Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Phys Med Biol ; 69(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38722574

ABSTRACT

Objective. The primary goal of this research is to demonstrate the feasibility of radiation-induced acoustic imaging (RAI) as a volumetric dosimetry tool for ultra-high dose rate FLASH electron radiotherapy (FLASH-RT) in real time. This technology aims to improve patient outcomes by accurate measurements ofin vivodose delivery to target tumor volumes.Approach. The study utilized the FLASH-capable eRT6 LINAC to deliver electron beams under various doses (1.2 Gy pulse-1to 4.95 Gy pulse-1) and instantaneous dose rates (1.55 × 105Gy s-1to 2.75 × 106Gy s-1), for imaging the beam in water and in a rabbit cadaver with RAI. A custom 256-element matrix ultrasound array was employed for real-time, volumetric (4D) imaging of individual pulses. This allowed for the exploration of dose linearity by varying the dose per pulse and analyzing the results through signal processing and image reconstruction in RAI.Main Results. By varying the dose per pulse through changes in source-to-surface distance, a direct correlation was established between the peak-to-peak amplitudes of pressure waves captured by the RAI system and the radiochromic film dose measurements. This correlation demonstrated dose rate linearity, including in the FLASH regime, without any saturation even at an instantaneous dose rate up to 2.75 × 106Gy s-1. Further, the use of the 2D matrix array enabled 4D tracking of FLASH electron beam dose distributions on animal tissue for the first time.Significance. This research successfully shows that 4Din vivodosimetry is feasible during FLASH-RT using a RAI system. It allows for precise spatial (∼mm) and temporal (25 frames s-1) monitoring of individual FLASH beamlets during delivery. This advancement is crucial for the clinical translation of FLASH-RT as enhancing the accuracy of dose delivery to the target volume the safety and efficacy of radiotherapeutic procedures will be improved.


Subject(s)
Electrons , Animals , Rabbits , Radiotherapy Dosage , Radiometry/methods , Acoustics , In Vivo Dosimetry/methods
2.
Strahlenther Onkol ; 199(11): 992-999, 2023 11.
Article in English | MEDLINE | ID: mdl-37256302

ABSTRACT

BACKGROUND AND OBJECTIVE: In this work we report our experience with the use of in vivo dosimetry (IVD) in the risk management of stereotactic lung treatments. METHODS: A commercial software based on the electronic portal imaging device (EPID) signal was used to reconstruct the actual planning target volume (PTV) dose of stereotactic lung treatments. The study was designed in two phases: i) in the observational phase, the IVD results of 41 consecutive patients were reviewed and out-of-tolerance cases were studied for root cause analysis; ii) in the active phase, the IVD results of 52 patients were analyzed and corrective actions were taken when needed. Moreover, proactive preventions were further introduced to reduce the risk of future failures. The error occurrence rate was analyzed to evaluate the effectiveness of proactive actions. RESULTS: A total of 330 fractions were analyzed. In the first phase, 13 errors were identified. In the active phase, 12 errors were detected, 5 of which needed corrective actions; in 4 patients the actions taken corrected the error. Several preventions and barriers were introduced to reduce the risk of future failures: the planning checklist was updated, the procedure for vacuum pillows was improved, and use of the respiratory compression belt was optimized. A decrease in the failure rate was observed, showing the effectiveness of procedural adjustment. CONCLUSION: The use of IVD allowed the quality of lung stereotactic body radiation therapy (SBRT) treatments to be improved. Patient-specific and procedural corrective actions were successfully taken as part of risk management, leading to an overall improvement in the dosimetric accuracy.


Subject(s)
In Vivo Dosimetry , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , In Vivo Dosimetry/methods , Radiotherapy Dosage , Lung , Radiometry/methods , Risk Management
3.
Strahlenther Onkol ; 197(7): 633-643, 2021 07.
Article in English | MEDLINE | ID: mdl-33594471

ABSTRACT

PURPOSE: To investigate critical aspects and effectiveness of in vivo dosimetry (IVD) tests obtained by an electronic portal imaging device (EPID) in a multicenter and multisystem context. MATERIALS AND METHODS: Eight centers with three commercial systems-SoftDiso (SD, Best Medical Italy, Chianciano, Italy), Dosimetry Check (DC, Math Resolution, LCC), and PerFRACTION (PF, Sun Nuclear Corporation, SNC, Melbourne, FL)-collected IVD results for a total of 2002 patients and 32,276 tests. Data are summarized for IVD software, radiotherapy technique, and anatomical site. Every center reported the number of patients and tests analyzed, and the percentage of tests outside of the tolerance level (OTL%). OTL% was categorized as being due to incorrect patient setup, incorrect use of immobilization devices, incorrect dose computation, anatomical variations, and unknown causes. RESULTS: The three systems use different approaches and customized alert indices, based on local protocols. For Volumetric Modulated Arc Therapy (VMAT) treatments OTL% mean values were up to 8.9% for SD, 18.0% for DC, and 16.0% for PF. Errors due to "anatomical variations" for head and neck were up to 9.0% for SD and DC and 8.0% for PF systems, while for abdomen and pelvis/prostate treatments were up to 9%, 17.0%, and 9.0% for SD, DC, and PF, respectively. The comparison among techniques gave 3% for Stereotactic Body Radiation Therapy, 7.0% (range 4.7-8.9%) for VMAT, 10.4% (range 7.0-12.2%) for Intensity Modulated Radiation Therapy, and 13.2% (range 8.8-21.0%) for 3D Conformal Radiation Therapy. CONCLUSION: The results obtained with different IVD software and among centers were consistent and showed an acceptable homogeneity. EPID IVD was effective in intercepting important errors.


Subject(s)
In Vivo Dosimetry/methods , Humans , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Software
4.
Phys Med Biol ; 65(18): 185008, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32516759

ABSTRACT

In vivo dosimetry methods can verify the prescription dose is delivered to the patient during treatment. Unfortunately, in exit dosimetry, the megavoltage image is contaminated with patient-generated scattered photons. However, estimation and removal of the effect of this fluence improves accuracy of in vivo dosimetry methods. This work develops a 'tri-hybrid' algorithm combining analytical, Monte Carlo (MC) and pencil-beam scatter kernel methods to provide accurate estimates of the total patient-generated scattered photon fluence entering the MV imager. For the multiply-scattered photon fluence, a modified MC simulation method was applied, using only a few histories. From each second- and higher-order interaction site in the simulation, energy fluence entering all pixels of the imager was calculated using analytical methods. For photon fluence generated by electron interactions in the patient (i.e. bremsstrahlung and positron annihilation), a convolution/superposition approach was employed using pencil-beam scatter fluence kernels as a function of patient thickness and air gap distance, superposed on the incident fluence distribution. The total patient-scattered photon fluence entering the imager was compared with a corresponding full MC simulation (EGSnrc) for several test cases. These included three geometric phantoms (water, half-water/half-lung, computed tomography thorax) using monoenergetic (1.5, 5.5 and 12.5 MeV) and polyenergetic (6 and 18 MV) photon beams, 10 × 10 cm2 field, source-to-surface distance 100 cm, source-to-imager distance 150 cm and 40 × 40 cm2 imager. The proposed tri-hybrid method is demonstrated to agree well with full MC simulation, with the average fluence differences and standard deviations found to be within 0.5% and 1%, respectively, for test cases examined here. The method, as implemented here with a single CPU (non-parallelized), takes ∼80 s, which is considerably shorter compared to full MC simulation (∼30 h). This is a promising method for fast yet accurate calculation of patient-scattered fluence at the imaging plane for in vivo dosimetry applications.


Subject(s)
Electrical Equipment and Supplies , In Vivo Dosimetry/methods , Photons , Scattering, Radiation , Algorithms , Humans , Monte Carlo Method , Phantoms, Imaging , Tomography, X-Ray Computed
5.
Semin Cell Dev Biol ; 103: 3-13, 2020 07.
Article in English | MEDLINE | ID: mdl-32057664

ABSTRACT

Beta cells assume a fundamental role in maintaining blood glucose homeostasis through the secretion of insulin, which is contingent on both beta cell mass and function, in response to elevated blood glucose levels or secretagogues. For this reason, evaluating beta cell mass and function, as well as scrutinizing how they change over time in a diabetic state, are essential prerequisites in elucidating diabetes pathophysiology. Current clinical methods to measure human beta cell mass and/or function are largely lacking, indirect and sub-optimal, highlighting the continued need for noninvasive in vivo beta cell imaging technologies such as optical imaging techniques. While numerous probes have been developed and evaluated for their specificity to beta cells, most of them are more suited to visualize beta cell mass rather than function. In this review, we highlight the distinction between beta cell mass and function, and the importance of developing more probes to measure beta cell function. Additionally, we also explore various existing probes that can be employed to measure beta cell mass and function in vivo, as well as the caveats in probe development for in vivo beta cell imaging.


Subject(s)
Diabetes Mellitus/metabolism , In Vivo Dosimetry/methods , Insulin-Secreting Cells/metabolism , Humans
6.
Semin Cell Dev Biol ; 103: 14-19, 2020 07.
Article in English | MEDLINE | ID: mdl-32081627

ABSTRACT

The islet of Langerhans contains at least five types of endocrine cells producing distinct hormones. In response to nutrient or neuronal stimulation, islet endocrine cells release biochemicals including peptide hormones to regulate metabolism and to control glucose homeostasis. It is now recognized that malfunction of islet cells, notably insufficient insulin release of ß-cells and hypersecretion of glucagon from α-cells, represents a causal event leading to hyperglycemia and frank diabetes, a disease that is increasing at an alarming rate to reach an epidemic level worldwide. Understanding the mechanisms regulating stimulus-secretion coupling and investigating how islet ß-cells maintain a robust secretory activity are important topics in islet biology and diabetes research. To facilitate such studies, a number of biological systems and assay platforms have been developed for the functional analysis of islet cells. These technologies have enabled detailed analyses of individual islets at the cellular level, either in vitro, in situ, or in vivo.


Subject(s)
Diabetes Mellitus/metabolism , In Vitro Techniques/methods , In Vivo Dosimetry/methods , Islets of Langerhans/metabolism , Humans
7.
Radiat Environ Biophys ; 59(1): 131-144, 2020 03.
Article in English | MEDLINE | ID: mdl-31734721

ABSTRACT

Biological dosimetry based on sulfhemoglobin (SHb), methemoglobin (MetHb), and carboxyhemoglobin (HbCO) levels was evaluated. SHb, MetHb and HbCO levels were estimated in erythrocytes of mice irradiated by γ rays from a 60Co source using the method of multi-component spectrophotometric analysis developed recently. In this method, absorption measurements of diluted aqueous Hb-solution were made at λ = 500, 569, 577 and 620 nm, and using the mathematical formulas based on multi-component spectrophotometric analysis and the mathematical Gaussian elimination method for matrix calculation, the concentrations of various Hb-derivatives and total Hb in mice blood were estimated. The dose range of γ rays was from 0.5 to 8 Gy and the dose rate was 0.5 Gy min-1. Among all Hb-derivatives, MetHb, SHb and HbCO demonstrated an unambiguous dose-dependent response. For SHb and MetHb, the detection limits were about 0.5 Gy and 1 Gy, respectively. After irradiation, high levels of MetHb, SHb and HbCO persisted for at least 10 days, and the maximal increase of MetHb, SHb and HbCO occurred up to 24 h following γ irradiation. The use of this "MetHb + SHb + HbCO"-derivatives-based absorbed dose relationship showed a high accuracy. It is concluded that simultaneous determination of MetHb, SHb and HbCO, by multi-component spectrophotometry provides a quick, simple, sensitive, accurate, stable and inexpensive biological indicator for the early assessment of the absorbed dose in mice.


Subject(s)
Carboxyhemoglobin/analysis , Gamma Rays , In Vivo Dosimetry/methods , Methemoglobin/analysis , Sulfhemoglobin/analysis , Animals , Biomarkers/analysis , Erythrocytes/metabolism , Male , Mice , Whole-Body Irradiation
8.
J Appl Clin Med Phys ; 20(11): 111-120, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31660682

ABSTRACT

PURPOSE: Varian Halcyon linear accelerator version 2 (The Halcyon 2.0) was recently released with new upgraded features. The aim of this study was to report our clinical experience with Halcyon 2.0 for a dual-isocenter intensity-modulated radiation therapy (IMRT) planning and delivery for gynecological cancer patients and examine the feasibility of in vivo portal dosimetry. METHODS: Twelve gynecological cancer patients were treated with extended-field IMRT technique using two isocenters on Halcyon 2.0 to treat pelvis and pelvic/or para-aortic nodes region. The prescription dose was 45 Gy in 25 fractions (fxs) with simultaneous integrated boost (SIB) dose of 55 or 57.5 Gy in 25 fxs to involved nodes. All treatment plans, pretreatment patient-specific QA and treatment delivery records including daily in vivo portal dosimetry were retrospectively reviewed. For in vivo daily portal dosimetry analysis, each fraction was compared to the reference baseline (1st fraction) using gamma analysis criteria of 4 %/4 mm with 90% of total pixels in the portal image planar dose. RESULTS: All 12 extended-field IMRT plans met the planning criteria and delivered as planned (a total of 300 fractions). Conformity Index (CI) for the primary target was achieved with the range of 0.99-1.14. For organs at risks, most were well within the dose volume criteria. Treatment delivery time was from 5.0 to 6.5 min. Interfractional in vivo dose variation exceeded gamma analysis threshold for 8 fractions out of total 300 (2.7%). These eight fractions were found to have a relatively large difference in small bowel filling and SSD change at the isocenter compared to the baseline. CONCLUSION: Halcyon 2.0 is effective to create complex extended-field IMRT plans using two isocenters with efficient delivery. Also Halcyon in vivo dosimetry is feasible for daily treatment monitoring for organ motion, internal or external anatomy, and body weight which could further lead to adaptive radiation therapy.


Subject(s)
Genital Neoplasms, Female/radiotherapy , In Vivo Dosimetry/methods , Particle Accelerators/instrumentation , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Female , Humans , Organs at Risk/radiation effects , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies
9.
PLoS One ; 14(10): e0222951, 2019.
Article in English | MEDLINE | ID: mdl-31618210

ABSTRACT

We report the development of system for packaging critical components of the traditional collection kit to make an integrated fingerstick blood collector for self-collecting blood samples of 100 µl or more for radiation countermeasures. A miniaturized vacuum tube system (VacuStor system) has been developed to facilitate liquid reagent storage, simple operation and reduced sample contamination. Vacuum shelf life of the VacuStor tube has been analyzed by the ideal gas law and gas permeation theory, and multiple ways to extend vacuum shelf life beyond one year have been demonstrated, including low temperature storage, Parylene barrier coating and container vacuum bag sealing. Self-collection was also demonstrated by healthy donors without any previous fingerstick collection experience. The collected blood samples showed similar behavior in terms of gene expression and cytogenetic biodosimetry assays comparing to the traditionally collected samples. The integrated collector may alleviate the sample collection bottleneck for radiation countermeasures following a large-scale nuclear event, and may be useful in other applications with its self-collection and liquid reagent sample preprocessing capabilities.


Subject(s)
Blood Specimen Collection/instrumentation , In Vivo Dosimetry/methods , Medical Countermeasures , Terrorism , Equipment Design , Feasibility Studies , Gene Expression Profiling , Gene Expression Regulation/radiation effects , Humans , Radiation Exposure/adverse effects
10.
J Appl Clin Med Phys ; 20(10): 43-52, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31541537

ABSTRACT

Postmastectomy radiation therapy is technically difficult and can be considered one of the most complex techniques concerning patient setup reproducibility. Slight patient setup variations - particularly when high-conformal treatment techniques are used - can adversely affect the accuracy of the delivered dose and the patient outcome. This research aims to investigate the inter-fraction setup variations occurring in two different scenarios of clinical practice: at the reference and at the current patient setups, when an image-guided system is used or not used, respectively. The results were used with the secondary aim of assessing the robustness of the patient setup procedure in use. Forty eight patients treated with volumetric modulated arc and intensity modulated therapies were included in this study. EPID-based in vivo dosimetry (IVD) was performed at the reference setup concomitantly with the weekly cone beam computed tomography acquisition and during the daily current setup. Three indices were analyzed: the ratio R between the reconstructed and planned isocenter doses, γ % and the mean value of γ from a transit dosimetry based on a two-dimensional γ -analysis of the electronic portal images using 5% and 5 mm as dose difference and distance to agreement gamma criteria; they were considered in tolerance if R was within 5%, γ % > 90% and γ mean  < 0.4. One thousand and sixteen EPID-based IVD were analyzed and 6.3% resulted out of the tolerance level. Setup errors represented the main cause of this off tolerance with an occurrence rate of 72.2%. The percentage of results out of tolerance obtained at the current setup was three times greater (9.5% vs 3.1%) than the one obtained at the reference setup, indicating weaknesses in the setup procedure. This study highlights an EPID-based IVD system's utility in the radiotherapy routine as part of the patient's treatment quality controls and to optimize (or confirm) the performed setup procedures' accuracy.


Subject(s)
Breast Neoplasms/radiotherapy , In Vivo Dosimetry/methods , Organs at Risk/radiation effects , Particle Accelerators/instrumentation , Patient Positioning , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors/prevention & control , Cone-Beam Computed Tomography , Female , Humans , Mastectomy , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Software
11.
Phys Med Biol ; 64(18): 18NT01, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31416056

ABSTRACT

Accuracy and precision in dosimetry is crucial in studies involving animal models. Small animal dosimetry, in particular for protracted exposures to non uniform radiation fields is particularly challanging. We have developed a novel in vivo dosimeter based on glass encapsulated TLD rods. These encapsulated rods can be injected into mice and used for validating doses to an individual mouse in a protracted irradiation scenario where the mouse is free to move in an inhomogenous radiation field. Data from 30 irradiated mice shows a reliable dose reconstruction within 10% of the nominal delivered dose.


Subject(s)
In Vivo Dosimetry/methods , Radiation Dosimeters/statistics & numerical data , Radiation Monitoring/instrumentation , Animals , Male , Mice , Mice, Inbred C57BL , Radiation Dosage
12.
Brachytherapy ; 18(5): 720-726, 2019.
Article in English | MEDLINE | ID: mdl-31229364

ABSTRACT

PURPOSE: Using in vivo measurements from optically stimulated luminescence dosimeters (OSLDs) to develop and validate a prediction model for estimating the skin dose received by patients undergoing breast intraoperative radiation therapy (IORT). METHODS AND MATERIALS: IORT was performed using INTRABEAM-600 with spherical applicators placed in the lumpectomy cavity. Ultrasound skin bridge measurements were used to determine the applicator-to-skin distance, with OSLDs placed to measure the skin surface dose at the corresponding points. The OSLD response was calibrated for the 50 kVp INTRABEAM-600 output. Models were fit to describe the dose fall-off with increasing applicator-to-skin distance and the best fitting model was chosen for estimating skin dose. RESULTS: Twenty four patients with 25 lumpectomy cavities were included, and the average skin dose recorded was 1.18 Gy ± 0.88 Gy, ranging from 0.17 Gy to 4.77 Gy, with an average applicator-to-skin distance of 19.9 mm ± 5.1 mm. An exponential-plateau model was found to best describe the dose fall-off with a root-mean-square error of 0.73. This model was then validated prospectively using skin dose measurements from five consecutive patients. Validation measurements were well within the 95% prediction limits of the model, with a root-mean-square error of 0.52, showing that the prediction model accurately estimates skin dose using ultrasound skin bridge measurements. CONCLUSIONS: This prediction model constitutes a useful tool for estimating the skin dose received during breast lumpectomy IORT. The model and accompanying 95% confidence intervals can be used to establish a minimum allowable skin bridge distance, effectively limiting the maximum allowable skin dose.


Subject(s)
Brachytherapy/methods , Breast Neoplasms/radiotherapy , In Vivo Dosimetry/methods , Skin/radiation effects , Breast Neoplasms/surgery , Calibration , Female , Humans , Intraoperative Period , Mastectomy, Segmental , Middle Aged , Models, Biological , Organs at Risk/radiation effects , Radiation Dosage , Radiotherapy Dosage , Radiotherapy, Adjuvant/methods , Thermoluminescent Dosimetry/methods , Ultrasonography/methods
13.
Phys Med ; 60: 132-138, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31000073

ABSTRACT

PURPOSE: To evaluate the effect of a low magnetic field (B-field, 0.35 T) on QED™ for clinical use. METHODS: Black and Blue QED were irradiated using tri-Co-60 magnetic resonance image-guided radiation therapy systems with and without the B-field. For both detectors, angular dependence of the beam orientation was evaluated by rotating the gantry and detector in parallel and perpendicular directions to the B-field. Angular dependence betweenthe directions of both QED and B-field was also measured. Response on the depth and output factor of both detectors was investigated for parallel and perpendicular setups, respectively. RESULTS: When Black QED was placed on a surface, detector response decreased by 1.8% and 4.5% for parallel and perpendicular setups, respectively, owing to the B-field. The angular dependence of the beam orientation was not affected by B-field for both detectors. There was a significant angular dependence between Black QED and B-field direction and for the Black QED when the gantry was rotated. Owing to the B-field, the detector response at 90° decreased by 2.4%, response of Black QED on the depth was changed only on the surface, and output factor of Black QED was changed only on the surface. The response of Blue QED was not affected by the B-field for all examined situations. CONCLUSIONS: Using Black QED on a surface in the same position as that in the calibration requires some correction to the B-field. Blue QED does not require correction as it is not affected by the B-field.


Subject(s)
In Vivo Dosimetry , Magnetic Fields , Calibration , Equipment Design , Humans , In Vivo Dosimetry/methods , Magnetic Resonance Imaging , Radiation Dosimeters , Radiotherapy, Image-Guided
14.
Phys Med ; 60: 37-43, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31000084

ABSTRACT

INTRODUCTION: Single fraction nature of intraoperative radiotherapy highly demands a quality assurance procedure to qualify both beam setup and treatment delivery. The aim of this study is to evaluate the treatment setup during breast intraoperative electron radiotherapy (IOERT) and in-vivo dose delivery verification. MATERIALS AND METHODS: Twenty-five breast cancer patients were enrolled and setup verification for each case was performed using C-arm imaging. The received dose by surface and distal end of target was measured by EBT2 film. The significance level of difference between obtained dosimetry results and predicted ones was evaluated by the T statistical test. RESULTS: Acquired C-arm images in two different oblique views revealed any misalignment between the applicator and shielding disk. The mean difference between the measured surface dose and expected one was 1.8% ±â€¯1.2 (p = 0.983) while a great disagreement, 11.1% ±â€¯1.5 (p < 0.001), was observed between the measured distal end dose and expected one. This discrepancy is mainly correlated to the backscattering effect from the shielding disk. Target depth nonuniformities can also contribute to this remarkable difference. CONCLUSION: Employing the intraoperative imaging for IOERT setup verification can considerably improve the treatment quality. Therefore, it is suggested to implement this imaging procedure as a part of treatment quality assurance. Favorable agreement between the predicted and measured surface doses demonstrates the applicability of EBT2 film for dose delivery verification. The results of in-vivo dosimetry showed that the electron backscattering from employed shielding disk can affect the received dose by the distal end of tumor bed.


Subject(s)
Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Electrons/therapeutic use , In Vivo Dosimetry/methods , Surgery, Computer-Assisted , Breast/diagnostic imaging , Breast/surgery , Breast Neoplasms/diagnostic imaging , Carcinoma/diagnostic imaging , Carcinoma/radiotherapy , Carcinoma/surgery , Combined Modality Therapy/methods , Fluoroscopy/methods , Humans , Intraoperative Period , Quality Improvement , Radiation Dosimeters , Radiotherapy Dosage , Scattering, Radiation
15.
Phys Med Biol ; 64(8): 08NT04, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30840946

ABSTRACT

Ge-doped silica fibre (GDSF) thermoluminescence dosimeters (TLD) are non-hygroscopic spatially high-resolution radiation sensors with demonstrated potential for radiotherapy dosimetry applications. The INTRABEAM® system with spherical applicators, one of a number of recent electronic brachytherapy sources designed for intraoperative radiotherapy (IORT), presents a representative challenging dosimetry situation, with a low keV photon beam and a desired rapid dose-rate fall-off close-up to the applicator surface. In this study, using the INTRABEAM® system, investigations were made into the potential application of GDSF TLDs for in vivo IORT dosimetry. The GDSFs were calibrated over the respective dose- and depth-range 1 to 20 Gy and 3 to 45 mm from the x-ray probe. The effect of different sizes of spherical applicator on TL response of the fibres was also investigated. The results show the GDSF TLDs to be applicable for IORT dose assessment, with the important incorporated correction for beam quality effects using different spherical applicator sizes. The total uncertainty in use of this type of GDSF for dosimetry has been found to range between 9.5% to 12.4%. Subsequent in vivo measurement of skin dose for three breast patients undergoing IORT were performed, the measured doses being below the tolerance level for acute radiation toxicity.


Subject(s)
In Vivo Dosimetry/methods , Radiation Dosimeters/standards , Thermoluminescent Dosimetry/methods , Calibration , Female , Humans , In Vivo Dosimetry/standards , Radiotherapy Dosage , Silicon Dioxide/chemistry , Thermoluminescent Dosimetry/instrumentation , Thermoluminescent Dosimetry/standards
16.
Theranostics ; 9(3): 868-883, 2019.
Article in English | MEDLINE | ID: mdl-30809314

ABSTRACT

A common form of treatment for patients with hepatocellular carcinoma (HCC) is transarterial radioembolization (TARE) with non-degradable glass or resin microspheres (MS) labeled with 90Y (90Y-MS). To further simplify the dosimetry calculations in the clinical setting, to have more control over the particle size and to change the permanent embolization to a temporary one, we developed uniformly-sized, biodegradable 188Re-labeled MS (188Re-MS) as a new and easily imageable TARE agent. Methods: MS made of poly(L-lactic acid) were produced in a flow focusing microchip. The MS were labeled with 188Re using a customized kit. An orthotopic HCC animal model was developed in male Sprague Dawley rats by injecting N1-S1 cells directly into the liver using ultrasound guidance. A suspension of 188Re-MS was administered via hepatic intra-arterial catheterization 2 weeks post-inoculation of the N1-S1 cells. The rats were imaged by SPECT 1, 24, 48, and 72 h post-radioembolization. Results: The spherical 188Re-MS had a diameter of 41.8 ± 6.0 µm (CV = 14.5%). The site and the depth of the injection of N1-S1 cells were controlled by visualization of the liver in sonograms. Single 0.5 g tumors were grown in all rats. 188Re-MS accumulated in the liver with no deposition in the lungs. 188Re decays to stable 188Os by emission of ߯ particles with similar energy to those emitted by 90Y while simultaneously emitting γ photons, which were imaged directly by single photon computed tomography (SPECT). Using Monte Carlo methods, the dose to the tumors was calculated to be 3-6 times larger than to the healthy liver tissue. Conclusions:188Re-MS have the potential to become the next generation of ߯-emitting MS for TARE. Future work revolves around the investigation of the therapeutic potential of 188Re-MS in a large-scale, long-term preclinical study as well as the evaluation of the clinical outcomes of using 188Re-MS with different sizes, from 20 to 50 µm.


Subject(s)
Carcinoma, Hepatocellular/therapy , Drug Carriers , Embolization, Therapeutic/methods , Microspheres , Radioisotopes/administration & dosage , Radiotherapy/methods , Rhenium/administration & dosage , Animals , Carcinoma, Hepatocellular/diagnosis , Disease Models, Animal , Humans , In Vivo Dosimetry/methods , Liver Neoplasms/diagnosis , Liver Neoplasms/therapy , Polyesters , Rats, Sprague-Dawley , Treatment Outcome
17.
Contrast Media Mol Imaging ; 2019: 6438196, 2019.
Article in English | MEDLINE | ID: mdl-30733648

ABSTRACT

Introduction: 177Lu-OPS201 is a high-affinity somatostatin receptor subtype 2 antagonist for PRRT in patients with neuroendocrine tumors. The aim is to find the optimal scaling for dosimetry and to compare the biokinetics of 177Lu-OPS201 in animals and humans. Methods: Data on biokinetics of 177Lu-OPS201 were analyzed in athymic nude Foxn1 nu mice (28 F, weight: 26 ± 1 g), Danish Landrace pigs (3 F-1 M, weight: 28 ± 2 kg), and patients (3 F-1 M, weight: 61 ± 17 kg) with administered activities of 0.19-0.27 MBq (mice), 97-113 MBq (pigs), and 850-1086 MBq (patients). After euthanizing mice (up to 168 h), the organ-specific activity contents (including blood) were measured. Multiple planar and SPECT/CT scans were performed until 250 h (pigs) and 72 h (patients) to quantify the uptake in the kidneys and liver. Blood samples were taken up to 23 h (patients) and 300 h (pigs). In pigs and patients, kidney protection was applied. Time-dependent uptake data sets were created for each species and organ/tissue. Biexponential fits were applied to compare the biokinetics in the kidneys, liver, and blood of each species. The time-integrated activity coefficients (TIACs) were calculated by using NUKFIT. To determine the optimal scaling, several methods (relative mass scaling, time scaling, combined mass and time scaling, and allometric scaling) were compared. Results: A fast blood clearance of the compound was observed in the first phase (<56 h) for all species. In comparison with patients, pigs showed higher liver retention. Based on the direct comparison of the TIACs, an underestimation in mice (liver and kidneys) and an overestimation in pigs' kidneys compared to the patient data (kidney TIAC: mice = 1.4 h, pigs = 7.7 h, and patients = 5.8 h; liver TIAC: mice = 0.7 h, pigs = 4.1 h, and patients = 5.3 h) were observed. Most similar TIACs were obtained by applying time scaling (mice) and combined scaling (pigs) (kidney TIAC: mice = 3.9 h, pigs = 4.8 h, and patients = 5.8 h; liver TIAC: mice = 0.9 h, pigs = 4.7 h, and patients = 5.3 h). Conclusion: If the organ mass ratios between the species are high, the combined mass and time scaling method is optimal to minimize the interspecies differences. The analysis of the fit functions and the TIACs shows that pigs are better mimicking human biokinetics.


Subject(s)
In Vivo Dosimetry/methods , Lutetium/analysis , Organometallic Compounds/pharmacokinetics , Radioisotopes/analysis , Animals , Female , Humans , Kidney/metabolism , Liver/metabolism , Male , Mice , Organometallic Compounds/chemistry , Receptors, Somatostatin/antagonists & inhibitors , Swine
18.
J Appl Clin Med Phys ; 20(3): 37-44, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30790439

ABSTRACT

We evaluated an EPID-based in-vivo dosimetry (IVD) method for the dose verification and the treatment reproducibility of lung SBRT-VMAT treatments in clinical routine. Ten patients with lung metastases treated with Elekta VMAT technique were enrolled. All patients were irradiated in five consecutive fractions, with total doses of 50 Gy. Set-up was carried out with the Elekta stereotactic body frame. Eight patients were simulated and treated using the Active Breath Control (ABC) system, a spirometer enabling patients to maintain a breath-hold at a predetermined lung volume. Two patients were simulated and treated in free-breathing using an abdominal compressor. IVD was performed using the SOFTDISO software. IVD tests were evaluated by means of (a) ratio R between daily in-vivo isocenter dose and planned dose and (b) γ-analysis between EPID integral portal images in terms of percentage of points with γ-value smaller than one (γ% ) and mean γ-values (γmean ) using a 3%(global)/3 mm criteria. Alert criteria of ±5% for R ratio, γ%  < 90%, and γmean  > 0.67 were chosen. 50 transit EPID images were acquired. For the patients treated with ABC spirometer, the results reported a high level of accuracy in dose delivery with 100% of tests within ±5%. The γ-analysis showed a mean value of γmean equal to 0.21 (range: 0.04-0.56) and a mean γ% equal to 96.9 (range: 78-100). Relevant discrepancies were observed only for the two patients treated without ABC, mainly due to a blurring dose effect due to residual respiratory motion. Our method provided a fast and accurate procedure in clinical routine for verifying delivered dose as well as for detecting errors.


Subject(s)
Breath Holding , Electronics/instrumentation , In Vivo Dosimetry/methods , Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Software , Humans , Image Processing, Computer-Assisted , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/secondary , Radiotherapy Dosage
19.
Med Phys ; 46(3): 1447-1454, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30620412

ABSTRACT

PURPOSE: The purpose of this study was to implement a machine learning model to predict skin dose from targeted intraoperative (TARGIT) treatment resulting in timely adoption of strategies to limit excessive skin dose. METHODS: A total of 283 patients affected by invasive breast carcinoma underwent TARGIT with a prescribed dose of 6 Gy at 1 cm, after lumpectomy. Radiochromic films were used to measure the dose to the skin for each patient. Univariate statistical analysis was performed to identify correlation of physical and patient variables with measured dose. After feature selection of predictors of in vivo skin dose, machine learning models stepwise linear regression (SLR), support vector regression (SVR), ensemble with bagging or boosting, and feed forward neural networks were trained on results of in vivo dosimetry to derive models to predict skin dose. Models were evaluated by tenfold cross validation and ranked according to root mean square error (RMSE) and adjusted correlation coefficient of true vs predicted values (adj-R2 ). RESULTS: The predictors correlated with in vivo dosimetry were the distance of skin from source, depth-dose in water at depth of the applicator in the breast, use of a replacement source, and irradiation time. The best performing model was SVR, which scored RMSE and adj-R2 , equal to 0.746 [95% confidence intervals (CI), 95% CI 0.737,0.756] and 0.481 (95% CI 0.468,0.494), respectively, on the tenfold cross validation. CONCLUSION: The model trained on results of in vivo dosimetry can be used to predict skin dose during setup of patient for TARGIT and this allows for timely adoption of strategies to prevent of excessive skin dose.


Subject(s)
Breast Neoplasms/radiotherapy , In Vivo Dosimetry/methods , Intraoperative Care , Machine Learning , Models, Statistical , Organs at Risk/radiation effects , Skin/radiation effects , Adult , Aged , Aged, 80 and over , Breast Neoplasms/surgery , Female , Humans , Mastectomy, Segmental , Middle Aged , Neural Networks, Computer , Radiotherapy Dosage
20.
J Cancer Res Ther ; 14(6): 1341-1349, 2018.
Article in English | MEDLINE | ID: mdl-30488854

ABSTRACT

AIM: The aim of this study was to assess and analyze the exit dose in radiotherapy using optically stimulated luminescence dosimeter (OSLD) with therapeutic photon beams. MATERIALS AND METHODS: Measurements were carried out with OSLD to estimate the exit dose in phantom for different field sizes, various phantom thicknesses, and with added backscatter material. The data obtained were validated with ionization chamber data where applicable. A correction factor was found to determine the actual dose delivered at the exit surface using measured and theoretical dose. RESULTS: The exit dose factor with Co-60, 6 MV, and 18 MV beams for 10 cm phantom thickness was found to be 0.752 ± 0.38%, 0.808 ± 0.34%, and 0.882 ± 0.42%. The dose enhancement factor with field size was ranging from 3% to 7.7% for Co-60 beam, from 2.6% to 6.6% for 6 MV, and from 2.5% to 4.7% for 18 MV beams at 10 cm depth of the phantom with 20 cm backscatter. The percentage reduction in exit dose with no backscatter material at 25 cm depth with field size of 10 cm × 10 cm was 5.6%, 4.4%, and 4.0%, less than the dose with full backscatter thickness of 20 cm for Co-60 beam, 6 MV, and 18 MV beam. CONCLUSIONS: The promising results confirm that accurate in vivo exit dose measurements are possible with this potential dosimeter. This technique could be implemented as a part of quality assurance to achieve quality treatment in radiotherapy.


Subject(s)
In Vivo Dosimetry/methods , Optically Stimulated Luminescence Dosimetry/methods , Radiotherapy/methods , Cobalt Radioisotopes/chemistry , Humans , Phantoms, Imaging , Radiation Dosimeters , Radiometry/methods , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...