Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.785
Filter
1.
Sci Rep ; 14(1): 12872, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834577

ABSTRACT

The initial Phase-I single centre, single dose, randomized, double-blind, cross-over study was planned to assess the pharmacokinetic and pharmacodynamic bioequivalence of the trastuzumab biosimilar (MYL-1401O) compared to the reference Herceptin®. Their respective immunomodulation profile presented in this paper involved healthy males receiving a single infusion of both monoclonals, separated by a washout period. Sixty parameters were assessed in total, including serum cytokines, peripheral mononuclear cell (PBMC) subsets, cell activation and response to recall antigens and mitogen, pre- and post- infusion, as well as a cytokine release assay (CRA) at baseline. Trastuzumab infusion induced a transient and weak peak of serum IL-6 at 6 h, and a modulation of mononuclear cell subset profile and activation level, notably CD16 + cells. Except for CD8 + T cells, there were no significant differences between Herceptin® and MYL-1401O. In CRA, PBMC stimulated with MYL-1401O or Herceptin® similarly secreted IL-6, TNF-α, IL-1ß, GM-CSF, IFN-γ, and IL-10, but no or low level of IL-2. Interestingly, some observed adverse events correlated with IL-2 and IFN-γ in CRA. MYL-1401O exhibited a very similar immunomodulation profile to Herceptin®, strongly supporting its bioequivalence. This approach may thus be included in a proof-of-concept study. CRA may be used as a predictive assay for the evaluation of clinical monoclonals.


Subject(s)
Biosimilar Pharmaceuticals , Cross-Over Studies , Cytokines , Therapeutic Equivalency , Trastuzumab , Humans , Trastuzumab/pharmacokinetics , Biosimilar Pharmaceuticals/pharmacokinetics , Biosimilar Pharmaceuticals/administration & dosage , Male , Adult , Cytokines/metabolism , Cytokines/blood , Double-Blind Method , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Immunomodulation/drug effects , Young Adult
2.
Front Immunol ; 15: 1367040, 2024.
Article in English | MEDLINE | ID: mdl-38745661

ABSTRACT

Background: In recent years, immunotherapy has been emerging as a promising alternative therapeutic method for cancer patients, offering potential benefits. The expression of PD-L1 by tumors can inhibit the T-cell response to the tumor and allow the tumor to evade immune surveillance. To address this issue, cancer immunotherapy has shown promise in disrupting the interaction between PD-L1 and its ligand PD-1. Methods: We used mirror-image phage display technology in our experiment to screen and determine PD-L1 specific affinity peptides (PPL-C). Using CT26 cells, we established a transplanted mouse tumor model to evaluate the inhibitory effects of PPL-C on tumor growth in vivo. We also demonstrated that PPL-C inhibited the differentiation of T regulatory cells (Tregs) and regulated the production of cytokines. Results: In vitro, PPL-C has a strong affinity for PD-L1, with a binding rate of 0.75 µM. An activation assay using T cells and mixed lymphocytes demonstrated that PPL-C inhibits the interaction between PD-1 and PD-L1. PPL-C or an anti-PD-L1 antibody significantly reduced the rate of tumor mass development in mice compared to those given a control peptide (78% versus 77%, respectively). The results of this study demonstrate that PPL-C prevents or retards tumor growth. Further, immunotherapy with PPL-C enhances lymphocyte cytotoxicity and promotes proliferation in CT26-bearing mice. Conclusion: PPL-C exhibited antitumor and immunoregulatory properties in the colon cancer. Therefore, PPL-C peptides of low molecular weight could serve as effective cancer immunotherapy.


Subject(s)
B7-H1 Antigen , Immunotherapy , Peptides , Animals , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Mice , Peptides/immunology , Cell Line, Tumor , Immunotherapy/methods , Humans , T-Lymphocytes, Regulatory/immunology , Female , Mice, Inbred BALB C , Programmed Cell Death 1 Receptor/immunology , Cytokines/metabolism , Lymphocyte Activation/immunology , Immunomodulation/drug effects , Colonic Neoplasms/therapy , Colonic Neoplasms/immunology
3.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792234

ABSTRACT

The tumor microenvironment (TME) can aid tumor cells in evading surveillance and clearance by immune cells, creating an internal environment conducive to tumor cell growth. Consequently, there is a growing focus on researching anti-tumor immunity through the regulation of immune cells within the TME. Various bioactive compounds in traditional Chinese medicine (TCM) are known to alter the immune balance by modulating the activity of immune cells in the TME. In turn, this enhances the body's immune response, thus promoting the effective elimination of tumor cells. This study aims to consolidate recent findings on the regulatory effects of bioactive compounds from TCM on immune cells within the TME. The bioactive compounds of TCM regulate the TME by modulating macrophages, dendritic cells, natural killer cells and T lymphocytes and their immune checkpoints. TCM has a long history of having been used in clinical practice in China. Chinese medicine contains various chemical constituents, including alkaloids, polysaccharides, saponins and flavonoids. These components activate various immune cells, thereby improving systemic functions and maintaining overall health. In this review, recent progress in relation to bioactive compounds derived from TCM will be covered, including TCM alkaloids, polysaccharides, saponins and flavonoids. This study provides a basis for further in-depth research and development in the field of anti-tumor immunomodulation using bioactive compounds from TCM.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Neoplasms , Tumor Microenvironment , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Neoplasms/immunology , Neoplasms/drug therapy , Animals , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Immunomodulation/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism
4.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791191

ABSTRACT

Cancer immunotherapy relies on the insight that the immune system can be used to defend against malignant cells. The aim of cancer immunotherapy is to utilize, modulate, activate, and train the immune system to amplify antitumor T-cell immunity. In parallel, the immune system response to damaged tissue is also crucial in determining the success or failure of an implant. Due to their extracellular matrix mimetics and tunable chemical or physical performance, hydrogels are promising platforms for building immunomodulatory microenvironments for realizing cancer therapy and tissue regeneration. However, submicron or nanosized pore structures within hydrogels are not favorable for modulating immune cell function, such as cell invasion, migration, and immunophenotype. In contrast, hydrogels with a porous structure not only allow for nutrient transportation and metabolite discharge but also offer more space for realizing cell function. In this review, the design strategies and influencing factors of porous hydrogels for cancer therapy and tissue regeneration are first discussed. Second, the immunomodulatory effects and therapeutic outcomes of different porous hydrogels for cancer immunotherapy and tissue regeneration are highlighted. Beyond that, this review highlights the effects of pore size on immune function and potential signal transduction. Finally, the remaining challenges and perspectives of immunomodulatory porous hydrogels are discussed.


Subject(s)
Hydrogels , Neoplasms , Hydrogels/chemistry , Humans , Porosity , Animals , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Immunomodulation/drug effects , Tissue Engineering/methods , Immunomodulating Agents/chemistry , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Tumor Microenvironment/immunology
5.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791528

ABSTRACT

An immune checkpoint is a signaling pathway that regulates the recognition of antigens by T-cell receptors (TCRs) during an immune response. These checkpoints play a pivotal role in suppressing excessive immune responses and maintaining immune homeostasis against viral or microbial infections. There are several FDA-approved immune checkpoint inhibitors (ICIs), including ipilimumab, pembrolizumab, and avelumab. These ICIs target cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and programmed death ligand 1 (PD-L1). Furthermore, ongoing efforts are focused on developing new ICIs with emerging potential. In comparison to conventional treatments, ICIs offer the advantages of reduced side effects and durable responses. There is growing interest in the potential of combining different ICIs with chemotherapy, radiation therapy, or targeted therapies. This article comprehensively reviews the classification, mechanism of action, application, and combination strategies of ICIs in various cancers and discusses their current limitations. Our objective is to contribute to the future development of more effective anticancer drugs targeting immune checkpoints.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Immune Checkpoint Inhibitors/therapeutic use , Animals , CTLA-4 Antigen/antagonists & inhibitors , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immunomodulation/drug effects
6.
J Neuroimmune Pharmacol ; 19(1): 26, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819756

ABSTRACT

BACKGROUND: The composition of gut microbiota plays a pivotal role in priming the immune system and thus impacts autoimmune diseases. Data on the effects of gut bacteria eradication via systemic antibiotics on immune neuropathies are currently lacking. This study therefore assessed the effects of antibiotics-induced gut microbiota alterations on the severity of experimental autoimmune neuritis (EAN), a rat model of Guillain-Barré Syndrome (GBS). Myelin P0 peptide 180-199 (P0 180-199)-induced EAN severity was compared between adult Lewis rats (12 weeks old) that received drinking water with or without antibiotics (colistin, metronidazole, vancomycin) and healthy rats, beginning antibiotics treatment immediately after immunization (day 0), and continuing treatment for 14 consecutive days. Neuropathy severity was assessed via a modified clinical score, and then related to gut microbiota alterations observed after fecal 16S rRNA gene sequencing at baseline and after EAN induction. Effectors of gut mucosal and endoneurial immunity were assessed via immunostaining. EAN rats showed increased gut mucosal permeability alongside increased mucosal CD8+ T cells compared to healthy controls. Antibiotics treatment alleviated clinical EAN severity and reduced endoneurial T cell infiltration, decreased gut mucosal CD8+ T cells and increased gut bacteria that may be associated with anti-inflammatory mechanisms, like Lactobacillus or Parasutterella. Our findings point out a relation between gut mucosal immunity and the pathogenesis of EAN, and indicate that antibiotics-induced intestinal immunomodulation might be a therapeutic approach to alleviate autoimmunity in immune neuropathies. Further studies are warranted to evaluate the clinical transferability of these findings to patients with GBS.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Immunomodulation , Neuritis, Autoimmune, Experimental , Rats, Inbred Lew , Animals , Neuritis, Autoimmune, Experimental/immunology , Neuritis, Autoimmune, Experimental/drug therapy , Rats , Gastrointestinal Microbiome/drug effects , Anti-Bacterial Agents/pharmacology , Immunomodulation/drug effects , Male
7.
Biomaterials ; 309: 122617, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38788457

ABSTRACT

Effectively addressing retinal issues represents a pivotal aspect of blindness-related diseases. Novel approaches involving reducing inflammation and rebalancing the immune response are paramount in the treatment of these conditions. This study delves into the potential of a nanogel system comprising polyethylenimine-benzene boric acid-hyaluronic acid (PEI-PBA-HA). We have evaluated the collaborative impact of cerium oxide nanozyme and chemokine CX3CL1 protein for targeted immunomodulation and retinal protection in uveitis models. Our nanogel system specifically targets the posterior segment of the eyes. The synergistic effect in this area reduces oxidative stress and hampers the activation of microglia, thereby alleviating the pathological immune microenvironment. This multifaceted drug delivery system disrupts the cycle of oxidative stress, inflammation, and immune response, suppressing initial immune cells and limiting local retinal structural damage induced by excessive immune reactions. Our research sheds light on interactions within retinal target cells, providing a promising avenue for the development of efficient and innovative drug delivery platforms.


Subject(s)
Cerium , Chemokine CX3CL1 , Nanogels , Uveitis , Animals , Cerium/chemistry , Cerium/pharmacology , Uveitis/drug therapy , Nanogels/chemistry , Chemokine CX3CL1/metabolism , Rats , Retina/drug effects , Retina/metabolism , Immunomodulation/drug effects , Disease Models, Animal , Polyethyleneimine/chemistry , Oxidative Stress/drug effects , Hyaluronic Acid/chemistry , Male , Polyethylene Glycols
8.
Int Rev Cell Mol Biol ; 386: 167-222, 2024.
Article in English | MEDLINE | ID: mdl-38782499

ABSTRACT

Historically, KRAS has been considered 'undruggable' inspite of being one of the most frequently altered oncogenic proteins in solid tumors, primarily due to the paucity of pharmacologically 'druggable' pockets within the mutant isoforms. However, pioneering developments in drug design capable of targeting the mutant KRAS isoforms especially KRASG12C-mutant cancers, have opened the doors for emergence of combination therapies comprising of a plethora of inhibitors targeting different signaling pathways. SHP2 signaling pathway, primarily known for activation of intracellular signaling pathways such as KRAS has come up as a potential target for such combination therapies as it emerged to be the signaling protein connecting KRAS and the immune signaling pathways and providing the link for understanding the overlapping regions of RAS/ERK/MAPK signaling cascade. Thus, SHP2 inhibitors having potent tumoricidal activity as well as role in immunomodulation have generated keen interest in researchers to explore its potential as combination therapy in KRAS mutant solid tumors. However, the excitement with these combination therapies need to overcome challenges thrown up by drug resistance and enhanced toxicity. In this review, we will discuss KRAS and SHP2 signaling pathways and their roles in immunomodulation and regulation of tumor microenvironment and also analyze the positive effects and drawbacks of the different combination therapies targeted at these signaling pathways along with their present and future potential to treat solid tumors.


Subject(s)
Immunomodulation , Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Signal Transduction/drug effects , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Immunomodulation/drug effects , Animals , Treatment Outcome , Molecular Targeted Therapy
9.
Cancer Med ; 13(10): e7287, 2024 May.
Article in English | MEDLINE | ID: mdl-38770637

ABSTRACT

Although the development of immunotherapies has been revolutionary in the treatment of several cancers, many cancer types remain unresponsive to immune-based treatment and are largely managed by chemotherapy drugs. However, chemotherapeutics are not infallible and are frequently rendered ineffective as resistance develops from prolonged exposure. Recent investigations have indicated that some chemotherapy drugs have additional functions beyond their normative cytotoxic capacity and are in fact immune-modifying agents. Of the pharmaceuticals with identified immune-editing properties, gemcitabine is well-studied and of interest to clinicians and scientists alike. Gemcitabine is a chemotherapy drug approved for the treatment of multiple cancers, including breast, lung, pancreatic, and ovarian. Because of its broad applications, relatively low toxicity profile, and history as a favorable combinatory partner, there is promise in the recharacterization of gemcitabine in the context of the immune system. Such efforts may allow the identification of suitable immunotherapeutic combinations, wherein gemcitabine can be used as a priming agent to improve immunotherapy efficacy in traditionally insensitive cancers. This review looks to highlight documented immunomodulatory abilities of one of the most well-known chemotherapy agents, gemcitabine, relating to its influence on cells and proteins of the immune system.


Subject(s)
Antimetabolites, Antineoplastic , Gemcitabine , Immunomodulating Agents , Neoplasms , Animals , Humans , Antimetabolites, Antineoplastic/therapeutic use , Antimetabolites, Antineoplastic/pharmacology , Gemcitabine/pharmacology , Gemcitabine/therapeutic use , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/pharmacology , Immunomodulation/drug effects , Immunotherapy/methods , Neoplasms/drug therapy , Neoplasms/immunology
10.
BMC Genomics ; 25(1): 516, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796425

ABSTRACT

Increasing evidence of brain-immune crosstalk raises expectations for the efficacy of novel immunotherapies in Alzheimer's disease (AD), but the lack of methods to examine brain tissues makes it difficult to evaluate therapeutics. Here, we investigated the changes in spatial transcriptomic signatures and brain cell types using the 10x Genomics Visium platform in immune-modulated AD models after various treatments. To proceed with an analysis suitable for barcode-based spatial transcriptomics, we first organized a workflow for segmentation of neuroanatomical regions, establishment of appropriate gene combinations, and comprehensive review of altered brain cell signatures. Ultimately, we investigated spatial transcriptomic changes following administration of immunomodulators, NK cell supplements and an anti-CD4 antibody, which ameliorated behavior impairment, and designated brain cells and regions showing probable associations with behavior changes. We provided the customized analytic pipeline into an application named STquantool. Thus, we anticipate that our approach can help researchers interpret the real action of drug candidates by simultaneously investigating the dynamics of all transcripts for the development of novel AD therapeutics.


Subject(s)
Brain , Disease Models, Animal , Transcriptome , Animals , Mice , Brain/metabolism , Brain/diagnostic imaging , Brain/pathology , Immunomodulation/drug effects , Dementia/genetics , Dementia/therapy , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Gene Expression Profiling , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism
11.
Chem Soc Rev ; 53(11): 5862-5903, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38716589

ABSTRACT

Biological nanoparticles, or bionanoparticles, are small molecules manufactured in living systems with complex production and assembly machinery. The products of the assembly systems can be further engineered to generate functionalities for specific purposes. These bionanoparticles have demonstrated advantages such as immune system evasion, minimal toxicity, biocompatibility, and biological clearance. Hence, bionanoparticles are considered the new paradigm in nanoscience research for fabricating safe and effective nanoformulations for therapeutic purposes. Harnessing the power of the immune system to recognize and eradicate malignancies is a viable strategy to achieve better therapeutic outcomes with long-term protection from disease recurrence. However, cancerous tissues have evolved to become invisible to immune recognition and to transform the tumor microenvironment into an immunosuppressive dwelling, thwarting the immune defense systems and creating a hospitable atmosphere for cancer growth and progression. Thus, it is pertinent that efforts in fabricating nanoformulations for immunomodulation are mindful of the tumor-induced immune aberrations that could render cancer nanotherapy inoperable. This review systematically categorizes the immunosuppression mechanisms, the regulatory immunosuppressive cellular players, and critical suppressive molecules currently targeted as breakthrough therapies in the clinic. Finally, this review will summarize the engineering strategies for affording immune moderating functions to bionanoparticles that tip the tumor microenvironment (TME) balance toward cancer elimination, a field still in the nascent stage.


Subject(s)
Immunomodulation , Nanoparticles , Neoplasms , Tumor Microenvironment , Humans , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Tumor Microenvironment/drug effects , Immunomodulation/drug effects , Animals
12.
Biomater Adv ; 160: 213852, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636118

ABSTRACT

Immunotherapy is an emerging approach for the treatment of solid tumors. Although chemotherapy is generally considered immunosuppressive, specific chemotherapeutic agents can induce tumor immunity. In this study, we developed a targeted, acid-sensitive peptide nanoparticle (DT/Pep1) to deliver doxorubicin (DOX) and triptolide (TPL) to breast cancer cells via the enhanced permeability and retention (EPR) effect and the breast cancer-targeting effect of peptide D8. Compared with administration of the free drugs, treatment with the DT/Pep1 system increased the accumulation of DOX and TPL at the tumor site and achieved deeper penetration into the tumor tissue. In an acidic environment, DT/Pep1 transformed from spherical nanoparticles to aggregates with a high aspect ratio, which successfully extended the retention of the drugs in the tumor cells and bolstered the anticancer effect. In both in vivo and in vitro experiments, DT/Pep1 effectively blocked the cell cycle and induced apoptosis. Importantly, the DT/Pep1 system efficiently suppressed tumor development in mice bearing 4T1 tumors while simultaneously promoting immune system activation. Thus, the results of this study provide a system for breast cancer therapy and offer a novel and promising platform for peptide nanocarrier-based drug delivery.


Subject(s)
Antineoplastic Agents , Apoptosis , Diterpenes , Doxorubicin , Peptides , Animals , Apoptosis/drug effects , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Female , Peptides/pharmacology , Peptides/chemistry , Peptides/administration & dosage , Mice , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/administration & dosage , Immunomodulation/drug effects , Epoxy Compounds/pharmacology , Epoxy Compounds/chemistry , Epoxy Compounds/administration & dosage , Nanoparticles/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/administration & dosage , Phenanthrenes/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Drug Delivery Systems/methods , Mice, Inbred BALB C
13.
Expert Opin Drug Deliv ; 21(4): 663-677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680108

ABSTRACT

BACKGROUND: Chemo-immunotherapy modifies the tumor microenvironment to enhance the immune response and improve chemotherapy. This study introduces a dual-armed chemo-immunotherapy strategy combating breast tumor progression while re-polarizing Tumor-Associated Macrophage (TAM) using prodigiosin-loaded mannan-coated magnetic nanoparticles (PG@M-MNPs). METHODS: The physicochemical properties of one-step synthetized M-MNPs were analyzed, including X-ray diffraction, FTIR, DLS, VSM, TEM, zeta potential analysis, and drug loading content were carried out. Biocompatibility, cancer specificity, cellular uptake, and distribution of PG@M-MNPs were investigated using fluorescence and confocal laser scanning microscopy, and flow cytometry. Furthermore, the expression levels of IL-6 and ARG-1 after treatment with PG and PG@M-MNPs on M1 and M2 macrophage subsets were studied. RESULTS: The M-MNPs were successfully synthesized and characterized, demonstrating a size below 100 nm. The release kinetics of PG from M-MNPs showed sustained and controlled patterns, with enzyme-triggered release. Cytotoxicity assessments revealed an enhanced selectivity of PG@M-MNPs against cancer cells and minimal effects on normal cells. Additionally, immuno-modulatory activity demonstrates the potential of PG@M-MNPs to change the polarization dynamics of macrophages. CONCLUSION: These findings highlight the potential of a targeted approach to breast cancer treatment, offering new avenues for improved therapeutic outcomes and patient survival.


Subject(s)
Breast Neoplasms , Liver Neoplasms , Magnetite Nanoparticles , Mannose , Tumor Microenvironment , Tumor-Associated Macrophages , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Humans , Female , Magnetite Nanoparticles/chemistry , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Mannose/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Cell Line, Tumor , Immunomodulation/drug effects , Animals , Particle Size , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Immunotherapy/methods , Mannans/chemistry , Mannans/administration & dosage , Mice , Drug Delivery Systems
14.
Gene ; 916: 148446, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38583816

ABSTRACT

Mesenchymal stem cells (MSCs) have high priority in clinical applications for treatment of immune disorders because of their immunomodulatory function. A lot of researches have currently been undertaken to enhance the stemness capacities of the cells and pick an excellent type of MSCs for clinical approaches. This study aims to assess the immunomodulatory related MicroRNAs (miRNAs) expression as well as their target genes in both adipose derived stem cells (Ad-SCs) and dental pulp derived stem cell (DP-SCs) in the presence or lack of Crocin (saffron plant's bioactive compound). For this purpose, first MSCs were extracted from adipose and dental pulp tissues, and then their mesenchymal nature was confirmed using flow cytometry and differentiation tests. Following the cell treatment with an optimal-non-toxic dose of Crocin (Obtained by MTT test), the expression of 4 selected immunomodulatory-related micro-RNAs (Mir-126, -21, -23, and-155) and their target genes (PI3K/ Akt 1 and 2/ NFKB and RELA) were assessed by RT-PCR. Our findings revealed that miRNA-23 and miRNA-126 were up-regulated in both types of cells treated with Crocin, while in the other side, miRNA-21 and miRNA-155 were down-regulated in DP-SCs and were up-regulated in Ad-SCs under treatment. Moreover, the real-time PCR results indicated that Crocin could significantly down regulate the expression of PI3K/ Akt1/ Akt2/ NFKB/ RELA genes in DP-SCs and PI3K/Akt2 genes in Ad-SCs and up regulate the expression of Akt1/ NFKB/ RELA genes in recent cells. Based on the analysis of the obtained data, the immunoregulatory effects of Crocin were higher in DP-SCs than in Ad-SCs. In conclusion, Crocin could control essential signaling pathways related to the inflammation by regulating the expression of related- miRNAs genes that play a key function in the immune regulation pathways in MSCs. Our findings can give an understanding of the mechanisms by which Crocin enhances the immunomodulatory feature of MSCs. According to the research findings, DP-SCs are probably a better immunomodulator in Crocin treatment than Ad-SCs and it may be helpful for MSCs selection in clinical applications for modulation or treatment of autoimmune disorders.


Subject(s)
Carotenoids , Mesenchymal Stem Cells , MicroRNAs , MicroRNAs/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/immunology , Carotenoids/pharmacology , Humans , Cells, Cultured , Gene Expression Regulation/drug effects , Cell Differentiation/drug effects , Immunomodulation/drug effects , Immunomodulation/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Adipose Tissue/cytology , Adipose Tissue/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism
15.
Int J Biol Macromol ; 268(Pt 1): 131643, 2024 May.
Article in English | MEDLINE | ID: mdl-38643918

ABSTRACT

The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.


Subject(s)
Hydrogels , Macrophages , Regeneration , Wound Healing , Hydrogels/chemistry , Macrophages/immunology , Macrophages/drug effects , Humans , Animals , Regeneration/immunology , Wound Healing/drug effects , Wound Healing/immunology , Tissue Engineering , Immunomodulation/drug effects
16.
Int J Biol Macromol ; 266(Pt 2): 131255, 2024 May.
Article in English | MEDLINE | ID: mdl-38556221

ABSTRACT

An imbalanced gut microflora may contribute to immune disorders in neonates due to an immature gut barrier. Bacterial toxins, particularly, can trigger the immune system, potentially resulting in uncontrolled gut and systemic inflammation. Previous research has revealed that Bifidobacterium animalis subsp. lactis (B. lactis) could protect against early-life pathogen infections by enhancing the gut barrier. However, the effects of B. lactis on a compromised immune system remain uncertain. Hence, this study concentrated on the immunomodulatory effects and mechanisms of B. lactis in neonatal rats intraperitoneally injected with lipopolysaccharide (LPS), a bacterial toxin and inflammatory mediator. First, B. lactis significantly alleviated the adverse effects induced by LPS on the growth, development, and body temperature of neonatal rats. Second, B. lactis significantly reduced the immune responses and damage induced by LPS, affecting both systemic and local immune responses in the peripheral blood, gut, and brain. Notably, B. lactis exhibited extra potent neuroprotective and neurorepair effects. Our research found that pre-treatment with B. lactis shaped the diverse gut microecology by altering both microbial populations and metabolic biomolecules, closely linked to immunomodulation. Overall, this study elucidated the multifaceted roles of B. lactis in neonatal hosts against pathogenic infection and immune disorder, revealing the existence of the microbiota-gut-brain axis.


Subject(s)
Animals, Newborn , Bifidobacterium animalis , Brain-Gut Axis , Gastrointestinal Microbiome , Lipopolysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Rats , Brain-Gut Axis/drug effects , Probiotics/pharmacology , Immunomodulation/drug effects , Brain/drug effects , Brain/metabolism , Brain/immunology
17.
Acta Biomater ; 179: 13-35, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38494082

ABSTRACT

Osteoporosis results from the disruption of the balance between bone resorption and bone formation. However, classical anti-osteoporosis drugs exhibit several limitations in clinical applications, such as multiple adverse reactions and poor therapeutic effects. Therefore, there is an urgent need for alternative treatment strategies. With the evolution of immunomodulatory nanomedicine, a variety of nanomaterials have been designed for anti-osteoporosis treatment, offering prospects of minimal adverse reactions, enhanced bone induction, and high osteogenic activity. This review initially provides a brief overview of the fundamental principles of bone reconstruction, current osteogenic clinical methods in osteoporosis treatment, and the significance of osteogenic-angiogenic coupling, laying the groundwork for understanding the pathophysiology and therapeutics of osteoporosis. Subsequently, the article emphasizes the relationship between bone immunity and osteogenesis-angiogenesis coupling and provides a detailed analysis of the application of immunomodulatory nanomedicines in the treatment of osteoporosis, including various types of nanomaterials and their integration with carrier biomaterials. Importantly, we discuss the potential of some emerging strategies in immunomodulatory nanomedicine for osteoporosis treatment. This review introduces the innovative applications of immunomodulatory nanomedicine in the treatment of osteoporosis, aiming to serve as a reference for the application of immunomodulatory nanomedicine strategies in osteoporosis treatment. STATEMENT OF SIGNIFICANCE: Osteoporosis, as one of the most prevalent skeletal disorders, poses a significant threat to public health. To date, conventional anti-osteoporosis strategies have been limited in efficacy and plagued with numerous side effects. Fortunately, with the advancement of research in osteoimmunology and nanomedicine, strategies integrating these two fields show great promise in combating osteoporosis. Nanomedicine with immunomodulatory properties exhibits enhanced efficiency, prolonged effectiveness, and increased safety. However, as of now, there exists no comprehensive review amalgamating immunomodulation with nanomedicine to delineate the progress of immunomodulatory nanomedicine in osteoporosis treatment, as well as the future direction of this strategy.


Subject(s)
Nanomedicine , Osteoporosis , Humans , Osteoporosis/drug therapy , Nanomedicine/methods , Animals , Osteogenesis/drug effects , Immunomodulation/drug effects
18.
Adv Sci (Weinh) ; 11(20): e2306924, 2024 May.
Article in English | MEDLINE | ID: mdl-38460178

ABSTRACT

Inflammation-responsive hydrogels loaded with therapeutic factors are effective biomaterials for bone tissue engineering and regenerative medicine. In this study, a matrix metalloproteinase (MMP)-responsive injectable hydrogel is constructed by integrating an MMP-cleavable peptide (pp) into a covalent tetra-armed poly-(ethylene glycol) (PEG) network for precise drug release upon inflammation stimulation. To establish a pro-regenerative environment, phosphatidylserine (PS) is encapsulated into a scaffold to form the PEG-pp-PS network, which could be triggered by MMP to release a large amount of PS during the early stage of inflammation and retain drug release persistently until the later stage of bone repair. The hydrogel is found to be mechanically and biologically adaptable to the complex bone defect area. In vivo and in vitro studies further demonstrated the ability of PEG-pp-PS to transform macrophages into the anti-inflammatory M2 phenotype and promote osteogenic differentiation, thus, resulting in new bone regeneration. Therefore, this study provides a facile, safe, and promising cell-free strategy on simultaneous immunoregulation and osteoinduction in bone engineering.


Subject(s)
Bone Regeneration , Hydrogels , Immunomodulation , Matrix Metalloproteinases , Phosphatidylserines , Bone Regeneration/drug effects , Hydrogels/chemistry , Animals , Phosphatidylserines/metabolism , Immunomodulation/drug effects , Matrix Metalloproteinases/metabolism , Tissue Engineering/methods , Mice , Osteogenesis/drug effects , Polyethylene Glycols/chemistry , Disease Models, Animal , Tissue Scaffolds/chemistry , Biocompatible Materials , Models, Animal
19.
Adv Sci (Weinh) ; 11(18): e2307269, 2024 May.
Article in English | MEDLINE | ID: mdl-38445899

ABSTRACT

Surface modification is an important approach to improve osseointegration of the endosseous implants, however it is still desirable to develop a facile yet efficient coating strategy. Herein, a metal-phenolic network (MPN) is proposed as a multifunctional nanocoating on titanium (Ti) implants for enhanced osseointegration through early immunomodulation. With tannic acid (TA) and Sr2+ self-assembled on Ti substrates, the MPN coatings provided a bioactive interface, which can facilitate the initial adhesion and recruitment of bone marrow mesenchymal stem cells (BMSCs) and polarize macrophage toward M2 phenotype. Furthermore, the TA-Sr coatings accelerated the osteogenic differentiation of BMSCs. In vivo evaluations further confirmed the enhanced osseointegration of TA-Sr modified implants via generating a favorable osteoimmune microenvironment. In general, these results suggest that TA-Sr MPN nanocoating is a promising strategy for achieving better and faster osseointegration of bone implants, which can be easily utilized in future clinical applications.


Subject(s)
Immunomodulation , Mesenchymal Stem Cells , Osseointegration , Titanium , Osseointegration/drug effects , Animals , Titanium/chemistry , Immunomodulation/drug effects , Tannins/pharmacology , Tannins/chemistry , Surface Properties , Prostheses and Implants , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Osteogenesis/drug effects , Cell Differentiation/drug effects , Mice , Strontium/chemistry , Strontium/pharmacology , Models, Animal , Rats
20.
Microsc Res Tech ; 87(7): 1663-1673, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38491931

ABSTRACT

Polysaccharides from natural sources have an excellent immune function and low toxicity; however, their limitations such as short half-life and instability limit their sustained pharmacological activity. In this context, the combination of polysaccharides and nanotechnology have been developed to promote the stability and prolong the immune activities of polysaccharides. To synthesize and explore the antitumor effect and immunomodulatory activity of PHP-AuNPs. Polysaccharides extracted from Pseudostellaria heterophylla were used to synthesize gold nanocomposites (PHP-AuNPs), and their physicochemical properties and immunoregulatory effect in vitro and in vivo were analyzed. The PHP-AuNPs were green synthesized with high biosafety. PHP-AuNPs can activate macrophages in vitro and decrease the tumor weight and volume, whereas they increase the immune organ index in vivo. Besides, PHP-AuNPs showed a beneficial effect for maintaining the immune balance of CD4+/CD8+ T cells and modulating the release of cytokines such as TNF-α increase and IL-10 decrease in mice. All these results suggested that PHP-AuNPs exhibit a remarkable antitumor effect and stronger immunomodulatory activity than that of free PHP-1. RESEARCH HIGHLIGHTS: The P. heterophylla polysaccharide-gold nanocomposites (PHP-AuNPs) were synthesized and physicochemical properties were characterized. The cytotoxicity in vitro and immunomodulatory effects of PHP-AuNPs on macrophages were analyzed. The immune-antitumor effects in vivo of PHP-AuNPs have also been confirmed.


Subject(s)
Antineoplastic Agents , Gold , Metal Nanoparticles , Nanocomposites , Polysaccharides , Gold/chemistry , Gold/pharmacology , Animals , Mice , Polysaccharides/chemistry , Polysaccharides/pharmacology , Nanocomposites/chemistry , Metal Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , RAW 264.7 Cells , Caryophyllaceae/chemistry , Immunomodulation/drug effects , Macrophages/drug effects , Macrophages/immunology , Cell Line, Tumor , Cytokines/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...