Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.224
Filter
1.
Reprod Domest Anim ; 59(6): e14631, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828566

ABSTRACT

This study examines the impact of Notoginsenoside R1 (NGR1), a compound from Panax notoginseng, on the maturation of porcine oocytes and their embryonic development, focusing on its effects on antioxidant levels and mitochondrial function. This study demonstrates that supplementing in vitro maturation (IVM) medium with NGR1 significantly enhances several biochemical parameters. These include elevated levels of glutathione (GSH), nuclear factor erythrocyte 2-related factor 2 (NRF2) and mRNA expression of catalase (CAT) and GPX. Concurrently, we observed a decrease in reactive oxygen species (ROS) levels and an increase in JC-1 immunofluorescence, mitochondrial distribution, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and nuclear NRF2 mRNA levels. Additionally, there was an increase in ATP production and lipid droplets (LDs) immunofluorescence. These biochemical improvements correlate with enhanced embryonic outcomes, including a higher blastocyst rate, increased total cell count, enhanced proliferative capacity and elevated octamer-binding transcription factor 4 (Oct4) and superoxide dismutase 2 (Sod2) gene expression. Furthermore, NGR1 supplementation resulted in decreased apoptosis, reduced caspase 3 (Cas3) and BCL2-Associated X (Bax) mRNA levels and decreased glucose-regulated protein 78 kD (GRP78) immunofluorescence in porcine oocytes undergoing in vitro maturation. These findings suggest that NGR1 plays a crucial role in promoting porcine oocyte maturation and subsequent embryonic development by providing antioxidant levels and mitochondrial protection.


Subject(s)
Antioxidants , Embryonic Development , Ginsenosides , In Vitro Oocyte Maturation Techniques , Mitochondria , Oocytes , Animals , Antioxidants/pharmacology , Ginsenosides/pharmacology , In Vitro Oocyte Maturation Techniques/veterinary , Mitochondria/drug effects , Embryonic Development/drug effects , Oocytes/drug effects , Female , Swine , Reactive Oxygen Species/metabolism , Embryo Culture Techniques/veterinary
2.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829044

ABSTRACT

Mature oocyte vitrification is the standard of care to preserve fertility in women at risk of infertility. However, ovarian tissue cryopreservation (OTC) is still the only option to preserve fertility in women who need to start gonadotoxic treatment urgently or in prepubertal children. During ovarian cortex preparation for cryopreservation, medullar tissue is removed. Growing antral follicles reside at the border of the cortex-medullar interface of the ovary and are broken during this process, releasing their cumulus-oocyte complex (COC). By thoroughly inspecting the medium and fragmented medullar tissue, these immature cumulus-oocyte complexes can be identified without interfering with the OTC procedure. The ovarian tissue-derived immature oocytes can be successfully matured in vitro, creating an additional source of gametes for fertility preservation. If OTC is performed within or near a medical assisted reproduction laboratory, all necessary in vitro maturation (IVM) and oocyte vitrification tools can be at hand. Furthermore, upon remission and child wish, the patient has multiple options for fertility restoration: ovarian tissue transplantation or embryo transfer after the insemination of vitrified/warmed oocytes. Hence, ovarian tissue oocyte-in vitro maturation (OTO-IVM) can be a valuable adjunct fertility preservation technique.


Subject(s)
Cryopreservation , Fertility Preservation , In Vitro Oocyte Maturation Techniques , Oocytes , Ovary , Female , Fertility Preservation/methods , Humans , Ovary/physiology , Cryopreservation/methods , In Vitro Oocyte Maturation Techniques/methods , Vitrification
3.
BMC Pregnancy Childbirth ; 24(1): 407, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844840

ABSTRACT

BACKGROUND: The optimal timing of performing ICSI on immature oocytes for POSEIDON patients is still unknown to get better early embryonic development outcomes. The purpose of this study was to implore the most appropriate time to carry out ICSI on in vitro maturation GV and MI oocytes for POSEIDON patients. METHODS: Two hundred thirty-nine immature oocytes from 163 POSEIDON patients were prospectively performed ICSI at different timings: P-ICSI (ICSI was performed on in vitro matured oocytes 4-6 h after the first polar body extrusion, N = 81), R-ICSI (ICSI was performed on in vitro matured oocytes less than 4 h after the first polar body extrusion, N = 80), and E-ICSI (ICSI was performed on in vitro matured oocytes the next day after oocytes retrieval, N = 78). Fertilization and embryonic development outcomes were collected and statistically analyzed. Mitochondria distribution of cytoplasm of in vitro matured oocytes with different time cultures after the first polar body (PB1) extrusion was stained. RESULTS: Compared to the E-ICSI group, more day 3 embryos from P-ICSI became blastocysts after sequential culture though without statistical significance (OR = 3.71, 95% CI: 0.94-14.63, P = 0.061). Compared to the E-ICSI group, more embryos from both P-ICSI and R-ICSI groups were clinically used with statistical significance (OR = 5.67, 95% CI: 2.24-14.35, P = 0.000 for P-ICSI embryos; OR = 3.23, 95% CI: 1.23-8.45, P = 0.017 for R-ICSI embryos). Compared to the E-ICSI group, transferred embryos from P-ICSI and R-ICSI had a higher implantation rate though without statistical significance (35.3% for P-ICSI embryos; 9.1% or R-ICSI embryos and 0% for E-ICSI embryos, P = 0.050). Among the three group, there were most healthy babies delivered from the P-ICSI group (5, 1 and 0 for P-ICSI, R-ICSI and E-ICSI respectively). The mitochondria in the cytoplasm of in vitro matured oocytes with a less than 4 h and 4-6 h culture after PB1 extrusion presented semiperipheral and diffused distribution patterns, respectively. CONCLUSIONS: Our results revealed P-ICSI (ICSI was performed on in vitro matured oocytes 4-6 h after the first polar body extrusion) provided the most efficient method to utilize the immaturation oocytes basing on embryos utilization and live birth outcome for low prognosis patients under the POSEIDON classification. The mitochondria distribution of the in vitro matured oocytes' cytoplasm from P-ICSI varied that from R-ICSI.


Subject(s)
Embryonic Development , In Vitro Oocyte Maturation Techniques , Oocytes , Sperm Injections, Intracytoplasmic , Humans , Sperm Injections, Intracytoplasmic/methods , Female , Pregnancy , Adult , In Vitro Oocyte Maturation Techniques/methods , Time Factors , Prospective Studies , Prognosis , Pregnancy Rate , Oocyte Retrieval/methods , Embryo Transfer/methods , Blastocyst , Embryo Culture Techniques/methods , Polar Bodies
4.
Anim Sci J ; 95(1): e13966, 2024.
Article in English | MEDLINE | ID: mdl-38845341

ABSTRACT

Prolonged exposure of bisphenol A (BPA) has adverse effects on in vitro maturation (IVM) of oocytes, but treatment with tauroursodeoxycholic acid (TUDCA) can improve the IVM and development of embryos. The purpose of this study was to investigate the effects of BPA and both BPA and TUDCA on IVM and parthenogenetic development of embryos. The results showed that BPA treatment adverse effects on the cumulus expansion index, survival rate, polar body rate, mitochondrial distribution of the oocytes after maturation culture, and that it also decreased the cleavage rate and blastocyst rate of embryos after parthenogenetic develpoment. In addition, BPA treatment upregulated expression of genes related to endoplasmic reticulum stress and apoptosis and increased the intracellular reactive oxygen species (ROS) level, while it decreased expression of genes related to cumulus expansion. However, the supplementation of TUDCA relieved these adverse effects of BPA except polar body rate, blastocyst rate, and expression of BCL2 and PTGS1. In conclusion, the supplementation of TUDCA can partly attenuate the negative effects of BPA on IVM and parthenogenetic development of embryos, possibly by modification of the expression of genes related to endoplasmic reticulum stress, apoptosis and cumulus expansion, intracellular ROS level, and mitochondrial distribution.


Subject(s)
Apoptosis , Benzhydryl Compounds , Embryonic Development , Endoplasmic Reticulum Stress , In Vitro Oocyte Maturation Techniques , Oocytes , Parthenogenesis , Phenols , Reactive Oxygen Species , Taurochenodeoxycholic Acid , Animals , Phenols/toxicity , Taurochenodeoxycholic Acid/pharmacology , Oocytes/drug effects , Parthenogenesis/drug effects , Benzhydryl Compounds/pharmacology , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Embryonic Development/drug effects , Swine/embryology , Endoplasmic Reticulum Stress/drug effects , Female , Gene Expression/drug effects , Blastocyst/drug effects , Mitochondria/drug effects
5.
J Ovarian Res ; 17(1): 120, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824584

ABSTRACT

BACKGROUND: The common marmoset, Callithrix jacchus, is an invaluable model in biomedical research. Its use includes genetic engineering applications, which require manipulations of oocytes and production of embryos in vitro. To maximize the recovery of oocytes suitable for embryo production and to fulfil the requirements of the 3R principles to the highest degree possible, optimization of ovarian stimulation protocols is crucial. Here, we compared the efficacy of two hormonal ovarian stimulation approaches: 1) stimulation of follicular growth with hFSH followed by triggering of oocyte maturation with hCG (FSH + hCG) and 2) stimulation with hFSH only (FSH-priming). METHODS: In total, 14 female marmosets were used as oocyte donors in this study. Each animal underwent up to four surgical interventions, with the first three performed as ovum pick-up (OPU) procedures and the last one being an ovariohysterectomy (OvH). In total, 20 experiments were carried out with FSH + hCG stimulation and 18 with FSH-priming. Efficacy of each stimulation protocol was assessed through in vitro maturation (IVM), in vitro fertilization (IVF) and embryo production rates. RESULTS: Each study group consisted of two subgroups: the in vivo matured oocytes and the oocytes that underwent IVM. Surprisingly, in the absence of hCG triggering some of the oocytes recovered were at the MII stage, moreover, their number was not significantly lower compared to FSH + hCG stimulation (2.8 vs. 3.9, respectively (ns)). While the IVM and IVF rates did not differ between the two stimulation groups, the IVF rates of in vivo matured oocytes were significantly lower compared to in vitro matured ones in both FSH-priming and FSH + hCG groups. In total, 1.7 eight-cell embryos/experiment (OPU) and 2.1 eight-cell embryos/experiment (OvH) were obtained after FSH + hCG stimulation vs. 1.8 eight-cell embryos/experiment (OPU) and 5.0 eight-cell embryos/experiment (OvH) following FSH-priming. These numbers include embryos obtained from both in vivo and in vitro matured oocytes. CONCLUSION: A significantly lower developmental competence of the in vivo matured oocytes renders triggering of the in vivo maturation with hCG as a part of the currently used FSH-stimulation protocol unnecessary. In actual numbers, between 1 and 7 blastocysts were obtained following each FSH-priming. In the absence of further studies, FSH-priming appears superior to FSH + hCG stimulation in the common marmoset under current experimental settings.


Subject(s)
Callithrix , Chorionic Gonadotropin , Fertilization in Vitro , Follicle Stimulating Hormone , In Vitro Oocyte Maturation Techniques , Oocytes , Ovulation Induction , Animals , Female , Ovulation Induction/methods , In Vitro Oocyte Maturation Techniques/methods , Oocytes/drug effects , Chorionic Gonadotropin/pharmacology , Follicle Stimulating Hormone/pharmacology , Fertilization in Vitro/methods
6.
Reprod Domest Anim ; 59(5): e14595, 2024 May.
Article in English | MEDLINE | ID: mdl-38773768

ABSTRACT

Oocyte maturation involves both nuclear and cytoplasmic maturation. Mogroside V (MV) has been shown to enhance nuclear maturation, mitochondrial content, and developmental potential of porcine oocyte during in vitro maturation (IVM). However, the impact of MV on cytoplasmic maturation and its underlying mechanisms are not understood. This study aimed to assess the effect of MV on cytoplasmic maturation. Germinal vesicle (GV) oocytes treated with MV exhibited a noticeable increase in cortical granules (CGs) formation. Additionally, MV enhanced the expression of NNAT and improved glucose uptake in mature oocytes. Further insights were gained through Smart-seq2 analysis of RNA isolated from 100 oocytes. A total of 11,274 and 11,185 transcripts were identified in oocytes treated with and without MV, respectively. Among quantified genes, 438 differentially expressed genes (DEGs) were identified for further analysis. Gene Ontology (GO) enrichment analysis indicated that these DEGs were primarily involved in DNA repair regulation, cellular response to DNA damage, intracellular components, and organelles. Furthermore, the DEGs were significantly enriched in three KEGG pathways: fatty acid synthesis, pyruvate metabolism, and WNT signalling. To validate the results, lipid droplets (LD) and triglyceride (TG) were examined. MV led to an increase in the accumulation of LD and TG production in mature oocytes. These findings suggest that MV enhances cytoplasmic maturation by promoting lipid droplet synthesis. Overall, this study provides valuable insights into the mechanisms through which MV improves oocyte quality during IVM. The results have significant implications for research in livestock reproduction and offer guidance for future studies in this field.


Subject(s)
In Vitro Oocyte Maturation Techniques , Oocytes , Animals , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/drug effects , Female , Swine , Lipid Droplets/metabolism , Diterpenes/pharmacology , Triglycerides/metabolism , Triterpenes
7.
Theriogenology ; 224: 34-40, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723472

ABSTRACT

Two Poitou donkey jennies were presented for clinical oocyte recovery and embryo production via intracytoplasmic sperm injection (ICSI). Both jennies underwent transvaginal ultrasound-guided follicle aspiration on two occasions. Recovered oocytes were held overnight then placed into maturation culture, using standard methods for mare oocytes. On the first replicate for both jennies, the oocytes were divided into two groups; one group was denuded and examined at 30 h culture (standard culture duration for mare oocytes) and the second was denuded and examined at 36 h culture. No oocytes with polar bodies were observed at either time. The oocytes were maintained in maturation culture until 46 h, at which time oocytes with polar bodies were observed. Semen was then prepared; oocytes underwent ICSI approximately 48 h after being placed into maturation culture. On the second replicate for both jennies, oocytes were cultured for maturation for 42 h, then denuded and subjected to ICSI at 46 h. Sperm preparation, injection and embryo culture were performed as for mare oocytes. Blastocyst rates per injected oocyte were 8/19 (42 %) overall, being 4/12 and 4/7 for the first and second TVAs, respectively. Blastocysts were vitrified. Three blastocysts were warmed and transferred to Poitou donkey jenny recipients. One embryonic vesicle was visualized on ultrasonography on embryo Day 12, which increased in size on Day 13 but was not present when examined on Day 14. These results demonstrate that oocyte recovery and ICSI are efficient for production of Poitou donkey blastocysts. To the best of our knowledge, this is the first report of production of blastocysts via ICSI in the Poitou donkey, and the first report of transfer of ICSI-produced embryos in the donkey. Further work is needed on factors affecting pregnancy after embryo transfer in the donkey.


Subject(s)
Equidae , Oocytes , Sperm Injections, Intracytoplasmic , Animals , Sperm Injections, Intracytoplasmic/veterinary , Equidae/physiology , Female , Pregnancy , Oocytes/physiology , Blastocyst/physiology , Oocyte Retrieval/veterinary , Oocyte Retrieval/methods , Endangered Species , Male , In Vitro Oocyte Maturation Techniques/veterinary , Embryo Culture Techniques/veterinary , Embryo Transfer/veterinary
8.
Theriogenology ; 224: 174-182, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38781862

ABSTRACT

Improvement in vitro maturation culture conditions has been achieved by mimicking in vivo culture environments such as the follicular fluid. Acetic acid is an energy substrate that is abundantly present in the follicular fluid but has not been considered in vitro maturation. This study examined the effects of acetic acid on oocyte quality during nuclear maturation. Cumulus cells and oocyte complexes were collected from the porcine antral follicles of gilt ovaries and matured with 0, 0.1 or 1 mmol/L of acetic acid. After 44 h of in vitro maturation, the energy status, mitochondrial quality and function and embryonic developmental rate following parthenogenetic activation were determined. RNA-sequencing and protein expression analyses were conducted to predict the effects of acetic acid. Supplementation of the in vitro maturation medium with acetic acid (1 mmol/L) improved embryonic development. Oocytes matured with acetic acid had low adenosine triphosphate and lipid contents, mitochondrial membrane potential and reactive oxygen species levels. RNA-sequencing revealed differential expression of genes associated with the adenosine monophosphate-activated protein kinase signalling pathway. Immunostaining revealed that acetic acid increased the levels of phospho-adenosine monophosphate-activated protein kinase, phospho-acetyl-coenzyme A carboxylase, and sirtuin 1 and decreased those of fatty acid synthase and acetyl-coenzyme A synthetase 1. In summary, the use of acetic acid during oocyte maturation improved oocyte developmental ability and metabolism by altering mitochondrial activity and lipid metabolism.


Subject(s)
Acetic Acid , In Vitro Oocyte Maturation Techniques , Oocytes , Animals , Oocytes/drug effects , Oocytes/physiology , Swine , In Vitro Oocyte Maturation Techniques/veterinary , Acetic Acid/pharmacology , Female , Embryonic Development/drug effects
9.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732042

ABSTRACT

Numerous post-translational modifications are involved in oocyte maturation and embryo development. Recently, lactylation has emerged as a novel epigenetic modification implicated in the regulation of diverse cellular processes. However, it remains unclear whether lactylation occurs during oocyte maturation and embryo development processes. Herein, the lysine lactylation (Kla) modifications were determined during mouse oocyte maturation and early embryo development by immunofluorescence staining. Exogenous lactate was supplemented to explore the consequences of modulating histone lactylation levels on oocyte maturation and embryo development processes by transcriptomics. Results demonstrated that lactylated proteins are widely present in mice with tissue- and cell-specific distribution. During mouse oocyte maturation, immunofluorescence for H3K9la, H3K14la, H4K8la, and H4K12la was most intense at the germinal vesicle (GV) stage and subsequently weakened or disappeared. Further, supplementing the culture medium with 10 mM sodium lactate elevated both the oocyte maturation rate and the histone Kla levels in GV oocytes, and there were substantial increases in Kla levels in metaphase II (MII) oocytes. It altered the transcription of molecules involved in oxidative phosphorylation. Moreover, histone lactylation levels changed dynamically during mouse early embryogenesis. Sodium lactate at 10 mM enhanced early embryo development and significantly increased lactylation, while impacting glycolytic gene transcription. This study reveals the roles of lactylation during oocyte maturation and embryo development, providing new insights to improving oocyte maturation and embryo quality.


Subject(s)
Embryonic Development , Histones , Oocytes , Protein Processing, Post-Translational , Animals , Histones/metabolism , Oocytes/metabolism , Mice , Embryonic Development/genetics , Female , Oogenesis , Lysine/metabolism , In Vitro Oocyte Maturation Techniques , Gene Expression Regulation, Developmental
10.
Reprod Biol ; 24(2): 100854, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772287

ABSTRACT

Ethanol affects pre-conceptional oocyte quality in women. In this study, we examined the effect of low ethanol concentrations on mouse oocytes. Oocytes were collected from the ovaries of 9-10 week old mice and allowed to mature in vitro in the presence of low concentrations of ethanol (0.1% and 0.2% v/v) for 24 h. Treatment of oocytes with ethanol (0.2%) during maturation decreased the mitochondrial DNA content and membrane potential compared to that in untreated ones, whereas the ATP content did not differ between the groups. Both 0.1% and 0.2% ethanol reduced the lipid content in the oocytes. In addition, immunostaining revealed that oocytes cultured in maturation medium containing ethanol (0.2%) had reduced levels of global DNA methylation and DNMT3A compared with untreated oocytes, and decreased rate of blastocyst development with low mitochondrial protein levels (TOMM40) in embryo. RNA-sequencing of the ethanol-treated (0.2%) and untreated oocytes revealed that mitochondria were a major target of ethanol. In conclusion, treatment of oocytes with low concentration of ethanol reduces the developmental rate to the blastocyst stage, with a lower total cell number and global DNA methylation. In addition, ethanol affected mitochondrial function and mitochondria-related gene expression.


Subject(s)
DNA Methylation , Ethanol , In Vitro Oocyte Maturation Techniques , Mitochondria , Oocytes , Animals , Oocytes/drug effects , Oocytes/metabolism , Ethanol/pharmacology , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Female , DNA Methylation/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , Embryonic Development/drug effects , Culture Media/chemistry , Blastocyst/drug effects , Blastocyst/metabolism , DNA, Mitochondrial/metabolism , Transcriptome/drug effects , Gene Expression Regulation, Developmental/drug effects , Membrane Potential, Mitochondrial/drug effects
11.
Theriogenology ; 225: 9-15, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38781849

ABSTRACT

Autophagy is essential for oocyte maturation and preimplantation embryo development. ATG4C, a member of the ATG4 family, plays a crucial role in the autophagy process. The effect of ATG4C on the early embryonic development in pig has not been studied. In this study, the expression patterns of ATG4C were explored using qRT-PCR and immunofluorescence staining. Different concentrations of serum were added to in vitro maturation (IVM) medium to investigate its effects on oocyte maturation and embryonic development. Finally, the developmental potential of parthenogenetic embryos was detected by downregulating ATG4C in MII stage oocytes under 0 % serum condition. The results revealed that ATG4C was highly expressed in porcine oocytes matured in vitro and in parthenogenetic embryos. Compared with the 10 % serum group, the cumulus cell expansion, first polar body (PB1) extrusion rate, and subsequent developmental competence of embryos were reduced in the 0 % and 5 % serum groups. The mRNA levels of LC3, ATG5, BECLIN1, TFAM, PGC1α, and PINK1 were significantly increased (P < 0.05) in the 0 % serum group. ATG4C was significantly upregulated in the embryos at the 1-cell, 2-cell, 8-cell, and 16-cell stages in the 0 % serum group (P < 0.05). Compared with the negative control group, downregulation of ATG4C significantly decreased the 4-cell, 8-cell, and blastocyst rates (P < 0.05), and the expression of genes related to autophagy, mitochondria, and zygotic genome activation (ZGA) was significantly decreased (P < 0.05). The relative fluorescence intensity of LC3 and mitochondrial content in the ATG4C siRNA group was significantly reduced (P < 0.05). Collectively, the results indicate that ATG4C is highly expressed in porcine oocytes matured in vitro and in early embryos, and inhibition of ATG4C effects embryonic developmental competence by decreasing autophagy, mitochondrial content, and ZGA under serum-free condition.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , In Vitro Oocyte Maturation Techniques , Oocytes , Animals , Swine/embryology , Oocytes/metabolism , Embryonic Development/physiology , In Vitro Oocyte Maturation Techniques/veterinary , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Embryo Culture Techniques/veterinary , Female , Autophagy , Parthenogenesis
12.
Theriogenology ; 225: 33-42, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38788627

ABSTRACT

The in vitro maturation (IVM) quality of oocytes is directly related to the subsequent developmental potential of embryos and a fundamental of in vitro embryo production. However, conventional IVM methods fail to maintain the gap-junction intercellular communication (GJIC) between cumulus-oocyte complexes (COCs), which leads to insufficient oocyte maturation. Herein, we investigated the effects of three different three-dimensional (3D) culture methods on oocyte development in vitro, optimized of the alginate-hydrogel embedding method, and assessed the effects of the alginate-hydrogel embedding method on subsequent embryonic developmental potential of oocytes after IVM and parthenogenetic activation (PA). The results showed that Matrigel embedding and alginate-hydrogel embedding benefited the embryonic developmental potential of oocytes after IVM and PA. With the further optimization of alginate-hydrogel embedding, including crosslinking and decrosslinking of parameters, we established a 3D culture system that can significantly increase oocyte maturation and the blastocyst rate of embryos after PA (27.2 ± 1.5 vs 36.7 ± 2.8, P < 0.05). This 3D culture system produced oocytes with markedly increased mitochondrial intensity and membrane potential, which reduced the abnormalities of spindle formation and cortical granule distribution. The alginate-hydrogel embedding system can also remarkably enhance the GJIC between COCs. In summary, based on alginate-hydrogel embedding, we established a 3D culture system that can improve the IVM quality of porcine oocytes, possibly by enhancing GJIC.


Subject(s)
Alginates , Hydrogels , In Vitro Oocyte Maturation Techniques , Oocytes , Animals , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Alginates/pharmacology , Oocytes/physiology , Swine , Cell Culture Techniques, Three Dimensional/methods , Glucuronic Acid/pharmacology , Parthenogenesis , Hexuronic Acids/pharmacology , Female , Embryo Culture Techniques/veterinary , Embryo Culture Techniques/methods
13.
Theriogenology ; 225: 81-88, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38796960

ABSTRACT

Embryonic mortality in cattle is high, reaching 10-40 % in vivo and 60-70 % in vitro. Death of embryos involves reduced expression of genes related to embryonic viability, inhibition of DNA repair and increased DNA damage. In follicular granulosa cells, FGF18 from the theca layer increases apoptosis and DNA damage, so we hypothesized that FGF18 may also affect the oocyte and contribute to early embryonic death. The aims of this study were to identify the effects of FGF18 on cumulus expansion, oocyte maturation and embryo development from cleavage to blastocyst stage using a conventional bovine in vitro embryo production system using ovaries of abattoir origin. Addition of FGF18 during in-vitro maturation did not affect FSH-induced cumulus expansion or rates of nuclear maturation. When FGF18 was present in the culture system, rates of cleavage were not affected however, blastocyst and expanded blastocyst development was substantially inhibited (P < 0.05), indicating a delay of blastulation. The number of phosphorylated histone H2AFX foci per nucleus, a marker of DNA damage, was higher in cleavage-stage embryos cultured with FGF18 than in those from control group (P < 0.05). Furthermore, FGF18 decreased accumulation of PTGS2 and IFNT2 mRNA in blastocysts. In conclusion, these novel findings suggest that FGF18 plays a role in the regulation of embryonic death during the early stages of development by impairing DNA double-strand break repair and expression of genes associated with embryo viability and maternal recognition of pregnancy during the progression from oocyte to expanded blastocysts.


Subject(s)
Blastocyst , DNA Breaks, Double-Stranded , Fibroblast Growth Factors , Animals , Female , Cattle , Blastocyst/drug effects , Blastocyst/physiology , Pregnancy , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Embryonic Development/drug effects , Embryo Culture Techniques/veterinary , In Vitro Oocyte Maturation Techniques/veterinary , Gene Expression Regulation, Developmental/drug effects
14.
Theriogenology ; 225: 107-118, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38805993

ABSTRACT

In this study, we aimed to investigate cytoplasmic maturation and miRNA expression of mature oocytes cultured in porcine follicular fluid exosomes. We also examined the effect of miR-339-5p on oocyte maturation. Twenty eight differentially expressed miRNAs were detected using miRNA-seq. We then transfected cumulus oocyte complexes with miR-339-5p mimics and inhibitor during culture. The results showed that exosomes increased endoplasmic reticulum levels and the amount of lipid droplets, and decreased ROS levels, lipid droplet size, and percentage of oocytes with abnormal cortical granule distribution. Overexpressing miR-339-5p significantly decreased cumulus expansion genes, oocyte maturation-related genes, target gene proline/glutamine-rich splicing factor (SFPQ), ERK1/2 phosphorylation levels, oocyte maturation rate, blastocyst rate, and lipid droplet number, but increased lipid droplet size and the ratio of oocytes with abnormal cortical granule distribution. Inhibiting miR-339-5p reversed the decrease observed during overexpression. Mitochondrial membrane potential and ROS levels did not differ significantly between groups. In summary, exosomes promote oocyte cytoplasmic maturation and miR-339-5p regulating ERK1/2 activity through SFPQ expression, thereby elevating oocyte maturation and blastocyst formation rate in vitro.


Subject(s)
Exosomes , Follicular Fluid , In Vitro Oocyte Maturation Techniques , MAP Kinase Signaling System , MicroRNAs , Oocytes , Animals , Swine , MicroRNAs/metabolism , MicroRNAs/genetics , Oocytes/metabolism , Oocytes/physiology , In Vitro Oocyte Maturation Techniques/veterinary , Exosomes/metabolism , Female , Follicular Fluid/metabolism , PTB-Associated Splicing Factor/metabolism , PTB-Associated Splicing Factor/genetics , Gene Expression Regulation
15.
Reprod Biol ; 24(2): 100888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749271

ABSTRACT

High levels of reactive oxygen species (ROS) derived from in vitro conditions compromise oocyte quality and subsequent polyspermy prevention by the zona and membrane block. Antioxidant supplementation, like lycopene, during in vitro maturation (IVM) mitigates ROS effects, yet, its efficacy in blocking polyspermy remains uncertain. This study aims to evaluate the effect of lycopene supplementation during IVM on oocyte maturation, fertilization, and developmental parameters. To this end, bovine oocytes were supplemented with 0.2 µM lycopene and fertilized with semen from three bulls. The three bulls showed different fertilization potential in vitro, with bull 1 showing the highest penetration and polyspermy rates and the lowest in vitro fertilization (IVF) efficiency. Interestingly, in bull 1, the treatment with lycopene improved IVF efficiency (p = 0.043) and reduced the polyspermy rate (p = 0.028). However, none of these effects were observed in bulls 2 and 3. Bulls with higher penetration rates exhibited better blastocyst rates although those rates did not seem to be associated with polyspermy or IVF efficiency. Oocyte mitochondrial distribution and activity and cortical granule migration and distribution were not influenced by lycopene. In conclusion, we demonstrated that lycopene addition during oocyte maturation had a positive impact on IVF efficiency by reducing polyspermy rates in a bull-dependent manner. The reduction in polyspermy rates was not caused by changes in cortical granule migration or oocyte mitochondrial distribution. Lycopene must therefore induce other changes in the oocyte that lower the in vitro penetration rates of specific bulls prone to polyspermy.


Subject(s)
Antioxidants , Fertilization in Vitro , In Vitro Oocyte Maturation Techniques , Lycopene , Oocytes , Animals , Lycopene/pharmacology , Cattle , Male , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Female , Oocytes/drug effects , Oocytes/physiology , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Fertilization/drug effects , Spermatozoa/drug effects , Spermatozoa/physiology
16.
Mol Biol Rep ; 51(1): 621, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709430

ABSTRACT

BACKGROUND: To investigate the effect of plasma-derived extracellular vesicles (EVs) or conventional medium in fertilization and early embryo development rate in mice. METHODS AND RESULTS: MII oocytes (matured in vivo or in vitro conditions) were obtained from female mice. The extracellular vesicles were isolated by ultracentrifugation of plasma and were analyzed and measured for size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM). By western blotting analysis, the EVs proteins markers such as CD82 protein and heat shock protein 90 (HSP90) were investigated. Incorporating DiI-labeled EVs within the oocyte cytoplasm was visible at 23 h in oocyte cytoplasm. Also, the effective proteins in the early reproductive process were determined in isolated EVs by western blotting. These EVs had a positive effect on the fertilization rate (P < 0.05). The early embryo development (8 cell, morula and blastocyst stages) was higher in groups supplemented with EVs (P < 0.01). CONCLUSION: Our findings showed that supplementing in vitro maturation media with EVs derived- plasma was beneficial for mice's embryo development.


Subject(s)
Embryonic Development , Extracellular Vesicles , Oocytes , Animals , Extracellular Vesicles/metabolism , Mice , Female , Oocytes/metabolism , Oocytes/cytology , Fertilization in Vitro/methods , Blastocyst/metabolism , In Vitro Oocyte Maturation Techniques/methods , HSP90 Heat-Shock Proteins/metabolism
17.
Nutr Diabetes ; 14(1): 23, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653987

ABSTRACT

BACKGROUND: The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS: Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS: The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION: NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Dynamins , Nicotinamide Mononucleotide , Oocytes , Reactive Oxygen Species , Animals , Mice , Female , Oocytes/drug effects , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Experimental/drug therapy , Reactive Oxygen Species/metabolism , Nicotinamide Mononucleotide/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Sirtuin 1/metabolism , Sirtuin 3/metabolism , In Vitro Oocyte Maturation Techniques/methods , Superoxide Dismutase-1 , DNA Damage/drug effects , Streptozocin , Oogenesis/drug effects
18.
Theriogenology ; 222: 31-44, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615434

ABSTRACT

There is still no consensus regarding the role of lipid modulators during in vitro embryo production. Thus, we investigated how lipid reducers during the in vitro maturation of oocytes (IVM) or in vitro culture (IVC) of embryos impact their cryotolerance. A literature search was performed using three databases, recovering 43 articles for the systematic review, comprising 75 experiments (13 performed in IVM, 62 in IVC) and testing 13 substances. In 39 % of the experiments, an increase in oocyte and/or embryo survival after cryopreservation was reported, in contrast to 48 % exhibiting no effect, 5 % causing negative effects, and 8 % influencing in a dose-dependent manner. Of the 75 experiments extracted during IVM and IVC, 41 quantified the lipid content. Of those that reduced lipid content (n = 26), 50 % increased cryotolerance, 34 % had no effect, 8 % harmed oocyte/embryo survival, and 8 % had different results depending on the concentration used. Moreover, 28 out of the 43 studies were analyzed under a meta-analytical approach at the IVC stage in cattle. There was an improvement in the cryotolerance of bovine embryos when the lipid content was reduced. Forskolin, l-carnitine, and phenazine ethosulfate positively affected cryotolerance, while conjugated linoleic acid had no effect and impaired embryonic development. Moreover, fetal bovine serum has a positive impact on cryotolerance. SOF and CR1aa IVC media improved cryotolerance, while mSOF showed no effect. In conclusion, lipid modulators did not unanimously improve cryotolerance, especially when used in IVM, but presented positive effects on cryotolerance during IVC when reaching lipid reduction.


Subject(s)
Cryopreservation , Embryo Culture Techniques , Animals , Cryopreservation/veterinary , Cryopreservation/methods , Embryo Culture Techniques/veterinary , Lipids/chemistry , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Fertilization in Vitro/veterinary , Cattle/embryology , Lipid Metabolism , Embryo, Mammalian/physiology
19.
Theriogenology ; 222: 66-79, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38626583

ABSTRACT

In vitro maturation (IVM) and cryopreservation of goat oocytes are important for establishing a valuable genetic bank for domesticated female animals and improving livestock reproductive efficiency. C-Phycocyanin (PC) is a Spirulina extract with antioxidant, antiinflammatory, and radical scavenging properties. However, whether PC has positive effect on goat oocytes IVM or developmental competence after vitrification is still unknown. In this study, we found that first polar body extrusion (n = 293), cumulus expansion index (n = 269), and parthenogenetic blastocyst formation (n = 281) were facilitated by adding 30 µg/mL PC to the oocyte maturation medium when compared with the control groups and that supplemented with 3, 10, 100 or 300 µg/mL PC (P < 0.05). Although PC supplementation did not affect spindle formation or chromosome alignment (n = 115), it facilitated or improved cortical granules migration (n = 46, P < 0.05), mitochondria distribution (n = 39, P < 0.05), and mitochondrial membrane potential (n = 46, P < 10-4). Meanwhile, supplementation with 30 µg/mL PC in the maturation medium could significantly inhibit the reactive oxygen species accumulation (n = 65, P < 10-4), and cell apoptosis (n = 42, P < 0.05). In addition, PC increased the oocyte mRNA levels of GPX4 (P < 0.01), and decreased the mRNA and protein levels of BAX (P < 0.01). Next, we investigated the effect of PC supplementation in the vitrification solution on oocyte cryopreservation. When compared with the those equilibrate in the vitrification solution without PC, recovered oocytes in the 30 µg/mL PC group showed higher ratios of normal morphology (n = 85, P < 0.05), survival (n = 85, P < 0.05), first polar body extrusion (n = 62, P < 0.05), and parthenogenetic blastocyst formation (n = 107, P < 0.05). Meanwhile, PC supplementation of the vitrification solution increased oocyte mitochondrial membrane potential (n = 53, P < 0.05), decreased the reactive oxygen species accumulation (n = 73, P < 0.05), promoted mitochondria distribution (n = 58, P < 0.05), and inhibited apoptosis (n = 46, P < 10-3). Collectively, our findings suggest that PC improves goat oocyte IVM and vitrification by reducing oxidative stress and early apoptosis, which providing a novel strategy for livestock gamete preservation and utilization.


Subject(s)
Cryopreservation , Goats , In Vitro Oocyte Maturation Techniques , Oocytes , Phycocyanin , Vitrification , Animals , Oocytes/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Vitrification/drug effects , Cryopreservation/veterinary , Cryopreservation/methods , Phycocyanin/pharmacology , Female , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects
20.
Clín. investig. ginecol. obstet. (Ed. impr.) ; 51(2): [100933], Abri-Jun, 2024.
Article in Spanish | IBECS | ID: ibc-232737

ABSTRACT

Los tumores ováricos borderline (TOBL) son definidos como «tumores de bajo potencial maligno». Se trata de neoplasias epiteliales que debutan principalmente en mujeres jóvenes, siendo habitualmente diagnosticados en estadios iniciales de la enfermedad. La clave principal de su tratamiento es la cirugía, viéndose así comprometida la fertilidad de la paciente que no ha cumplido su deseo genésico. En general, la elección de la cirugía para los TOBL debe considerar las características del tumor, los deseos de fertilidad de la paciente y la extensión de la enfermedad. Las decisiones tomadas al respecto deben ser individualizadas y asesoradas por un equipo multidisciplinar. La preservación de la fertilidad (PF) juega un papel importante en el manejo de estas pacientes, existiendo distintas estrategias para mejorar y mantener su calidad de vida. El asesoramiento reproductivo debería ser una parte integral del manejo clínico, debiendo considerarse cuidadosamente los riesgos y beneficios. Dada su baja incidencia existe poca literatura al respecto, necesitándose estudios prospectivos bien diseñados para abordar los problemas específicos de fertilidad tanto en el diagnóstico inicial como en las recurrencias de los pacientes con TOBL.(AU)


Borderline ovarian tumors (BOTs) are defined as “tumors of low malignant potential”. These are epithelial neoplasms that debut mainly in young women, and are usually diagnosed in the initial stages of the disease. The main key to its treatment is surgery, thus compromising the fertility of the patient who has not fulfilled her reproductive desire. In general, the choice of surgery for BOTs should consider the characteristics of the tumor, the patient's fertility desires, and the extent of the disease. The decisions made in this regard must be individualized and advised by a multidisciplinary team. Fertility preservation (FP) plays an important role in the management of these patients, and there are different strategies to improve and maintain their quality of life. Reproductive counseling should be an integral part of clinical management, with risks and benefits carefully considered. Given its low incidence, there is little literature on the matter, requiring well-designed prospective studies to address specific fertility problems both in the initial diagnosis and in recurrences of patients with BOTs.(AU)


Subject(s)
Humans , Female , Fertility Preservation , Brenner Tumor , In Vitro Oocyte Maturation Techniques , Vitrification , Gynecology , Genital Diseases, Female , Consensus
SELECTION OF CITATIONS
SEARCH DETAIL
...