Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.888
Filter
1.
Zhonghua Nei Ke Za Zhi ; 63(6): 587-592, 2024 Jun 01.
Article in Chinese | MEDLINE | ID: mdl-38825927

ABSTRACT

Objective: To evaluate the effect of autologous hematopoietic stem cell transplantation (ASCT) on the treatment of relapsed/refractory multiple myeloma (RRMM) with chimeric antigen receptor T cell (CAR-T) therapy. Methods: A retrospective cohort study. The clinical data of 168 patients with RRMM who underwent CAR-T therapy at the Department of Hematology, Xuzhou Medical University Hospital from 3 January 2020 to 13 September 2022 were analyzed. Patients were classified into a transplantation group (TG; n=47) and non-transplantation group (NTG; n=121) based on whether or not they had undergone ASCT previously. The objective response rate (ORR), progression-free survival (PFS), overall survival (OS) and the levels of CD3, CD4, CD8, CD19, CD56 and natural killer (NK) cells before CAR-T infusion were analyzed by χ2 test, Kaplan-Meier method and independent sample t-test. Results: Among 168 patients with RRMM, 98 (58.3%) were male. The median age of onset was 57 (range 30-70) years. After CAR-T therapy, the ORR of patients was 89.3% (92/103) in the NTG and 72.9% (27/73) in the TG. The ORR of the NTG was better than that of the TG (χ2=5.71, P=0.017). After 1 year of CAR-T therapy, the ORR of the NTG was 78.1% (75/96), and that of the TG was 59.4% (19/32). The ORR of the NTG was better than that of the TG (χ2=4.32, P=0.038). The median OS and PFS in the NTG were significantly longer than those in the TG (OS, 30 vs. 20 months; PFS, 26 vs. 12 months; both P<0.05). The CD4 level before CAR-T infusion in the TG was significantly lower than that in the NTG (25.65±13.56 vs. 32.64±17.21; t=-2.15, P=0.034), and there were no significant differences in the counts of CD3, CD8, CD19, CD56, and NK cells between the TG and NTG (all P>0.05). Conclusion: Among patients suffering from RRMM who received CAR-T therapy, patients who did not receive ASCT had significantly better outcomes than those who had received ASCT previously, which may have been related to the CD4 level before receiving CAR-T therapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Multiple Myeloma , Transplantation, Autologous , Humans , Multiple Myeloma/therapy , Hematopoietic Stem Cell Transplantation/methods , Male , Middle Aged , Retrospective Studies , Female , Immunotherapy, Adoptive/methods , Aged , Adult , Treatment Outcome , Receptors, Chimeric Antigen
2.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38828721

ABSTRACT

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.


Subject(s)
Macrophages , Phagocytosis , Receptors, Immunologic , Humans , Animals , Mice , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Macrophages/immunology , Macrophages/metabolism , T-Lymphocytes/immunology , Antigens, Differentiation/immunology , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics , Antigens, Neoplasm/immunology , Cell Line, Tumor , Xenograft Model Antitumor Assays , CD47 Antigen/immunology , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism
3.
Oncol Res ; 32(6): 1109-1118, 2024.
Article in English | MEDLINE | ID: mdl-38827326

ABSTRACT

Background: Chimeric antigen receptor T (CAR-T) cell therapy has achieved marked therapeutic success in ameliorating hematological malignancies. However, there is an extant void in the clinical guidelines concerning the most effective chemotherapy regimen prior to chimeric antigen receptor T (CAR-T) cell therapy, as well as the optimal timing for CAR-T cell infusion post-chemotherapy. Materials and Methods: We employed cell-derived tumor xenograft (CDX) murine models to delineate the optimal pre-conditioning chemotherapy regimen and timing for CAR-T cell treatment. Furthermore, transcriptome sequencing was implemented to identify the therapeutic targets and elucidate the underlying mechanisms governing the treatment regimen. Results: Our preclinical in vivo evaluation determined that a combination of cyclophosphamide and fludarabine, followed by the infusion of CD19 CAR-T cells five days subsequent to the chemotherapy, exerts the most efficacious therapeutic effect in B-cell hematological malignancies. Concurrently, RNA-seq data indicated that the therapeutic efficacy predominantly perturbs tumor cell metabolism, primarily through the inhibition of key mitochondrial targets, such as C-Jun Kinase enzyme (C-JUN). Conclusion: In summary, the present study offers critical clinical guidance and serves as an authoritative reference for the deployment of CD19 CAR-T cell therapy in the treatment of B-cell hematological malignancies.


Subject(s)
Antigens, CD19 , Cyclophosphamide , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Vidarabine , Xenograft Model Antitumor Assays , Vidarabine/analogs & derivatives , Vidarabine/pharmacology , Cyclophosphamide/therapeutic use , Cyclophosphamide/pharmacology , Animals , Mice , Humans , Immunotherapy, Adoptive/methods , Antigens, CD19/immunology , Receptors, Chimeric Antigen/immunology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/drug therapy , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Combined Modality Therapy
4.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831106

ABSTRACT

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Tumor Microenvironment , Animals , Humans , Immunotherapy, Adoptive/methods , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Tumor Necrosis Factor, Member 14/immunology , Receptors, Tumor Necrosis Factor, Member 14/genetics , Mice , Tumor Microenvironment/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , T-Lymphocytes, Regulatory/immunology , Signal Transduction , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/therapy , Mice, Knockout
5.
Mol Cancer ; 23(1): 117, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824567

ABSTRACT

Significant advancements have been made in the application of chimeric antigen receptor (CAR)-T treatment for blood cancers during the previous ten years. However, its effectiveness in treating solid tumors is still lacking, necessitating the exploration of alternative immunotherapies that can overcome the significant challenges faced by current CAR-T cells. CAR-based immunotherapy against solid tumors shows promise with the emergence of macrophages, which possess robust phagocytic abilities, antigen-presenting functions, and the ability to modify the tumor microenvironment and stimulate adaptive responses. This paper presents a thorough examination of the latest progress in CAR-M therapy, covering both basic scientific studies and clinical trials. This study examines the primary obstacles hindering the realization of the complete potential of CAR-M therapy, as well as the potential strategies that can be employed to overcome these hurdles. With the emergence of revolutionary technologies like in situ genetic modification, synthetic biology techniques, and biomaterial-supported gene transfer, which provide a wider array of resources for manipulating tumor-associated macrophages, we suggest that combining these advanced methods will result in the creation of a new era of CAR-M therapy that demonstrates improved efficacy, safety, and availability.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Humans , Neoplasms/therapy , Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Tumor Microenvironment/immunology , Animals , Immunotherapy/methods
7.
Haematologica ; 109(6): 1656-1667, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832421

ABSTRACT

Recurrent and/or refractory (R/R) pediatric acute myeloid leukemia (AML) remains a recalcitrant disease with poor outcomes. Cell therapy with genetically modified immune effector cells holds the promise to improve outcomes for R/R AML since it relies on cytotoxic mechanisms that are distinct from chemotherapeutic agents. While T cells expressing chimeric antigen receptors (CAR T cells) showed significant anti-AML activity in preclinical models, early phase clinical studies have demonstrated limited activity, irrespective of the targeted AML antigen. Lack of efficacy is most likely multifactorial, including: (i) a limited array of AML-specific targets and target antigen heterogeneity; (ii) the aggressive nature of R/R AML and heavy pretreatment of patients; (iii) T-cell product manufacturing, and (iv) limited expansion and persistence of the CAR T cells, which is in part driven by the immunosuppressive AML microenvironment. Here we review the results of early phase clinical studies with AML-specific CAR T cells, and avenues investigators are exploring to improve their effector function.


Subject(s)
Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Child , Clinical Trials as Topic , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Tumor Microenvironment/immunology , Animals
8.
Haematologica ; 109(6): 1689-1699, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832424

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a breakthrough cancer therapy over the past decade. Remarkable outcomes in B-cell lymphoproliferative disorders and multiple myeloma have been reported in both pivotal trials and real-word studies. Traditionally, the use of a patient's own (autologous) T cells to manufacture CAR products has been the standard practice. Nevertheless, this approach has some drawbacks, including manufacturing delays, dependence on the functional fitness of the patient's T cells, which can be compromised by both the disease and prior therapies, and contamination of the product with blasts. A promising alternative is offered by the development of allogeneic CAR-cell products. This approach has the potential to yield more efficient drug products and enables the use of effector cells with negligible alloreactive potential and a significant CAR-independent antitumor activity through their innate receptors (i.e., natural killer cells, γδ T cells and cytokine induced killer cells). In addition, recent advances in genome editing tools offer the potential to overcome the primary challenges associated with allogeneic CAR T-cell products, namely graft-versus-host disease and host allo-rejection, generating universal, off-the-shelf products. In this review, we summarize the current pre-clinical and clinical approaches based on allogeneic CAR T cells, as well as on alternative effector cells, which represent exciting opportunities for multivalent approaches and optimized antitumor activity.


Subject(s)
Immunotherapy, Adoptive , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Child , Transplantation, Homologous , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome
9.
Haematologica ; 109(6): 1677-1688, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832423

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy is a new and effective treatment for patients with hematologic malignancies. Clinical responses to CAR T cells in leukemia, lymphoma, and multiple myeloma have provided strong evidence of the antitumor activity of these cells. In patients with refractory or relapsed B-cell acute lymphoblastic leukemia (ALL), the infusion of autologous anti-CD19 CAR T cells is rapidly gaining standard-of-care status and might eventually be incorporated into frontline treatment. In T-ALL, however, leukemic cells generally lack surface molecules recognized by established CAR, such as CD19 and CD22. Such deficiency is particularly important, as outcome is dismal for patients with T-ALL that is refractory to standard chemotherapy and/or hematopoietic stem cell transplant. Recently, CAR T-cell technologies directed against T-cell malignancies have been developed and are beginning to be tested clinically. The main technical obstacles stem from the fact that malignant and normal T cells share most surface antigens. Therefore, CAR T cells directed against T-ALL targets might be susceptible to self-elimination during manufacturing and/or have suboptimal activity after infusion. Moreover, removing leukemic cells that might be present in the cell source used for CAR T-cell manufacturing might be problematic. Finally, reconstitution of T cells and natural killer cells after CAR T-cell infusion might be impaired. In this article, we discuss potential targets for CAR T-cell therapy of T-ALL with an emphasis on CD7, and review CAR configurations as well as early clinical results.


Subject(s)
Immunotherapy, Adoptive , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Animals , Treatment Outcome , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
11.
Front Immunol ; 15: 1368290, 2024.
Article in English | MEDLINE | ID: mdl-38690288

ABSTRACT

Background: NK cells can be genetically engineered to express a transgenic T-cell receptor (TCR). This approach offers an alternative strategy to target heterogenous tumors, as NK:TCR cells can eradicate both tumor cells with high expression of HLA class I and antigen of interest or HLA class I negative tumors. Expansion and survival of NK cells relies on the presence of IL-15. Therefore, autonomous production of IL-15 by NK:TCR cells might improve functional persistence of NK cells. Here we present an optimized NK:TCR product harnessed with a construct encoding for soluble IL-15 (NK:TCR/IL-15), to support their proliferation, persistence and cytotoxic capabilities. Methods: Expression of tumor-specific TCRs in peripheral blood derived NK-cells was achieved following retroviral transduction. NK:TCR/IL-15 cells were compared with NK:TCR cells for autonomous cytokine production, proliferation and survival. NK:BOB1-TCR/IL-15 cells, expressing a HLA-B*07:02-restricted TCR against BOB1, a B-cell lineage specific transcription factor highly expressed in all B-cell malignancies, were compared with control NK:BOB1-TCR and NK:CMV-TCR/IL-15 cells for effector function against TCR antigen positive malignant B-cell lines in vitro and in vivo. Results: Viral incorporation of the interleukin-15 gene into engineered NK:TCR cells was feasible and high expression of the TCR was maintained, resulting in pure NK:TCR/IL-15 cell products generated from peripheral blood of multiple donors. Self-sufficient secretion of IL-15 by NK:TCR cells enables engineered NK cells to proliferate in vitro without addition of extra cytokines. NK:TCR/IL-15 demonstrated a marked enhancement of TCR-mediated cytotoxicity as well as enhanced NK-mediated cytotoxicity resulting in improved persistence and performance of NK:BOB1-TCR/IL-15 cells in an orthotopic multiple myeloma mouse model. However, in contrast to prolonged anti-tumor reactivity by NK:BOB1-TCR/IL-15, we observed in one of the experiments an accumulation of NK:BOB1-TCR/IL-15 cells in several organs of treated mice, leading to unexpected death 30 days post-NK infusion. Conclusion: This study showed that NK:TCR/IL-15 cells secrete low levels of IL-15 and can proliferate in an environment lacking cytokines. Repeated in vitro and in vivo experiments confirmed the effectiveness and target specificity of our product, in which addition of IL-15 supports TCR- and NK-mediated cytotoxicity.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Receptors, Antigen, T-Cell , Interleukin-15/genetics , Interleukin-15/immunology , Interleukin-15/metabolism , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Cytotoxicity, Immunologic , Cell Proliferation , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Genetic Engineering
12.
Front Immunol ; 15: 1389018, 2024.
Article in English | MEDLINE | ID: mdl-38720898

ABSTRACT

Introduction: Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods: CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results: Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions: We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , Single-Domain Antibodies , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Single-Domain Antibodies/immunology , Immunotherapy, Adoptive/methods , Animals , Cell Line, Tumor , Mice , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Signaling Lymphocytic Activation Molecule Family/immunology , Signaling Lymphocytic Activation Molecule Family/metabolism , Single-Chain Antibodies/immunology , Xenograft Model Antitumor Assays
13.
Med Sci Monit ; 30: e944927, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38689550

ABSTRACT

On February 16, 2024, the US Food and Drug Agency (FDA) granted accelerated approval to lifileucel (Amtagvi), an adoptive immune cell therapy with autologous ex vivo-expanded tumor-infiltrating lymphocytes (TILs) for adult patients with advanced or unresectable melanoma progressing after treatment with immune checkpoint inhibitors and, if BRAF V600 mutation-positive, BRAF/MEK inhibitors. The clinical studies supporting this regulatory approval have highlighted the complexity of the treatment manufacturing process and the requirements for patient selection, a pretreatment lymphodepletion regimen, followed by a single infusion of lifileucel (Amtagvi), and up to six treatments with high-dose IL-2, with the potential for adverse events at each stage of treatment. In early 2024, expert consensus guidelines were published on best practices and patient management for adoptive cell therapy with autologous, ex vivo-expanded TILs, and an international TIL Working Group was formed in anticipation of further regulatory approvals bringing these treatments to the clinic. This editorial aims to provide an update on the importance of a first approval for adoptive cell therapy with autologous, ex vivo-expanded TILs and the challenges of implementing a complex, time-consuming, and potentially costly immunotherapy.


Subject(s)
Immunotherapy, Adoptive , Lymphocytes, Tumor-Infiltrating , Melanoma , Humans , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/therapy , Melanoma/immunology , United States , United States Food and Drug Administration , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Transplantation, Autologous/methods
16.
Hum Vaccin Immunother ; 20(1): 2338984, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38698555

ABSTRACT

CAR-T cell therapy has emerged as a significant approach for the management of hematological malignancies. Over the past few years, the utilization of CAR-T cells in the investigation and treatment of solid tumors has gained momentum, thereby establishing itself as a prominent area of research. This descriptive study involved the retrieval of articles about CAR-T cell therapy for solid tumors from the Web of Science Core Collection (WoSCC) database. Subsequently, bibliometric analysis and knowledge map analysis were conducted on these articles. The field under consideration is currently experiencing a period of swift advancement, as evidenced by the escalating number of publications in this domain each year. The United States holds an indisputable position as the foremost leader in this particular field, with the University of Pennsylvania emerging as the most active institution. The authors with the highest citation frequency and co-citation frequency are Carl H. June and Shannon L. Maude, respectively. The research hotspots in this field mainly focus on five aspects. Additionally, 10 emerging themes were identified. This study undertakes a comprehensive, systematic, and objective analysis and exploration of the field of CAR-T cell treatment for solid tumors, utilizing bibliometric methods. The findings of this study are expected to serve as a valuable reference and enlightenment for future research endeavors in this particular domain.


Subject(s)
Bibliometrics , Immunotherapy, Adoptive , Neoplasms , Humans , Neoplasms/therapy , Immunotherapy, Adoptive/methods , Biomedical Research/trends , Receptors, Chimeric Antigen/immunology
17.
Front Immunol ; 15: 1340619, 2024.
Article in English | MEDLINE | ID: mdl-38711498

ABSTRACT

To design new CARs targeting hepatitis B virus (HBV), we isolated human monoclonal antibodies recognizing the HBV envelope proteins from single B cells of a patient with a resolved infection. HBV-specific memory B cells were isolated by incubating peripheral blood mononuclear cells with biotinylated hepatitis B surface antigen (HBsAg), followed by single-cell flow cytometry-based sorting of live, CD19+ IgG+ HBsAg+ cells. Amplification and sequencing of immunoglobulin genes from single memory B cells identified variable heavy and light chain sequences. Corresponding immunoglobulin chains were cloned into IgG1 expression vectors and expressed in mammalian cells. Two antibodies named 4D06 and 4D08 were found to be highly specific for HBsAg, recognized a conformational and a linear epitope, respectively, and showed broad reactivity and neutralization capacity against all major HBV genotypes. 4D06 and 4D08 variable chain fragments were cloned into a 2nd generation CAR format with CD28 and CD3zeta intracellular signaling domains. The new CAR constructs displayed a high functional avidity when expressed on primary human T cells. CAR-grafted T cells proved to be polyfunctional regarding cytokine secretion and killed HBV-positive target cells. Interestingly, background activation of the 4D08-CAR recognizing a linear instead of a conformational epitope was consistently low. In a preclinical model of chronic HBV infection, murine T cells grafted with the 4D06 and the 4D08 CAR showed on target activity indicated by a transient increase in serum transaminases, and a lower number of HBV-positive hepatocytes in the mice treated. This study demonstrates an efficient and fast approach to identifying pathogen-specific monoclonal human antibodies from small donor cell numbers for the subsequent generation of new CARs.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B virus , Humans , Hepatitis B virus/immunology , Hepatitis B virus/genetics , Animals , Mice , Hepatitis B Surface Antigens/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Antibodies, Monoclonal/immunology , Immunotherapy, Adoptive , Hepatitis B/immunology , Hepatitis B/virology , Broadly Neutralizing Antibodies/immunology , B-Lymphocytes/immunology , T-Lymphocytes/immunology
19.
J Immunother Cancer ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38754916

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapies specific for the CD19 and B-cell maturation antigen have become an approved standard of care worldwide for relapsed and refractory B-cell malignancies. If CAR-T cell therapy for non-hematological malignancies is to achieve the same stage of clinical development, then iterative early-phase clinical testing can add value to the clinical development process for evaluating CAR-T cell products containing different CAR designs and manufactured under differing conditions. METHODS: We conducted a phase 1 trial of third-generation GD2-specific CAR-T cell therapy, which has previously been tested in neuroblastoma patients. In this study, the GD2-CAR-T therapy was evaluated for the first time in metastatic melanoma patients in combination with BRAF/MEK inhibitor therapy, and as a monotherapy in patients with colorectal cancer and a patient with fibromyxoid sarcoma. Feasibility and safety were determined and persistence studies, multiplex cytokine arrays on sera and detailed immune phenotyping of the original CAR-T products, the circulating CAR-T cells, and, in select patients, the tumor-infiltrating CAR-T cells were performed. RESULTS: We demonstrate the feasibility of manufacturing CAR-T products at point of care for patients with solid cancer and show that a single intravenous infusion was well tolerated with no dose-limiting toxicities or severe adverse events. In addition, we note significant improvements in CAR-T cell immune phenotype, and expansion when a modified manufacturing procedure was adopted for the latter 6 patients recruited to this 12-patient trial. We also show evidence of CAR-T cell-mediated immune activity and in some patients expanded subsets of circulating myeloid cells after CAR-T cell therapy. CONCLUSIONS: This is the first report of third-generation GD2-targeting CAR-T cells in patients with metastatic melanoma and other solid cancers such as colorectal cancer, showing feasibility, safety and immune activity, but limited clinical effect. TRIAL REGISTRATION NUMBER: ACTRN12613000198729.


Subject(s)
Immunotherapy, Adoptive , Melanoma , Receptors, Chimeric Antigen , Humans , Melanoma/immunology , Melanoma/therapy , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Receptors, Chimeric Antigen/immunology , Male , Female , Middle Aged , Gangliosides/immunology , Adult , Aged , T-Lymphocytes/immunology , Treatment Outcome
20.
Lancet Neurol ; 23(6): 615-624, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760099

ABSTRACT

BACKGROUND: Neuroimmunology research and development has been marked by substantial advances, particularly in the treatment of neuroimmunological diseases, such as multiple sclerosis, myasthenia gravis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody disease. With more than 20 drugs approved for multiple sclerosis alone, treatment has become more personalised. The approval of disease-modifying therapies, particularly those targeting B cells, has highlighted the role of immunotherapeutic interventions in the management of these diseases. Despite these successes, challenges remain, particularly for patients who do not respond to conventional therapies, underscoring the need for innovative approaches. RECENT DEVELOPMENTS: The approval of monoclonal antibodies, such as ocrelizumab and ofatumumab, which target CD20, and inebilizumab, which targets CD19, for the treatment of various neuroimmunological diseases reflects progress in the understanding and management of B-cell activity. However, the limitations of these therapies in halting disease progression or activity in patients with multiple sclerosis or neuromyelitis optica spectrum disorders have prompted the exploration of cell-based therapies, particularly chimeric antigen receptor (CAR) T cells. Initially successful in the treatment of B cell-derived malignancies, CAR T cells offer a novel therapeutic mechanism by directly targeting and eliminating B cells, potentially overcoming the shortcomings of antibody-mediated B cell depletion. WHERE NEXT?: The use of CAR T cells in autoimmune diseases and B cell-driven neuroimmunological diseases shows promise as a targeted and durable option. CAR T cells act autonomously, penetrating deep tissue and effectively depleting B cells, especially in the CNS. Although the therapeutic potential of CAR T cells is substantial, their application faces hurdles such as complex logistics and management of therapy-associated toxic effects. Ongoing and upcoming clinical trials will be crucial in determining the safety, efficacy, and applicability of CAR T cells. As research progresses, CAR T cell therapy has the potential to transform treatment for patients with neuroimmunological diseases. It could offer extended periods of remission and a new standard in the management of autoimmune and neuroimmunological disorders.


Subject(s)
B-Lymphocytes , Receptors, Chimeric Antigen , Humans , B-Lymphocytes/immunology , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Autoimmune Diseases of the Nervous System/therapy , Autoimmune Diseases of the Nervous System/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...