Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Waste Manag ; 183: 63-73, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38718628

ABSTRACT

With the recent advancement in artificial intelligence, there are new opportunities to adopt smart technologies for the sorting of materials at the beginning of the recycling value chain. An automatic bin capable of sorting the waste among paper, plastic, glass & aluminium, and residual waste was installed in public areas of Milan Malpensa airport, a context where the separate collection is challenging. First, the airport waste composition was assessed, together with the efficiency of the manual sorting performed by passengers among the conventional bins: paper, plastic, glass & aluminium, and residual waste. Then, the environmental (via the life cycle assessment - LCA) and the economic performances of the current system were compared to those of a system in which the sorting is performed by the automatic bin. Three scenarios were evaluated: i) all waste from public areas, despite being separately collected, is sent to incineration with energy recovery, due to the inadequate separation quality (S0); ii) recyclable fractions are sent to recycling according to the actual level of impurities in the bags (S0R); iii) fractions are sorted by the automatic bin and sent to recycling (S1). According to the results, the current separate collection shows a 62 % classification accuracy. Focusing on LCA, S0 causes an additional burden of 12.4 mPt (milli points) per tonne of waste. By contrast, S0R shows a benefit (-26.4 mPt/t) and S1 allows for a further 33 % increase of benefits. Moreover, the cost analysis indicates potential savings of 24.3 €/t in S1, when compared to S0.


Subject(s)
Airports , Recycling , Refuse Disposal , Solid Waste , Recycling/methods , Recycling/economics , Solid Waste/analysis , Refuse Disposal/methods , Refuse Disposal/economics , Italy , Costs and Cost Analysis , Waste Management/methods , Waste Management/economics , Automation , Incineration/methods , Incineration/economics
2.
Environ Sci Pollut Res Int ; 25(27): 26715-26724, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28646307

ABSTRACT

This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid¼ methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.


Subject(s)
Conservation of Energy Resources , Incineration , Cities , Coal Ash , Efficiency , Fees and Charges , Greece , Incineration/economics , Incineration/methods , Solid Waste
3.
Environ Sci Pollut Res Int ; 24(9): 8711-8721, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28210949

ABSTRACT

As presented in the first companion paper, distributed mixed-integer fuzzy hierarchical programming (DMIFHP) was developed for municipal solid waste management (MSWM) under complexities of heterogeneities, hierarchy, discreteness, and interactions. Beijing was selected as a representative case. This paper focuses on presenting the obtained schemes and the revealed mechanisms of the Beijing MSWM system. The optimal MSWM schemes for Beijing under various solid waste treatment policies and their differences are deliberated. The impacts of facility expansion, hierarchy, and spatial heterogeneities and potential extensions of DMIFHP are also discussed. A few of findings are revealed from the results and a series of comparisons and analyses. For instance, DMIFHP is capable of robustly reflecting these complexities in MSWM systems, especially for Beijing. The optimal MSWM schemes are of fragmented patterns due to the dominant role of the proximity principle in allocating solid waste treatment resources, and they are closely related to regulated ratios of landfilling, incineration, and composting. Communities without significant differences among distances to different types of treatment facilities are more sensitive to these ratios than others. The complexities of hierarchy and heterogeneities pose significant impacts on MSWM practices. Spatial dislocation of MSW generation rates and facility capacities caused by unreasonable planning in the past may result in insufficient utilization of treatment capacities under substantial influences of transportation costs. The problems of unreasonable MSWM planning, e.g., severe imbalance among different technologies and complete vacancy of ten facilities, should be gained deliberation of the public and the municipal or local governments in Beijing. These findings are helpful for gaining insights into MSWM systems under these complexities, mitigating key challenges in the planning of these systems, improving the related management practices, and eliminating potential socio-economic and eco-environmental issues resulting from unreasonable management.


Subject(s)
Conservation of Natural Resources/methods , Models, Theoretical , Refuse Disposal/methods , Solid Waste , Beijing , City Planning , Conservation of Natural Resources/economics , Incineration/economics , Incineration/methods , Refuse Disposal/economics , Soil/chemistry , Waste Disposal Facilities/economics
4.
Waste Manag ; 61: 608-616, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27876291

ABSTRACT

In England and Wales planning regulations require local governments to treat waste near its source. This policy principle alongside regional self-sufficiency and the logistical advantages of minimising distances for waste treatment mean that energy from waste incinerators have been built close to, or even within urban conurbations. There is a clear policy and research need to balance the benefits of energy production from waste incinerators against the negative externalities experienced by local residents. However, the monetary costs of nuisance emissions from incinerators are not immediately apparent. This study uses the Hedonic Pricing Method to estimate the monetary value of impacts associated with three incinerators in England. Once operational, the impact of the incinerators on local house prices ranged from approximately 0.4% to 1.3% of the mean house price for the respective areas. Each of the incinerators studied had been sited on previously industrialised land to minimise overall impact. To an extent this was achieved and results support the effectiveness of spatial planning strategies to reduce the impact on residents. However, negative impacts occurred in areas further afield from the incinerator, suggesting that more can be done to minimise the impacts of incinerators. The results also suggest that in some case the incinerator increased the value of houses within a specified distance of incinerators under specific circumstances, which requires further investigation.


Subject(s)
Incineration/economics , Costs and Cost Analysis , England , Environmental Exposure , Incineration/instrumentation
5.
Waste Manag Res ; 34(12): 1201-1209, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27895282

ABSTRACT

The push for creating a more competitive and liberalized system for traditional public services, including waste management, has been on the European agenda since the late 1980s. In 2008, changes were made in EU waste legislation allowing source-separated industrial/commercial waste that is suitable for incineration to be traded within the European market. This change has had broad implications for the Danish waste sector, which is characterized by institutionalized municipal control with all streams of waste and municipal ownership of the major treatment facilities allowing the municipal sector to integrate combustible waste in local heat and power generation. This article, applying an institutional approach, maps the institutions and actors of the Danish waste sector and analyses how the regulatory as well as normative pressure to liberalize has been met and partly neutralized in the institutional and political context. The new Danish regulation of 2010 has thus accommodated the specific requirement for liberalization, but in fact only represents a very small step towards a market-based waste management system. On the one hand, by only liberalizing industrial/commercial waste, the Danish Government chose to retain the main features of the established waste system favouring municipal control and hence the institutionalized principles of decentralized enforcement of environmental legislation as well as welfare state considerations. On the other hand, this has led to a technological and financial deadlock, particularly when it comes to reaching the recycling targets of EU, which calls for further adjustments of the Danish waste sector.


Subject(s)
Waste Management/methods , Denmark , Family Characteristics , Humans , Incineration/economics , Industrial Waste , Interviews as Topic , Recycling , Waste Management/legislation & jurisprudence
6.
Bioresour Technol ; 222: 202-209, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27721096

ABSTRACT

In the U.S., the total amount of municipal solid waste is continuously rising each year. Millions of tons of solid waste and scum are produced annually that require safe and environmentally sound disposal. The availability of a zero-cost energy source like municipal waste scum is ideal for several types of renewable energy technologies. However, the way the energy is produced, distributed and valued also contributes to the overall process sustainability. An economic screening method was developed to compare the potential energy and economic value of three waste-to-energy technologies; incineration, anaerobic digestion, and biodiesel. A St. Paul, MN wastewater treatment facility producing 3175 "wet" kilograms of scum per day was used as a basis of the comparison. After applying all theoretically available subsidies, scum to biodiesel was shown to have the greatest economic potential, valued between $491,949 and $610,624/year. The incineration of scum yielded the greatest reclaimed energy potential at 29billion kilojoules/year.


Subject(s)
Biofuels/economics , Energy-Generating Resources/economics , Incineration/economics , Solid Waste/economics , Wastewater/economics , Biofuels/analysis , Incineration/methods , Solid Waste/analysis , Wastewater/microbiology
7.
Waste Manag Res ; 34(11): 1164-1172, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27491371

ABSTRACT

Open municipal solid waste (MSW)-burning is a major source of particulate matter emissions in developing world cities. Despite a legal ban, MSW-burning is observed ubiquitously in Indian cities with little being known about the factors shaping it. This study seeks to uncover social and infrastructural factors that affect MSW-burning at the neighborhood level. We couple physical assessments of the infrastructure provision and the MSW-burning incidences in three different neighborhoods of varying socio-economic status in Delhi, with an accompanying study of the social actors (interviews of waste handlers and households) to explore the extent to which, and potential reasons why, MSW-burning occurs. The observed differences in MSW-burning incidences range from 130 km-2 day-1 in low-income to 30 km-2 day-1 in the high-income areas. However, two high-income areas neighborhoods with functional infrastructure service also showed statistical differences in MSW-burning incidences. Our interviews revealed that, while the waste handlers were aware of the health risks associated with MSW-burning, it was not a high priority in the context of the other difficulties they faced. The awareness of the legal ban on MSW-burning was low among both waste handlers and households. In addition to providing infrastructure for waste pickup, informal restrictions from residents and neighborhood associations can play a significant role in restricting MSW-burning at the neighborhood scale. A more efficient management of MSW requires a combined effort that involves interplay of both social and infrastructural systems.


Subject(s)
Incineration/methods , Refuse Disposal/methods , Cities , Culture , Family Characteristics , Humans , Incineration/economics , Incineration/legislation & jurisprudence , Income , India , Refuse Disposal/economics , Socioeconomic Factors , Solid Waste , Surveys and Questionnaires
8.
Bioresour Technol ; 218: 595-605, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27416510

ABSTRACT

The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes.


Subject(s)
Food , Gases/chemistry , Incineration , Sewage/chemistry , Waste Management , Waste Products , Conservation of Natural Resources/economics , Conservation of Natural Resources/methods , Cost-Benefit Analysis , Humans , Incineration/economics , Incineration/methods , Monte Carlo Method , Singapore , Waste Management/economics , Waste Management/methods
9.
Waste Manag ; 51: 81-90, 2016 May.
Article in English | MEDLINE | ID: mdl-26951719

ABSTRACT

Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results.


Subject(s)
Air Pollutants/chemistry , Incineration/methods , Sodium Bicarbonate/chemistry , Filtration , Incineration/economics , Models, Theoretical
10.
J Environ Manage ; 162: 139-47, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26241929

ABSTRACT

This paper presents the results of a study of an experimental system with thermal treatment (incineration) of medical waste conducted at a large complex of hospital facilities. The studies were conducted for a period of one month. The processing system was analysed in terms of the energy, environmental and economic aspects. A rotary combustion chamber was designed and built with the strictly assumed length to inner diameter ratio of 4:1. In terms of energy, the temperature distribution was tested in the rotary kiln, secondary combustion (afterburner) chamber and heat recovery system. Calorific value of medical waste was 25.0 MJ/kg and the thermal efficiency of the entire system equalled 66.8%. Next, measurements of the pollutant emissions into the atmosphere were performed. Due to the nature of the disposed waste, particular attention was paid to the one-minute average values of carbon oxide and volatile organic compounds as well as hydrochloride, hydrogen fluoride, sulphur dioxide and total dust. Maximum content of non-oxidized organic compounds in slag and bottom ash were also verified during the analyses. The best rotary speed for the combustion chamber was selected to obtain proper afterburning of the bottom slag. Total organic carbon content was 2.9%. The test results were used to determine the basic economic indicators of the test system for evaluating the profitability of its construction. Simple payback time (SPB) for capital expenditures on the implementation of the project was 4 years.


Subject(s)
Carbon Dioxide/analysis , Incineration/instrumentation , Medical Waste Disposal/instrumentation , Medical Waste Disposal/methods , Air Pollutants/analysis , Coal Ash , Environment , Equipment Design , Hospitals , Incineration/economics , Incineration/methods , Medical Waste , Medical Waste Disposal/economics , Organic Chemicals/analysis , Temperature , Volatile Organic Compounds/analysis
11.
Waste Manag Res ; 33(6): 561-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26060234

ABSTRACT

The present work conducts a preliminary techno-economic feasibility study for a single municipal solid waste mass burning to an electricity plant for the total municipal solid waste potential of the Region of Eastern Macedonia - Thrace, in Greece. For a certain applied and highly efficient technology and an installed capacity of 400,000 t of municipal solid waste per year, the available electrical power to grid would be approximately 260 GWh per year (overall plant efficiency 20.5% of the lower heating value). The investment for such a plant was estimated at €200m. Taking into account that 37.9% of the municipal solid waste lower heating value can be attributed to their renewable fractions, and Greek Law 3851/2010, which transposes Directive 2009/28/EC for Renewable Energy Sources, the price of the generated electricity was calculated at €53.19/MWhe. Under these conditions, the economic feasibility of such an investment depends crucially on the imposed gate fees. Thus, in the gate fee range of 50-110 € t(-1), the internal rate of return increases from 5% to above 15%, whereas the corresponding pay-out time periods decrease from 11 to about 4 years.


Subject(s)
Energy-Generating Resources/economics , Incineration/economics , Incineration/instrumentation , Solid Waste/analysis , Feasibility Studies , Greece , Power Plants/economics , Power Plants/instrumentation
12.
Waste Manag ; 43: 283-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26025583

ABSTRACT

Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO2) fixation under different operating conditions, i.e., reaction time, CO2 concentration, liquid-to-solid ratio, particle size, and CO2 flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO2 fixation capacity of 102g perkg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO2 reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO2 fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.


Subject(s)
Carbon Dioxide/chemistry , Coal Ash/chemistry , Incineration/methods , Wastewater/chemistry , Carbon/chemistry , Carbonates/chemistry , Incineration/economics , Incineration/instrumentation , Kinetics , Microscopy, Electron, Scanning , Models, Theoretical , Thermogravimetry , X-Ray Diffraction
13.
Waste Manag ; 38: 149-56, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25680237

ABSTRACT

To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China.


Subject(s)
Air Pollutants/analysis , Gases/analysis , Incineration/methods , Solid Waste/analysis , China , Incineration/economics , Oxidation-Reduction , Temperature
14.
Waste Manag ; 37: 45-57, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25307494

ABSTRACT

This paper offers a systematic review of the literature of the last 15 years, which applies economic analysis and theories to the issue of combustion of solid waste. Waste incineration has attracted the interest of economists in the first place concerning the comparative assessment of waste management options, with particular reference to external costs and benefits. A second important field of applied economic research concerns the market failures associated with the provision of thermal treatment of waste, that justify some deviation from the standard competitive market model. Our analysis discusses the most robust achievements and the more controversial areas. All in all, the economic perspective seems to confirm the desirability of assigning a prominent role to thermal treatments in an integrated waste management strategy. Probably the most interesting original contribution it has to offer concerns the refusal of categorical assumptions and too rigid priority ladders, emphasizing instead the need to consider site-specific circumstances that may favor one or another solution.


Subject(s)
Conservation of Natural Resources/methods , Incineration/methods , Solid Waste/analysis , Conservation of Natural Resources/economics , Incineration/economics
15.
Waste Manag Res ; 32(9): 857-66, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25023986

ABSTRACT

Waste reduction and recycling at the city level will acquire greater significance in the near future due to rising global volumes of waste. This paper seeks to identify policy-relevant drivers for successful promotion of waste reduction and recycling. Factors influencing the success of waste reduction and recycling campaigns are identified. Two case study cities in Japan which depict the successful use of the 3Rs (reduce, reuse and recycle) at the municipal level are presented. In these cases, the existence of incinerators, which are generally considered as disincentives for recycling, was not functioning as a disincentive but rather as an incentive for waste reduction. Owing to the high cost of incineration facilities, the movement to close incinerators has become a strong incentive for waste reduction and recycling in these two cities. The study suggests that careful consideration is necessary when making decisions concerning high-cost waste treatment facilities with high installation, maintenance and renewal outlays. In addition, intensive source separation and other municipal recycling initiatives have a high potential for producing positive results.


Subject(s)
Cities , Recycling , Waste Management/methods , Incineration/economics , Japan , Solid Waste/analysis , Waste Management/economics
16.
Waste Manag Res ; 32(5): 414-22, 2014 May.
Article in English | MEDLINE | ID: mdl-24692456

ABSTRACT

Manufacturers have been increasingly considering the implication of materials used in commercial products and the management of such products at the end of their useful lives (as waste or as post-consumer secondary materials). The present work describes the application of the life cycle thinking approach to a plastic product, specifically an anti-glare lamellae (used for road safety applications) made with high-density polyethylene (HDPE). This study shows that optimal environmental and economic outcomes associated with this product can be realized by recovering the material at the end of its useful life (end of life, EoL) and by using the recycled HDPE as a raw material in the production of new similar products. The study confirmed the applicability of the life cycle thinking approach by industry in sustainable products development, supporting the development of robust environmental and economic guidelines.


Subject(s)
Industrial Waste/analysis , Polyethylene/analysis , Waste Management/economics , Waste Management/methods , Incineration/economics , Recycling/economics , Waste Disposal Facilities/economics
17.
Waste Manag Res ; 32(4): 340-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24633554

ABSTRACT

Financial performance of waste management, the key for efficiency and sustainability, has rarely been studied in China, especially for small cities. Through questionnaires and interviews, we conducted such a case study in several cities aiming to fill the gap and improve waste service. We found that labour accounts for more than half to three-quarters of the operation cost, followed by fuel and vehicle maintenance. The waste service heavily relies on budget transfer of the municipality. User fees collected recover less than half of total operation cost at best, even if the collection rate is relatively high. The low cost recovery is mainly due to low fee rates, unchanged for years owing to public pressure. Public complaint seems to be justified by the finding that the service only accounts for 5-10% of municipal revenue annually and even lower in government spending. Contrary to general perception, per capita waste generation in small cities is not less than big ones. Waste composition is dominated by kitchen wastes, with fractions of recyclables and combustibles much lower than big cities. These findings have implications on the waste management strategy: commercial incineration or recycling may not be economically viable for small cities. The article concludes that user fees might better serve, and be designed for, behaviour change than for cost recovery. Municipalities need to first improve cost efficiency and transparency of waste services to gain public trust and support in order to tackle the biggest challenge facing developing countries, cost recovery.


Subject(s)
Refuse Disposal/methods , Solid Waste/analysis , Solid Waste/economics , Waste Management/economics , China , Cities , Incineration/economics , Recycling/economics , Refuse Disposal/economics
18.
Waste Manag ; 34(1): 219-25, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24064376

ABSTRACT

The thermal processing of waste materials, although considered to be an essential part of waste management, is often sharply contested in the UK. Arguments such as health, depletion of resources, cost, noise, odours, traffic movement and house prices are often cited as reasons against the development of such facilities. This study aims to review the arguments and identify any effect on property prices due to the public perception of the plant. A selection of existing energy from waste (EfW) facilities in the UK, operational for at least 7 years, was selected and property sales data, within 5 km of the sites, was acquired and analysed in detail. The locations of the properties were calculated in relation to the plant using GIS software (ArcGIS) and the distances split into 5 zones ranging from 0 to 5 km from the site. The local property sale prices, normalised against the local house price index, were compared in two time periods, before and after the facility became operational, across each of the 5 zones. In all cases analysed no significant negative effect was observed on property prices at any distance within 5 km from a modern operational incinerator. This indicated that the perceived negative effect of the thermal processing of waste on local property values is negligible.


Subject(s)
Incineration/economics , Public Opinion , Air Pollution , Climate Change , Commerce , Energy-Generating Resources , Geographic Information Systems , Noise , Public Health , United Kingdom
19.
Waste Manag ; 33(9): 1843-52, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23777667

ABSTRACT

A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate.


Subject(s)
Coal , Incineration/methods , Sewage , China , Cost-Benefit Analysis , Environment , Incineration/economics , Refuse Disposal , Solid Waste , Water
20.
Waste Manag Res ; 31(10 Suppl): 35-45, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23797300

ABSTRACT

Heavy fractions resulting from mechanical treatment stages of mechanical-biological waste treatment plants are posing very specific demands with regard to further treatment (large portions of inert and high-caloric components). Based on the current Austrian legal situation such a waste stream cannot be landfilled and must be thermally treated. The aim of this research was to evaluate if an inert fraction generated from this waste stream with advanced separation technologies, two sensor-based [near-infrared spectroscopy (NIR), X-ray transmission (XRT)] and two mechanical systems (wet and dry) is able to be disposed of. The performance of the treatment options for separation was evaluated by characterizing the resulting product streams with respect to purity and yield. Complementing the technical evaluation of the processing options, an assessment of the economic and global warming effects of the change in waste stream routing was conducted. The separated inert fraction was evaluated with regard to landfilling. The remaining high-caloric product stream was evaluated with regard to thermal utilization. The results show that, in principal, the selected treatment technologies can be used to separate high-caloric from inert components. Limitations were identified with regard to the product qualities achieved, as well as to the economic expedience of the treatment options. One of the sensor-based sorting systems (X-ray) was able to produce the highest amount of disposeable heavy fraction (44.1%), while having the lowest content of organic (2.0% C biogenic per kg waste input) components. None of the high-caloric product streams complied with the requirements for solid recovered fuels as defined in the Austrian Ordinance on Waste Incineration. The economic evaluation illustrates the highest specific treatment costs for the XRT (€ 23.15 per t), followed by the NIR-based sorting system (€ 15.67 per t), and the lowest costs for the air separation system (€ 10.79 per t). Within the ecological evaluation it can be shown that the results depend strongly on the higher heating value of the high caloric light fraction and on the content of C biogenic of the heavy fraction. Therefore, the XRT system had the best results for the overall GWP [-14 kg carbon dioxide equivalents (CO2 eq) per t of input waste] and the NIR-based the worst (193 kg CO2 eq per t of input waste). It is concluded that three of the treatment options would be suitable under the specific conditions considered here. Of these, sensor-based sorting is preferable owing to its flexibility.


Subject(s)
Incineration/methods , Waste Management/methods , Austria , Incineration/economics , Models, Theoretical , Waste Management/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...