Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.186
Filter
1.
J Immunol Res ; 2024: 5582151, 2024.
Article in English | MEDLINE | ID: mdl-38690552

ABSTRACT

Unlike T cells in other tissues, uterine T cells must balance strong immune defense against pathogens with tolerance to semiallogeneic fetus. Our previous study fully elucidated the characteristics of γδT cells in nonpregnant uterus and the mechanism modulated by estrogen. However, comprehensive knowledge of the immunological properties of αßT (including CD4+T cells and CD8+T) cells in nonpregnancy uterus has not been acquired. In this study, we fully compared the immunological properties of αßT cells between uterus and blood using mouse and human sample. It showed that most of CD4+T cells and CD8+T cells in murine uterus and human endometrium were tissue resident memory T cells which highly expressed tissue residence markers CD69 and/or CD103. In addition, both CD4+T cells and CD8+T cells in uterus highly expressed inhibitory molecular PD-1 and cytokine IFN-γ. Uterine CD4+T cells highly expressed IL-17 and modulated by transcription factor pSTAT3. Moreover, we compared the similarities and differences between human and murine uterine T cell phenotype. Together, uterine CD4+T cells and CD8+ cells exhibited a unique mixed signature of T cell dysfunction, activation, and effector function which enabled them to balance strong immune defense against pathogens with tolerance to fetus. Our study fully elucidated the unique immunologic properties of uterine CD4+T and CD8+T cells and provided a base for further investigation of functions.


Subject(s)
Antigens, CD , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Uterus , Female , CD8-Positive T-Lymphocytes/immunology , Animals , Humans , Mice , CD4-Positive T-Lymphocytes/immunology , Uterus/immunology , Antigens, CD/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Integrin alpha Chains/metabolism , Memory T Cells/immunology , STAT3 Transcription Factor/metabolism , Interferon-gamma/metabolism , Lectins, C-Type/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Interleukin-17/metabolism , Lymphocyte Activation/immunology , Immunologic Memory
2.
Front Immunol ; 15: 1383281, 2024.
Article in English | MEDLINE | ID: mdl-38711506

ABSTRACT

NK cell therapeutics have gained significant attention as a potential cancer treatment. Towards therapeutic use, NK cells need to be activated and expanded to attain high potency and large quantities for an effective dosage. This is typically done by ex vivo stimulation with cytokines to enhance functionality or expansion for 10-14 days to increase both their activity and quantity. Attaining a robust methodology to produce large doses of potent NK cells for an off-the-shelf product is highly desirable. Notably, past reports have shown that stimulating NK cells with IL-12, IL-15, and IL-18 endows them with memory-like properties, better anti-tumor activity, and persistence. While this approach produces NK cells with clinically favorable characteristics supported by encouraging early results for the treatment of hematological malignancies, its limited scalability, variability in initial doses, and the necessity for patient-specific production hinder its broader application. In this study, stimulation of NK cells with PM21-particles derived from K562-41BBL-mbIL21 cells was combined with memory-like induction using cytokines IL-12, IL-15, and IL-18 to produce NK cells with enhanced anti-tumor function. The use of cytokines combined with PM21-particles (cytokine and particle, CAP) significantly enhanced NK cell expansion, achieving a remarkable 8,200-fold in 14 days. Mechanistically, this significant improvement over expansion with PM21-particles alone was due to the upregulation of receptors for key stimulating ligands (4-1BBL and IL-2), resulting in a synergy that drives substantial NK cell growth, showcasing the potential for more effective therapeutic applications. The therapeutic potential of CAP-NK cells was demonstrated by the enhanced metabolic fitness, persistence, and anti-tumor function both in vitro and in vivo. Finally, CAP-NK cells were amenable to current technologies used in developing therapeutic NK cell products, including CRISPR/Cas9-based techniques to generate a triple-gene knockout or a gene knock-in. Taken together, these data demonstrate that the addition of cytokines enhanced the already effective method of ex vivo generation of therapeutic NK cells with PM21-particles, yielding a superior NK cell product for manufacturing efficiency and potential therapeutic applications.


Subject(s)
Cytokines , Immunologic Memory , Killer Cells, Natural , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Humans , Cytokines/metabolism , Animals , Mice , K562 Cells , Cell Survival/drug effects , Cell Proliferation/drug effects , Lymphocyte Activation
3.
BMC Immunol ; 25(1): 25, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702630

ABSTRACT

BACKGROUND: Breast cancer is the most common cancer in females. The immune system has a crucial role in the fight against cancer. B and T cells, the two main components of the adaptive immunity, are critical players that specifically target tumor cells. However, B cells, in contrast to T cells, and their role in cancer inhibition or progression is less investigated. Accordingly, in this study, we assessed and compared the frequency of naïve and different subsets of memory B cells in the peripheral blood of patients with breast cancer and healthy women. RESULTS: We found no significant differences in the frequencies of peripheral CD19+ B cells between the patients and controls. However, there was a significant decrease in the frequency of CD19+IgM+ B cells in patients compared to the control group (P=0.030). Moreover, the patients exhibited higher percentages of atypical memory B cells (CD19+CD27‒IgM‒, P=0.006) and a non-significant increasing trend in switched memory B cells (CD19+CD27+IgM‒, P=0.074). Further analysis revealed a higher frequency of atypical memory B cells (aMBCs) in the peripheral blood of patients without lymph node involvement as well as those with a tumor size greater than 2cm or with estrogen receptor (ER) negative/progesterone receptor (PR) negative tumors, compared with controls (P=0.030, P=0.040, P=0.031 and P=0.054, respectively). CONCLUSION: Atypical memory B cells (CD19+CD27‒IgM‒) showed a significant increase in the peripheral blood of patients with breast cancer compared to the control group. This increase seems to be associated with tumor characteristics. Nevertheless, additional research is necessary to determine the precise role of these cells during breast cancer progression.


Subject(s)
Breast Neoplasms , Lymph Nodes , Memory B Cells , Humans , Female , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/blood , Middle Aged , Adult , Lymph Nodes/immunology , Lymph Nodes/pathology , Memory B Cells/immunology , Aged , Antigens, CD19/metabolism , Immunologic Memory , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , B-Lymphocyte Subsets/immunology
4.
Oncoimmunology ; 13(1): 2348254, 2024.
Article in English | MEDLINE | ID: mdl-38737793

ABSTRACT

Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB.


Subject(s)
Cell Differentiation , Colorectal Neoplasms , Immunologic Memory , Killer Cells, Natural , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Humans , Animals , Mice , Cell Differentiation/drug effects , Cell Line, Tumor , Interferon-gamma/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Mice, Inbred NOD , Female
5.
Hum Vaccin Immunother ; 20(1): 2346963, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38745461

ABSTRACT

COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by Neisseria meningitidis, are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as N. meningitidis, present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by N. meningitidis C:2a:P1.5 OMVs and aluminum hydroxide, as a combined preparation for these pathogens. The immunization induced IgG antibodies of high avidity for RBD and OMVs, besides IgG that recognized the Omicron BA.2 variant of SARS-CoV-2 with intermediary avidity. Cellular immunity showed IFN-γ and IL-4 secretion in response to RBD and OMV stimuli, demonstrating immunologic memory and a mixed Th1/Th2 response. Offspring presented transferred IgG of similar levels and avidity as their mothers. Humoral immunity did not point to the superiority of any RBD dose, but the group immunized with a lower antigenic dose (0.5 µg) had the better cellular response. Overall, OMVs enhanced RBD immunogenicity and conferred an immune response directed to N. meningitidis too.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Neisseria meningitidis , SARS-CoV-2 , Animals , Mice , Immunoglobulin G/blood , Neisseria meningitidis/immunology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Spike Glycoprotein, Coronavirus/immunology , Adjuvants, Vaccine/administration & dosage , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/immunology , Immunization/methods , Antibody Affinity , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Immunologic Memory , Th1 Cells/immunology
6.
Front Immunol ; 15: 1393283, 2024.
Article in English | MEDLINE | ID: mdl-38742111

ABSTRACT

For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.


Subject(s)
Endotoxins , Immune Tolerance , Immunity, Innate , Immunologic Memory , Humans , Animals , Endotoxins/immunology , Inflammation/immunology , Adaptive Immunity , Trained Immunity
7.
Front Immunol ; 15: 1378359, 2024.
Article in English | MEDLINE | ID: mdl-38779662

ABSTRACT

Skin tissue-resident memory T (Trm) cells are produced by antigenic stimulation and remain in the skin for a long time without entering the peripheral circulation. In the healthy state Trm cells can play a patrolling and surveillance role, but in the disease state Trm cells differentiate into various phenotypes associated with different diseases, exhibit different localizations, and consequently have local protective or pathogenic roles, such as disease recurrence in vitiligo and maintenance of immune homeostasis in melanoma. The most common surface marker of Trm cells is CD69/CD103. However, the plasticity of tissue-resident memory T cells after colonization remains somewhat uncertain. This ambiguity is largely due to the variation in the functionality and ultimate destination of Trm cells produced from memory cells differentiated from diverse precursors. Notably, the presence of Trm cells is not stationary across numerous non-lymphoid tissues, most notably in the skin. These cells may reenter the blood and distant tissue sites during the recall response, revealing the recycling and migration potential of the Trm cell progeny. This review focuses on the origin and function of skin Trm cells, and provides new insights into the role of skin Trm cells in the treatment of autoimmune skin diseases, infectious skin diseases, and tumors.


Subject(s)
Cell Plasticity , Homeostasis , Immunologic Memory , Memory T Cells , Skin Diseases , Skin , Humans , Homeostasis/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , Skin/immunology , Skin/pathology , Cell Plasticity/immunology , Animals , Skin Diseases/immunology , Antigens, CD/metabolism , Antigens, CD/immunology
8.
Sci Immunol ; 9(95): eade3814, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787963

ABSTRACT

Patients with heart failure (HF) often experience repeated acute decompensation and develop comorbidities such as chronic kidney disease and frailty syndrome. Although this suggests pathological interaction among comorbidities, the mechanisms linking them are poorly understood. Here, we identified alterations in hematopoietic stem cells (HSCs) as a critical driver of recurrent HF and associated comorbidities. Bone marrow transplantation from HF-experienced mice resulted in spontaneous cardiac dysfunction and fibrosis in recipient mice, as well as increased vulnerability to kidney and skeletal muscle insults. HF enhanced the capacity of HSCs to generate proinflammatory macrophages. In HF mice, global chromatin accessibility analysis and single-cell RNA-seq showed that transforming growth factor-ß (TGF-ß) signaling was suppressed in HSCs, which corresponded with repressed sympathetic nervous activity in bone marrow. Transplantation of bone marrow from mice in which TGF-ß signaling was inhibited similarly exacerbated cardiac dysfunction. Collectively, these results suggest that cardiac stress modulates the epigenome of HSCs, which in turn alters their capacity to generate cardiac macrophage subpopulations. This change in HSCs may be a common driver of repeated HF events and comorbidity by serving as a key carrier of "stress memory."


Subject(s)
Heart Failure , Immunity, Innate , Immunologic Memory , Mice, Inbred C57BL , Animals , Heart Failure/immunology , Mice , Male , Multimorbidity , Transforming Growth Factor beta/metabolism , Hematopoietic Stem Cells/immunology , Signal Transduction/immunology , Macrophages/immunology , Trained Immunity
9.
Vaccine ; 42(16): 3536-3546, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38705804

ABSTRACT

BACKGROUND: A single dose of Ad26.COV2.S is well-tolerated and effective in preventing moderate-to-severe disease outcomes due to COVID-19. We evaluated the impact of dose level, number of doses, and dose interval on immunogenicity, reactogenicity, and safety of Ad26.COV2.S in adults. Anamnestic responses were also explored. METHODS: This randomised, double-blind, placebo-controlled, Phase 2a study was conducted in adults aged 18-55 years and ≥ 65 years (NCT04535453). Four dose levels (1.25 × 1010, 2.5 × 1010, 5 × 1010, and 1 × 1011 viral particles [vp], single and 2-dose schedules, and dose intervals of 56 and 84 days, were assessed. Four or 6 months post-primary vaccination, Ad26.COV2.S 1.25 × 1010 vp was given to evaluate anamnestic responses. Humoral and cell-mediated immune responses were measured. Reactogenicity and safety were assessed in all participants. RESULTS: All Ad26.COV2.S schedules induced humoral responses with evidence of a dose response relationship. A single dose of Ad26.COV2.S (5 × 1010 vp) induced antibody and cellular immune responses that persisted for up to at least 6 months. In the 2-dose regimens, antibody responses were higher than 1-dose regimens at comparable dose levels, and the magnitude of the immune response increased when the interval between doses was increased (84 days vs 56 days). Rapid, marked immune responses were observed in all groups after vaccine antigen exposure indicating immune memory. Durable immune responses were observed in all groups for up to at least 6 months post-antigen exposure. Strong and consistent correlations between neutralising and binding antibodies were observed CD4 + and CD8 + T cell responses were similar after all regimens. Reactogenicity within 7 days post-vaccination tended to be dose-related. CONCLUSION: The study supports the primary, single dose schedule with Ad26.COV2.S at 5 × 1010 vp and homologous booster vaccination after a 6 month interval. Rapid and marked responses to vaccine antigen exposure indicate induction of immune memory by 1- and 2-dose primary vaccination.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , Adult , Double-Blind Method , Male , Middle Aged , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Young Adult , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Adolescent , Ad26COVS1/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Aged , Immunization Schedule , Vaccination/methods , Immunologic Memory , Spike Glycoprotein, Coronavirus/immunology , Immunity, Humoral , Immunity, Cellular/immunology
10.
Front Immunol ; 15: 1360219, 2024.
Article in English | MEDLINE | ID: mdl-38745667

ABSTRACT

Background: Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods: FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results: TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion: These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.


Subject(s)
B-Lymphocytes, Regulatory , Hepatitis A Virus Cellular Receptor 1 , Receptors, Immunologic , Humans , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/metabolism , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics , Female , Male , Adult , Memory B Cells/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Cytokines/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Lymphocyte Activation/immunology , Middle Aged , Cells, Cultured , Cell Differentiation/immunology , Immunologic Memory
11.
Front Immunol ; 15: 1382638, 2024.
Article in English | MEDLINE | ID: mdl-38715601

ABSTRACT

Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.


Subject(s)
CD4-Positive T-Lymphocytes , CD40 Ligand , Lung , Memory B Cells , Streptococcus pneumoniae , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , CD40 Ligand/metabolism , CD40 Ligand/immunology , Chemokine CXCL13/metabolism , Disease Models, Animal , Immunologic Memory , Lung/immunology , Memory B Cells/immunology , Memory B Cells/metabolism , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Signal Transduction , Streptococcus pneumoniae/immunology
12.
PLoS One ; 19(5): e0300174, 2024.
Article in English | MEDLINE | ID: mdl-38696390

ABSTRACT

Off-the-shelf immunotherapeutics that suppress tumor growth and provide durable protection against relapse could enhance cancer treatment. We report preclinical studies on a CD33 x CD3 bivalent bispecific diabody, AMV564, that not only suppresses tumor growth, but also facilitates memory responses in a mouse model of acute myelogenous leukemia (AML). Mechanistically, a single 5-day treatment with AMV564 seems to reduce tumor burden by redirection of T cells, providing a time window for allogeneic or other T cells that innately recognize tumor antigens to become activated and proliferate. When the concentration of bispecific becomes negligible, the effector: target ratio has also shifted, and these activated T cells mediate long-term tumor control. To test the efficacy of AMV564 in vivo, we generated a CD33+ MOLM13CG bioluminescent human cell line and optimized conditions needed to control these cells for 62 days in vivo in NSG mice. Of note, not only did MOLM13CG become undetectable by bioluminescence imaging in response to infusion of human T cells plus AMV564, but also NSG mice that had cleared the tumor also resisted rechallenge with MOLM13CG in spite of no additional AMV564 treatment. In these mice, we identified effector and effector memory human CD4+ and CD8+ T cells in the peripheral blood immediately prior to rechallenge that expanded significantly during the subsequent 18 days. In addition to the anti-tumor effects of AMV564 on the clearance of MOLM13CG cells in vivo, similar effects were seen when primary CD33+ human AML cells were engrafted in NSG mice even when the human T cells made up only 2% of the peripheral blood cells and AML cells made up 98%. These studies suggest that AMV564 is a novel and effective bispecific diabody for the targeting of CD33+ AML that may provide long-term survival advantages in the clinic.


Subject(s)
Antibodies, Bispecific , CD3 Complex , Immunologic Memory , Leukemia, Myeloid, Acute , Sialic Acid Binding Ig-like Lectin 3 , Animals , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/drug therapy , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Mice , CD3 Complex/immunology , Immunologic Memory/drug effects , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/drug effects
13.
J Immunother Cancer ; 12(5)2024 May 30.
Article in English | MEDLINE | ID: mdl-38816232

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) targeting neoantigens can effectively treat a selected set of metastatic solid cancers. However, harnessing TILs for cancer treatments remains challenging because neoantigen-reactive T cells are often rare and exhausted, and ex vivo expansion can further reduce their frequencies. This complicates the identification of neoantigen-reactive T-cell receptors (TCRs) and the development of TIL products with high reactivity for patient treatment. METHODS: We tested whether TILs could be in vitro stimulated against neoantigens to achieve selective expansion of neoantigen-reactive TILs. Given their prevalence, mutant p53 or RAS were studied as models of human neoantigens. An in vitro stimulation method, termed "NeoExpand", was developed to provide neoantigen-specific stimulation to TILs. 25 consecutive patient TILs from tumors harboring p53 or RAS mutations were subjected to NeoExpand. RESULTS: We show that neoantigenic stimulation achieved selective expansion of neoantigen-reactive TILs and broadened the neoantigen-reactive CD4+ and CD8+ TIL clonal repertoire. This allowed the effective isolation of novel neoantigen-reactive TCRs. Out of the 25 consecutive TIL samples, neoantigenic stimulation enabled the identification of 16 unique reactivities and 42 TCRs, while conventional TIL expansion identified 9 reactivities and 14 TCRs. Single-cell transcriptome analysis revealed that neoantigenic stimulation increased neoantigen-reactive TILs with stem-like memory phenotypes expressing IL-7R, CD62L, and KLF2. Furthermore, neoantigenic stimulation improved the in vivo antitumor efficacy of TILs relative to the conventional OKT3-induced rapid TIL expansion in p53-mutated or KRAS-mutated xenograft mouse models. CONCLUSIONS: Taken together, neoantigenic stimulation of TILs selectively expands neoantigen-reactive TILs by frequencies and by their clonal repertoire. NeoExpand led to improved phenotypes and functions of neoantigen-reactive TILs. Our data warrant its clinical evaluation. TRIAL REGISTRATION NUMBER: NCT00068003, NCT01174121, and NCT03412877.


Subject(s)
Antigens, Neoplasm , Lymphocytes, Tumor-Infiltrating , Receptors, Antigen, T-Cell , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Antigens, Neoplasm/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Mice , Immunologic Memory , Animals , Female , Phenotype , Neoplasms/immunology
14.
Front Immunol ; 15: 1415914, 2024.
Article in English | MEDLINE | ID: mdl-38817613

ABSTRACT

Tissue-resident memory T cells (TRM) are long-lived memory lymphocytes that persist in non-lymphoid tissues and provide the first line of defence against invading pathogens. They adapt to their environment in a tissue-specific manner, exerting effective pathogen control through a diverse T cell receptor (TCR) repertoire and the expression of proinflammatory cytokines and cytolytic proteins. More recently, several studies have indicated that TRM can egress from the tissue into the blood as so-called "ex-TRM", or "circulating cells with a TRM phenotype". The numerically small ex-TRM population can re-differentiate in the circulation, giving rise to new memory and effector T cells. Following their egress, ex-TRM in the blood and secondary lymphoid organs can be identified based on their continued expression of the residency marker CD103, alongside other TRM-like features. Currently, it is unclear whether exit is a stochastic process, or is actively triggered in response to unknown factors. Also, it is not known whether a subset or all TRM are able to egress. Ex-TRM may be beneficial in health, as mobilisation of specialised TRM and their recruitment to both their site of origin as well as distant tissues results in an efficient distribution of the immune response. However, there is emerging evidence of a pathogenic role for ex-TRM, with a suggestion that they may perpetuate both local and distant tissue inflammation. Here, we review the evidence for the existence of ex-TRM and examine their potential involvement in disease pathogenesis.


Subject(s)
Memory T Cells , Animals , Humans , Immunologic Memory , Memory T Cells/immunology , Memory T Cells/metabolism
16.
Front Immunol ; 15: 1382911, 2024.
Article in English | MEDLINE | ID: mdl-38807606

ABSTRACT

Introduction: COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods: Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results: The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion: Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Reactions , Immunity, Humoral , Immunoglobulin G , Memory B Cells , Plasma Cells , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Memory B Cells/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Male , Adult , Cross Reactions/immunology , Female , Plasma Cells/immunology , Middle Aged , Immunoglobulin G/immunology , Immunoglobulin G/blood , Vaccination , Influenza Vaccines/immunology , Immunologic Memory/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Epitopes, B-Lymphocyte/immunology , B-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology , Kinetics
18.
Nat Commun ; 15(1): 4418, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806459

ABSTRACT

The mechanisms by which the number of memory CD8 T cells is stably maintained remains incompletely understood. It has been postulated that maintaining them requires help from CD4 T cells, because adoptively transferred memory CD8 T cells persist poorly in MHC class II (MHCII)-deficient mice. Here we show that chronic interferon-γ signals, not CD4 T cell-deficiency, are responsible for their attrition in MHCII-deficient environments. Excess IFN-γ is produced primarily by endogenous colonic CD8 T cells in MHCII-deficient mice. IFN-γ neutralization restores the number of memory CD8 T cells in MHCII-deficient mice, whereas repeated IFN-γ administration or transduction of a gain-of-function STAT1 mutant reduces their number in wild-type mice. CD127high memory cells proliferate actively in response to IFN-γ signals, but are more susceptible to attrition than CD127low terminally differentiated effector memory cells. Furthermore, single-cell RNA-sequencing of memory CD8 T cells reveals proliferating cells that resemble short-lived, terminal effector cells and documents global downregulation of gene signatures of long-lived memory cells in MHCII-deficient environments. We propose that chronic IFN-γ signals deplete memory CD8 T cells by compromising their long-term survival and by diverting self-renewing CD127high cells toward terminal differentiation.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Immunologic Memory , Interferon-gamma , STAT1 Transcription Factor , Animals , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , CD4-Positive T-Lymphocytes/immunology , Mice , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/deficiency , Mice, Inbred C57BL , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Signal Transduction , Mice, Knockout , Memory T Cells/immunology , Memory T Cells/metabolism , Interleukin-7 Receptor alpha Subunit/metabolism , Cell Proliferation , Adoptive Transfer
19.
Front Immunol ; 15: 1373537, 2024.
Article in English | MEDLINE | ID: mdl-38812520

ABSTRACT

Sex-based differences in immune cell composition and function can contribute to distinct adaptive immune responses. Prior work has quantified these differences in peripheral blood, but little is known about sex differences within human lymphoid tissues. Here, we characterized the composition and phenotypes of adaptive immune cells from male and female ex vivo tonsils and evaluated their responses to influenza antigens using an immune organoid approach. In a pediatric cohort, female tonsils had more memory B cells compared to male tonsils direct ex vivo and after stimulation with live-attenuated but not inactivated vaccine, produced higher influenza-specific antibody responses. Sex biases were also observed in adult tonsils but were different from those measured in children. Analysis of peripheral blood immune cells from in vivo vaccinated adults also showed higher frequencies of tissue homing CD4 T cells in female participants. Together, our data demonstrate that distinct memory B and T cell profiles are present in male vs. female lymphoid tissues and peripheral blood respectively and suggest that these differences may in part explain sex biases in response to vaccines and viruses.


Subject(s)
Palatine Tonsil , Humans , Female , Male , Child , Palatine Tonsil/immunology , Adult , Influenza Vaccines/immunology , Influenza, Human/immunology , Sex Characteristics , Child, Preschool , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/immunology , Memory B Cells/immunology , Organ Specificity/immunology , Young Adult , Sex Factors , CD4-Positive T-Lymphocytes/immunology , B-Lymphocytes/immunology , Immunologic Memory
20.
Front Immunol ; 15: 1362289, 2024.
Article in English | MEDLINE | ID: mdl-38812523

ABSTRACT

Introduction: Innate immune training is a metabolic, functional, and epigenetic long-term reprogramming of innate cells triggered by different stimuli. This imprinting also reaches hematopoietic precursors in the bone marrow to sustain a memory-like phenotype. Dendritic cells (DCs) can exhibit memory-like responses, enhanced upon subsequent exposure to a pathogen; however, whether this imprinting is lineage and stimulus-restricted is still being determined. Nevertheless, the functional consequences of DCs training on the adaptive and protective immune response against non-infectious diseases remain unresolved. Methods: We evaluated the effect of the nontoxic cholera B subunit (CTB), LPS and LTA in the induction of trained immunity in murine DCs revealed by TNFa and LDH expression, through confocal microscopy. Additionally, we obtained bone marrow DCs (BMDCs) from mice treated with CTB, LPS, and LTA and evaluated training features in DCs and their antigen-presenting cell capability using multiparametric cytometry. Finally, we design an experimental melanoma mouse model to demonstrate protection induced by CTB-trained DCs in vivo. Results: CTB-trained DCs exhibit increased expression of TNFa, and metabolic reprogramming indicated by LDH expression. Moreover, CTB training has an imprint on DC precursors, increasing the number and antigen-presenting function in BMDCs. We found that training by CTB stimulates the recruitment of DC precursors and DCs infiltration at the skin and lymph nodes. Interestingly, training-induced by CTB promotes a highly co-stimulatory phenotype in tumor-infiltrating DCs (CD86+) and a heightened functionality of exhausted CD8 T cells (Ki67+, GZMB+), which were associated with a protective response against melanoma challenge in vivo. Conclusion: Our work indicates that CTB can induce innate immune training on DCs, which turns into an efficient adaptive immune response in the melanoma model and might be a potential immunotherapeutic approach for tumor growth control.


Subject(s)
CD8-Positive T-Lymphocytes , Cholera Toxin , Dendritic Cells , Melanoma, Experimental , Mice, Inbred C57BL , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , Cholera Toxin/immunology , Cholera Toxin/pharmacology , Melanoma, Experimental/immunology , Immunity, Innate , Female , Immunologic Memory , Trained Immunity
SELECTION OF CITATIONS
SEARCH DETAIL
...