagglutinin are in clinical trials. Several next generation influenza vaccines designed to elicit such bNAbs are also in clinical development. One of the common features of the isolated bNAbs is the use of restricted IgVH repertoire. More than 80% of stem-targeting bNAbs express IgVH1-69, which may indicate genetic constraints on the evolution of such antibodies. In the current study, we evaluated a panel of influenza virus bNAbs in comparison with HIV-1 MAb 4E10 and anti-RSV MAb Palivizumab (approved for human use) for autoreactivity using 30 normal human tissues microarray and human protein (>9000) arrays. We found that several human bNAbs (CR6261, CR9114, and F2603) reacted with human tissues, especially with pituitary gland tissue. Importantly, protein array analysis identified high-affinity interaction of CR6261 with the autoantigen "Enhancer of mRNA decapping 3 homolog" (EDC3), which was not previously described. Moreover, EDC3 competed with hemagglutinin for binding to bNAb CR6261. These autoreactivity findings underscores the need for careful evaluation of such bNAbs for therapeutics and stem-based vaccines against influenza virus.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin Heavy Chains/pharmacology , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Single-Chain Antibodies/pharmacology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , Autoantibodies/immunology , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , HIV-1/immunology , Humans , Immunoglobulin Heavy Chains/immunology , Ribonucleoproteins, Small Nuclear/immunology , Single-Chain Antibodies/immunology
4.
Protein Expr Purif ; 170: 105596, 2020 06.
Article in English | MEDLINE | ID: mdl-32036001

ABSTRACT

Antibodies that block interaction of immune checkpoint receptors with its ligands have revolutionized the treatment of several cancers. Despite the success of this approach, the high cost has been restricted the use of this class of drugs. In this context, the development of biosimilar can be an important strategy for reducing prices and expanding access after patent has been dropped. Here, we evaluated the use of HEK293 cells for transient expression of an immune checkpoint-blocking antibody as a first step for biosimilar development. Antibody light and heavy chain genes were cloned into pCI-neo vector and transiently expressed in HEK293 cells. The culture supernatant was then subjected to protein A affinity chromatography, which allowed to obtain the antibody with high homogeneity. For physicochemical comparability, biosimilar antibody and reference drug were analyzed by SDS-PAGE, isoelectric focusing, circular dichroism and fluorescence spectroscopy. The results indicated that the both antibodies have a high degree of structural similarity. Lastly, the biosimilar antibody binding capacity to target receptor was shown to be similar to reference product in ELISA and flow cytometry assays. These data demonstrate that the HEK293 system can be used as an important tool for candidate selection and early development of biosimilar antibodies.


Subject(s)
Antibodies, Monoclonal/pharmacology , Biosimilar Pharmaceuticals/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Proteins/genetics , Immunoglobulin Heavy Chains/pharmacology , Immunoglobulin Light Chains/pharmacology , Antibodies, Monoclonal/biosynthesis , Antibody Affinity , Antibody Specificity , Biosimilar Pharmaceuticals/metabolism , Chromatography, Affinity , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Proteins/immunology , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Light Chains/biosynthesis , Isoelectric Focusing
5.
J Leukoc Biol ; 107(6): 933-939, 2020 06.
Article in English | MEDLINE | ID: mdl-32040234

ABSTRACT

Systemic TNF neutralization can be used as a therapy for several autoimmune diseases. To evaluate the effects of cell type-restricted TNF blockade, we previously generated bispecific antibodies that can limit TNF secretion by myeloid cells (myeloid cell-specific TNF inhibitors or MYSTIs). In this study several such variable domain (VH) of a camelid heavy-chain only antibody-based TNF inhibitors were compared in relevant experimental models, both in vitro and in vivo. Pretreatment with MYSTI-2, containing the anti-F4/80 module, can restrict the release of human TNF (hTNF) from LPS-activated bone marrow-derived macrophage (BMDM) cultures of humanized TNF knock-in (mice; hTNFKI) more effectively than MYSTI-3, containing the anti-CD11b module. MYSTI-2 was also superior to MYSTI-3 in providing in vivo protection in acute toxicity model. Finally, MYSTI-2 was at least as effective as Infliximab in preventing collagen antibody-induced arthritis. This study demonstrates that a 33 kDa bispecific mini-antibody that specifically restricts TNF secretion by macrophages is efficient for amelioration of experimental arthritis.


Subject(s)
Antibodies, Monoclonal/pharmacology , Arthritis, Experimental/therapy , CD11b Antigen/antagonists & inhibitors , Calcium-Binding Proteins/antagonists & inhibitors , Immunoglobulin Heavy Chains/pharmacology , Myeloid Progenitor Cells/drug effects , Receptors, G-Protein-Coupled/antagonists & inhibitors , Tumor Necrosis Factor Inhibitors/pharmacology , Animals , Antirheumatic Agents/pharmacology , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , CD11b Antigen/genetics , CD11b Antigen/immunology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/immunology , Gene Expression , Humans , Infliximab/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Transgenic , Myeloid Progenitor Cells/immunology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
6.
Sci Rep ; 8(1): 7450, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29748553

ABSTRACT

Nucleolin arises as a relevant target for cancer therapy, as it is overexpressed at the surface of cancer and angiogenic endothelial cells thus enabling a dual cellular targeting strategy. Immunotherapeutic strategies, albeit of proven therapeutic relevance, have been scarcely explored against this target. Therefore, this work aimed at engineering an anti-nucleolin VHH-based antibody capable of triggering anticancer immune responses. Herein, anti-nucleolin VHHs have been generated upon grafting F3 peptide-derived nucleolin-binding sequences onto a VHH CDR1 or CDR3. One of these nucleolin-binding CDR3-grafted VHH was subsequently fused to a human IgG1 Fc region, enabling a significant antibody-dependent cell-mediated cytotoxicity (ADCC). The generated anti-nucleolin VHH revealed increased binding and antiproliferative effects against cancer cells, relative to the parental VHH, while the VHH-Fc counterpart presented increased cytotoxicity relative to the corresponding VHH. This VHH-Fc also triggered an ADCC effect, in the nanomolar range, against a nucleolin-overexpressing cancer cell line. This effect was evidenced by a 2 or 1.7-fold increase of cell death, in the presence of PBMCs, relative to the parental VHH-Fc or the VHH counterpart, respectively. Overall, these formats represent the first anti-nucleolin VHHs and the first anti-nucleolin antibody with ADCC activity that have been successfully developed.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/drug effects , Antineoplastic Agents, Immunological/pharmacology , Immunoglobulin Heavy Chains/pharmacology , Neoplasms/drug therapy , Phosphoproteins/immunology , RNA-Binding Proteins/immunology , Single-Domain Antibodies/pharmacology , Antineoplastic Agents, Immunological/immunology , Cell Death/drug effects , Cell Line, Tumor , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin G/immunology , Immunoglobulin G/pharmacology , Immunoglobulin Heavy Chains/immunology , Neoplasms/immunology , Single-Domain Antibodies/immunology , Nucleolin
7.
Sci Rep ; 7(1): 7438, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785006

ABSTRACT

Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH). In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on HCA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.


Subject(s)
Antibodies, Neutralizing/pharmacology , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/metabolism , Camelidae/immunology , Nerve Tissue Proteins/metabolism , Animals , Antibodies, Neutralizing/chemistry , Binding Sites , Crystallography, X-Ray , Gangliosides/metabolism , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/pharmacology , Models, Molecular , Protein Binding , Protein Conformation , Rats , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology
8.
Bull Exp Biol Med ; 161(1): 92-5, 2016 May.
Article in English | MEDLINE | ID: mdl-27265131

ABSTRACT

Major histocompatibility complex class II (MHC II) plays an important role not only in the adaptive immune responses to foreign pathogens, but also in the development of some autoimmune diseases. Non-classical MHC, HLA-DM is directly involved in MHC II loading with the peptide. To study this process, we synthesized recombinant proteins HLA-DR1 and HLA-DM. α/ß-Chains of DR1 heterodimer contained C-terminal leucine domains of the fos and jun factors, respectively. Each DM chain contained constant fragment of human antibody heavy chain fused via a long linker domain. In addition, DM α-chain carried N165D substitution suppressing potential glycosylation at this site. We observed significant acceleration of DR1 peptide loading with influenza HA306-318 hemagglutinin in the presence of DM, which indicates functionality of recombinant DR1-DM protein couple. Our results can be used to study the presentation of other viral and self-antigens and can become the basis for the development of new drug modeling.


Subject(s)
HLA-D Antigens/pharmacology , HLA-DR1 Antigen/physiology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin Constant Regions/pharmacology , Immunoglobulin Heavy Chains/pharmacology , Peptide Fragments/immunology , Recombinant Fusion Proteins/pharmacology , Adaptive Immunity , Animals , Antigen Presentation/drug effects , Autoimmune Diseases/immunology , Autoimmunity , Drosophila melanogaster , HEK293 Cells , HeLa Cells , Humans , Protein Binding
9.
MAbs ; 8(4): 761-74, 2016.
Article in English | MEDLINE | ID: mdl-26963639

ABSTRACT

We previously described 4Dm2m, an exceptionally potent broadly neutralizing CD4-antibody fusion protein against HIV-1. It was generated by fusing the engineered single human CD4 domain mD1.22 to both the N and C termini of the human IgG1 heavy chain constant region and the engineered single human antibody domain m36.4, which targets the CD4-induced coreceptor binding site of the viral envelope glycoprotein, to the N terminus of the human antibody kappa light chain constant region via the (G4S)3 polypeptide linkers. However, therapeutic use of 4Dm2m was limited by its short in vivo half-life. Here, we show that a combination of three approaches have successfully increased the persistence of 4Dm2m in mice. First, to stabilize the scaffold, we enhanced heterodimerization between the heavy chain constant domain 1 (CH1) and kappa light chain constant domain (CK) by using structure-guided design and phage-display library technologies. Second, to address the possibility that long polypeptide linkers might render fusion proteins more susceptible to proteolysis, we shortened the (G4S)3 linkers or replaced them with the human IgG1 hinge sequence, which is naturally designed for both flexibility and stability. Third, we introduced two amino acid mutations into the crystallizable fragment (Fc) of the scaffold previously shown to increase antibody binding to the neonatal Fc receptor (FcRn) and prolong half-lives in vivo. Collectively, these approaches markedly increased the serum concentrations of 4Dm2m in mice while not affecting other properties of the fusion protein. The new 4Dm2m variants are promising candidates for clinical development to prevent or treat HIV-1 infection. To our knowledge, this is the first report on stabilized CH1-CK, which is potentially useful as a new heterodimerization scaffold for generation of bispecific and multispecific antibodies or proteins with a more favorable pharmacokinetic profile.


Subject(s)
AIDS Vaccines/pharmacokinetics , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Neutralizing/pharmacology , AIDS Vaccines/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Broadly Neutralizing Antibodies , CD4 Antigens , HIV-1/immunology , Half-Life , Humans , Immunoglobulin Constant Regions/chemistry , Immunoglobulin Constant Regions/pharmacology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/pharmacology , Immunoglobulin kappa-Chains/chemistry , Immunoglobulin kappa-Chains/pharmacology , Mice , Mice, Inbred C57BL , Protein Engineering/methods , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacokinetics
10.
Mol Immunol ; 68(2 Pt B): 412-20, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26468036

ABSTRACT

Hottentotta saulcyi, medically important scorpion species, causes some of harmful toxic exposure in Iran. Administrated, conventional antivenom-based immunotherapy is still limited and hardly meet ideal characteristic of effective treatment for scorpion envenomation. In this study we aimed to develop a neutralizing agent directed against scorpion venom based on VHH, variable domain of the Camelidae heavy chain antibody or Nanobody. This promising biomolecule is well-established as an advantageous tool for therapeutic purposes due to its small size, stability, monomeric performance and less immunogenicity. In this study, a large Nb library was constructed and phage displayed after successful camel immunization using H. saulcyi scorpion crude venom. After a series of biopanning rounds on Sephadex G50 purified venom fraction and screening by monoclonal phage ELISA, the best reactive Nb was retrieved and designated Nb12. The selected Nb was then expressed as soluble protein in Escherichia coli, purified and confirmed by SDS-PAGE analysis and western blotting. The lead candidate Nb12 bound scorpion venom with Kaff value of 5×10(7)M(-1). Nb12 was shown to be capable of neutralizing 2 LD50 of whole venom of scorpion toxin when injected in the ratio of the Nb/toxin of 1.4:1 into C57BL/6 mice. In challenge experiment, Nb succeeded to rescue all i.p. lethal dose injected mice even when administrated i.v., 20min after envenoming. These results with ease of production and superior neutralizing activity make Nb a suitable anti-toxin candidate for treatment of scorpion envenoming.


Subject(s)
Antibodies, Neutralizing/immunology , Antivenins/immunology , Camelus/immunology , Scorpion Stings/drug therapy , Scorpion Venoms/antagonists & inhibitors , Single-Domain Antibodies/pharmacology , Animals , Antibody Affinity , Antivenins/pharmacology , Immunization , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/pharmacology , Immunotherapy/methods , Iran , Mice , Mice, Inbred C57BL , Protein Binding/immunology , Scorpion Stings/pathology , Scorpion Venoms/immunology , Scorpions/metabolism , Single-Domain Antibodies/immunology
11.
Int J Mol Sci ; 15(6): 9481-96, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24879522

ABSTRACT

OBJECTIVE: To construct an immune alpaca phage display library, in order to obtain a single domain anti-BAFF (B cell-activating factor) antibody. METHODS: Using phage display technology, we constructed an immune alpaca phage display library, selected anti-BAFF single domain antibodies (sdAbs), cloned three anti-BAFF single-domain antibody genes into expression vector pSJF2, and expressed them efficiently in Escherichia coli. The affinity of different anti-BAFF sdAbs were measured by Bio layer interferometry. The in vitro biological function of three sdAbs was investigated by cell counting kit-8 (CCK-8) assay and a competitive enzyme-linked immunosorbent assay (ELISA). RESULTS: We obtained three anti-BAFF single domain antibodies (anti-BAFF64, anti-BAFF52 and anti-BAFFG3), which were produced in high yield in Escherichia coli and inhibited tumor cell proliferation in vitro. CONCLUSION: The selected anti-BAFF antibodies could be candidates for B-cell lymphoma therapies.


Subject(s)
B-Cell Activating Factor/immunology , Lymphoma, B-Cell/drug therapy , Peptide Library , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Amino Acid Sequence , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Camelids, New World , Cell Line, Tumor , Cell Proliferation/drug effects , Cloning, Molecular , Escherichia coli/genetics , Humans , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/pharmacology , Lymphoma, B-Cell/immunology , Molecular Sequence Data , Sequence Alignment , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics
12.
J Biol Chem ; 287(18): 14912-22, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22334655

ABSTRACT

Complementarity-determining regions (CDRs) from monoclonal antibodies tested as synthetic peptides display anti-infective and antitumor activities, independent of the specificity of the native antibody. Previously, we have shown that the synthetic peptide C7H2, based on the heavy chain CDR 2 from monoclonal antibody C7, a mAb directed to a mannoprotein of Candida albicans, significantly reduced B16F10 melanoma growth and lung colony formation by triggering tumor apoptosis. The mechanism, however, by which C7H2 induced apoptosis in tumor cells remained unknown. Here, we demonstrate that C7H2 interacts with components of the tumor cells cytoskeleton, being rapidly internalized after binding to the tumor cell surface. Mass spectrometry analysis and in vitro validation revealed that ß-actin is the receptor of C7H2 in the tumor cells. C7H2 induces ß-actin polymerization and F-actin stabilization, linked with abundant generation of superoxide anions and apoptosis. Major phenotypes following peptide binding were chromatin condensation, DNA fragmentation, annexin V binding, lamin disruption, caspase 8 and 3 activation, and organelle alterations. Finally, we evaluated the cytotoxic efficacy of C7H2 in a panel of human tumor cell lines. All tumor cell lines studied were equally susceptible to C7H2 in vitro. The C7H2 amide without further derivatization significantly reduced lung metastasis of mice endovenously challenged with B16F10-Nex2 melanoma cells. No significant cytotoxicity was observed toward nontumorigenic cell lines on short incubation in vitro or in naïve mice injected with a high dose of the peptide. We believe that C7H2 is a promising peptide to be developed as an anticancer drug.


Subject(s)
Actins/immunology , Antibodies, Monoclonal, Murine-Derived/pharmacology , Antibodies, Neoplasm/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Immunoglobulin Heavy Chains/pharmacology , Immunoglobulin Variable Region/pharmacology , Melanoma/prevention & control , Neoplasm Proteins/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , Antineoplastic Agents/immunology , Candida albicans/immunology , Caspase 3/immunology , Caspase 8/immunology , Cell Line, Tumor , DNA Fragmentation/drug effects , DNA, Neoplasm/immunology , Fungal Proteins/immunology , Humans , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Variable Region/immunology , Male , Melanoma/immunology , Melanoma/pathology , Membrane Glycoproteins/immunology , Mice , Neoplasm Metastasis
13.
J Control Release ; 159(2): 281-9, 2012 Apr 30.
Article in English | MEDLINE | ID: mdl-22227023

ABSTRACT

The epidermal growth factor receptor (EGFR) is a validated target for anti-cancer therapy and several EGFR inhibitors are used in the clinic. Over the years, an increasing number of studies have reported on the crosstalk between EGFR and other receptors that can contribute to accelerated cancer development or even acquisition of resistance to anti-EGFR therapies. Combined targeting of EGFR and insulin-like growth factor 1 receptor (IGF-1R) is a rational strategy to potentiate anti-cancer treatment and possibly retard resistance development. In the present study, we have pursued this by encapsulating the kinase inhibitor AG538 in anti-EGFR nanobody-liposomes. The thus developed dual-active nanobody-liposomes associated with EGFR-(over)expressing cells in an EGFR-specific manner and blocked both EGFR and IGF-1R activation, due to the presence of the EGFR-blocking nanobody EGa1 and the anti-IGF-1R kinase inhibitor AG538 respectively. AG538-loaded nanobody-liposomes induced a strong inhibition of tumor cell proliferation even upon short-term exposure followed by a drug-free wash-out period. Therefore, AG538-loaded nanobody-liposomes are a promising anti-cancer formulation due to efficient intracellular delivery of AG538 in combination with antagonistic and downregulating properties of the EGa1 nanobody-liposomes.


Subject(s)
Antineoplastic Agents/administration & dosage , Catechols/administration & dosage , ErbB Receptors/antagonists & inhibitors , Immunoglobulin Heavy Chains/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Receptor, IGF Type 1/antagonists & inhibitors , Tyrphostins/administration & dosage , Animals , Antineoplastic Agents/pharmacology , Binding, Competitive , Blotting, Western , Catechols/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Compounding , Flow Cytometry , Humans , Immunoglobulin Heavy Chains/pharmacology , Liposomes , Mice , Microscopy, Confocal , NIH 3T3 Cells , Nanoparticles , Particle Size , Protein Kinase Inhibitors/pharmacology , Receptor Cross-Talk/drug effects , Surface Properties , Tyrphostins/pharmacology
14.
Eur J Pharm Sci ; 45(4): 399-407, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22064454

ABSTRACT

The discovery of naturally occurring heavy chain only antibodies and their further development into small recombinant 'nanobodies' offers attractive applications in drug targeting. Here, we describe the properties of nanobodies that have been developed to target the epidermal growth factor receptor (EGFR) and contrast these to the characteristics of heavy chain only antibodies and conventional antibodies. EGFR is overexpressed in many tumors and is an attractive target for tumor-directed drug targeting.


Subject(s)
Antibodies/pharmacology , ErbB Receptors/metabolism , Immunoglobulin Heavy Chains/pharmacology , Neoplasms/metabolism , Animals , Antibodies/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Humans , Immunoglobulin Heavy Chains/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/drug therapy
15.
Blood ; 118(3): 757-65, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21576702

ABSTRACT

Neutralizing the interaction of the platelet receptor gpIb with VWF is an attractive strategy to treat and prevent thrombotic complications. ALX-0081 is a bivalent Nanobody which specifically targets the gpIb-binding site of VWF and interacts avidly with VWF. Nanobodies are therapeutic proteins derived from naturally occurring heavy-chain-only Abs and combine a small molecular size with a high inherent stability. ALX-0081 exerts potent activity in vitro and in vivo. Perfusion experiments with blood from patients with acute coronary syndrome on standard antithrombotics demonstrated complete inhibition of platelet adhesion after addition of ALX-0081, while in the absence of ALX-0081 residual adhesion was observed. In a baboon efficacy and safety model measuring acute thrombosis and surgical bleeding, ALX-0081 showed a superior therapeutic window compared with marketed antithrombotics. Pharmacokinetic and biodistribution experiments demonstrated target-mediated clearance of ALX-0081, which leads to a self-regulating disposition behavior. In conclusion, these preclinical data demonstrate that ALX-0081 combines a high efficacy with an improved safety profile compared with currently marketed antithrombotics. ALX-0081 has entered clinical development.


Subject(s)
Antibodies, Bispecific/pharmacokinetics , Fibrinolytic Agents/pharmacology , Immunoglobulin Heavy Chains/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Single-Chain Antibodies/pharmacokinetics , Thrombosis/drug therapy , Animals , Antibody Specificity , Binding Sites/immunology , Fibrinolytic Agents/immunology , Humans , In Vitro Techniques , Macaca fascicularis , Papio , Platelet Adhesiveness/drug effects , Platelet Adhesiveness/immunology , Platelet Glycoprotein GPIb-IX Complex/immunology , Platelet Glycoprotein GPIb-IX Complex/metabolism , Pulsatile Flow/physiology , Thrombosis/immunology , von Willebrand Factor/immunology , von Willebrand Factor/metabolism
16.
PLoS One ; 5(5): e10482, 2010 May 05.
Article in English | MEDLINE | ID: mdl-20463957

ABSTRACT

HIV-1 entry into host cells is mediated by the sequential binding of the envelope glycoprotein gp120 to CD4 and a chemokine receptor. Antibodies binding to epitopes overlapping the CD4-binding site on gp120 are potent inhibitors of HIV entry, such as the llama heavy chain antibody fragment V(HH) D7, which has cross-clade neutralizing properties and competes with CD4 and mAb b12 for high affinity binding to gp120. We report the crystal structure of the D7 V(HH) at 1.5 A resolution, which reveals the molecular details of the complementarity determining regions (CDR) and substantial flexibility of CDR3 that could facilitate an induced fit interaction with gp120. Structural comparison of CDRs from other CD4 binding site antibodies suggests diverse modes of interaction. Mutational analysis identified CDR3 as a key component of gp120 interaction as determined by surface plasmon resonance. A decrease in affinity is directly coupled to the neutralization efficiency since mutations that decrease gp120 interaction increase the IC50 required for HIV-1 IIIB neutralization. Thus the structural study identifies the long CDR3 of D7 as the key determinant of interaction and HIV-1 neutralization. Furthermore, our data confirm that the structural plasticity of gp120 can accommodate multiple modes of antibody binding within the CD4 binding site.


Subject(s)
HIV Envelope Protein gp120/immunology , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Neutralization Tests , Amino Acid Sequence , Binding Sites , CD4 Antigens/immunology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , DNA Mutational Analysis , HIV-1/drug effects , Immunoglobulin Fragments/pharmacology , Immunoglobulin Heavy Chains/pharmacology , Inhibitory Concentration 50 , Models, Molecular , Molecular Sequence Data , Mutant Proteins/metabolism , Protein Binding/drug effects , Protein Structure, Secondary , Sequence Alignment , Solvents , Structural Homology, Protein , Surface Properties/drug effects
17.
J Immunol Methods ; 346(1-2): 26-37, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19427867

ABSTRACT

Natural IgA antibodies are abundantly produced in vivo to protect serosal surfaces from invading infectious organisms. However, the immunotherapeutic potential of IgA has hardly been explored, although there is evidence that recombinant IgA antibodies may broaden the armentarium to combat certain infectious or malignant diseases. One of the limitations for exploring IgA's therapeutic activity has been the difficulty to obtain enough recombinant material with desired specificity for in vivo studies. Here, we describe the production and purification of monomeric recombinant IgA1 and IgA2 antibodies under serum-free conditions. For antibody production, suspension adapted CHO-K1 cells and a glutamine synthetase selection vector were used, which resulted in specific production rates of up to 2.2 pg/cell/day. Purities of >95% of monomeric antibodies were obtained by a combination of affinity chromatography-using an anti-kappa-light chain matrix-and size exclusion chromatography. Purified antibodies displayed the expected biochemical characteristics and were functionally fully active. Importantly, all required reagents and methods are commercially available and not dependent on the specificity of the desired antibody. In addition, all employed technologies and methodologies are similar to those used for the production of therapeutic IgG antibodies - thus allowing further up-scaling and streamlining according to existing antibody production technologies. In conclusion, the described methodology may assist in the development of recombinant IgA antibodies for therapeutic applications.


Subject(s)
Immunoglobulin A/biosynthesis , Immunoglobulin A/isolation & purification , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Heavy Chains/isolation & purification , Immunoglobulin Light Chains/biosynthesis , Immunoglobulin Light Chains/isolation & purification , Animals , Antibody Specificity , Antibody-Dependent Cell Cytotoxicity , Binding Sites, Antibody , CHO Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatography, Affinity , Chromatography, Gel , Cricetinae , Cricetulus , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , Humans , Hybridomas , Immunoglobulin A/genetics , Immunoglobulin A/metabolism , Immunoglobulin A/pharmacology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Heavy Chains/pharmacology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/metabolism , Immunoglobulin Light Chains/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/isolation & purification , Transfection
18.
Mol Immunol ; 45(4): 881-6, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17889938

ABSTRACT

Active and passive immunotherapy targeted at the amyloid-beta (Abeta) peptide has been proposed as therapeutic approach against Alzheimer's disease (AD), and efforts towards the generation and application of antibody-based reagents that are capable of preventing and clearing amyloid aggregates are currently under active investigation. Previously, we selected and characterized a new anti-Abeta1-42 phage-displayed scFv antibody, designated clone b4.4, using a non-immune human scFv antibody library and demonstrated that a peptide based on the sequence of the Ig heavy chain (VH) complementarity-determining region (HCDR3) of this antibody fragment bound to Abeta1-42)and had neuroprotective potential against Abeta1-42 mediated neurotoxicity in rat hippocampal cultured neurons. In the present study, using novel computational methods and in vitro experiments we demonstrated that b4.4 binds to the central region of Abeta1-42. We also demonstrated that this scFv antibody binds to Abeta-derived diffusible ligands (ADDLs) and neutralizes the toxicity of both fibrillar and oligomeric forms of Abeta1-42 tested in vitro in SH-SY5Y cell cultures.


Subject(s)
Amyloid beta-Peptides/pharmacology , Complementarity Determining Regions/pharmacology , Immunoglobulin Fragments/pharmacology , Immunoglobulin Heavy Chains/pharmacology , Neuroprotective Agents/pharmacology , Oligopeptides/pharmacology , Peptide Fragments/pharmacology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/immunology , Cell Line, Tumor , Cell Survival/drug effects , Complementarity Determining Regions/chemistry , Epitope Mapping , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin Heavy Chains/chemistry , Models, Molecular , Neuroprotective Agents/chemistry , Oligopeptides/chemistry , Peptide Fragments/chemistry , Peptide Fragments/immunology , Protein Binding
19.
Cancer Immunol Immunother ; 56(3): 303-317, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16738850

ABSTRACT

The development of a number of different solid tumours is associated with over-expression of ErbB1, or the epidermal growth factor receptor (EGFR), and this over-expression is often correlated with poor prognosis of patients. Therefore, this receptor tyrosine kinase is considered to be an attractive target for antibody-based therapy. Indeed, antibodies to the EGFR have already proven their value for the treatment of several solid tumours, especially in combination with chemotherapeutic treatment regimens. Variable domains of camelid heavy chain-only antibodies (called Nanobodies) have superior properties compared with classical antibodies in that they are small, very stable, easy to produce in large quantities and easy to re-format into multi-valent or multi-specific proteins. Furthermore, they can specifically be selected for a desired function by phage antibody display. In this report, we describe the successful selection and the characterisation of antagonistic anti-EGFR Nanobodies. By using a functional selection strategy, Nanobodies that specifically competed for EGF binding to the EGFR were isolated from "immune" phage Nanobody repertoires. The selected antibody fragments were found to efficiently inhibit EGF binding to the EGFR without acting as receptor agonists themselves. In addition, they blocked EGF-mediated signalling and EGF-induced cell proliferation. In an in vivo murine xenograft model, the Nanobodies were effective in delaying the outgrowth of A431-derived solid tumours. This is the first report describing the successful use of untagged Nanobodies for the in vivo treatment of solid tumours. The results show that functional phage antibody selection, coupled to the rational design of Nanobodies, permits the rapid development of novel anti-cancer antibody-based therapeutics.


Subject(s)
Antibodies/pharmacology , ErbB Receptors/antagonists & inhibitors , Immunoglobulin Heavy Chains/pharmacology , Signal Transduction/drug effects , Animals , Antibodies/isolation & purification , Antibody Formation , Antibody Specificity , Camelids, New World/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Immunologic , Enzyme-Linked Immunosorbent Assay , ErbB Receptors/immunology , Female , Humans , Immunoglobulin Heavy Chains/isolation & purification , Ligands , Mice , Mice, Nude , Sensitivity and Specificity , Structure-Activity Relationship , Xenograft Model Antitumor Assays
20.
Cell Biol Int ; 31(1): 82-7, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17074514

ABSTRACT

It is generally believed that under normal conditions only B lymphocytes express immunoglobulin. Interestingly, our previous work demonstrated that epithelial cancer tissues and cancer cell lines also express Ig alpha heavy chain. So we further analyzed the potential function of cancer-derived Ig alpha heavy chain. Here we show that blockade of cancer-derived Ig alpha suppressed the growth and viability of cancer cells. And cancer-derived Ig alpha promotes the malignant proliferation ability of cancer cells. Furthermore, we demonstrated that Ig alpha protein increases the access percentage of S phase from the early mitosis of synchronized cancer cells. Our findings support the important role of cancer-derived Ig alpha as a growth promoter of cancer cells, and reveal a novel molecular mechanism for growth and proliferation of cancer cells.


Subject(s)
Epithelial Cells/drug effects , Epithelial Cells/immunology , Immunoglobulin Heavy Chains/pharmacology , Immunoglobulin alpha-Chains/pharmacology , Neoplasms/chemically induced , Neoplasms/immunology , S Phase/drug effects , Antibodies, Blocking/pharmacology , Antibodies, Neoplasm , Cell Proliferation/drug effects , Cell Survival/drug effects , HeLa Cells , Humans , Immunoglobulin Heavy Chains/isolation & purification , Immunoglobulin alpha-Chains/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...