Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.622
Filter
1.
Trends Endocrinol Metab ; 35(6): 466-477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38861922

ABSTRACT

The current paradigm for the insulin system focuses on the phenomenon of glucose-stimulated insulin secretion and insulin action on blood glucose control. This historical glucose-centric perspective may have introduced a conceptual bias in our understanding of insulin regulation. A body of evidence demonstrating that in vivo variations in blood glucose and insulin secretion can be largely dissociated motivated us to reconsider the fundamental design of the insulin system as a control system for metabolic homeostasis. Here, we propose that a minimal glucose-centric model does not accurately describe the physiological behavior of the insulin system and propose a new paradigm focusing on the effects of incretins, arguing that under fasting conditions, insulin is regulated by an adipoincretin effect.


Subject(s)
Insulin Secretion , Insulin , Humans , Insulin Secretion/physiology , Insulin/metabolism , Animals , Homeostasis/physiology , Incretins/metabolism , Blood Glucose/metabolism
2.
Medicine (Baltimore) ; 103(20): e38018, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758855

ABSTRACT

Incretin-based drugs, a class of Antidiabetic medications (ADMs) used in the treatment of type 2 diabetes, may affect the incidence of prostate cancer (PCa). But real-world evidence for this possible effect is lacking. Therefore, the aim of this study is to assess the effect of incretin-based drugs on the incidence of PCa, including glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors. We searched PubMed, Embase, and Cochrane Library databases for eligible studies through September 2023. Two independent reviewers performed screening and data extraction. We used the Cochrane Handbook for Systematic Reviews and the Newcastle-Ottawa Scale (NOS) to assess the quality of included randomized controlled trials (RCTs) and cohort studies. We did a meta-analysis of available trial data to calculate overall risk ratios (RRs) for PCa. A total of 1238 articles were identified in our search. After screening for eligibility, 7 high-quality studies met the criteria for meta-analysis, including 2 RCTs and 5 cohort studies, with a total of 1165,738 patients. Compared with the control group, we found that incretin-based drugs reduced the relative risk of PCa by 35% (95% confidence interval (CI), 0.17-0.49; P = .0006). In subgroup analysis, the RR values for GLP-1 receptor agonists and DPP-4 inhibitors were 62% (95% CI, 0.45-0.85; P = .003) and 72% (95% CI, 0.46-1.12; P = .14), respectively. Incretin-based drugs are associated with lower incidence of prostate cancer and may have a preventive effect on prostate cancer in patients with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Incretins , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/epidemiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Incidence , Incretins/therapeutic use , Hypoglycemic Agents/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use
3.
Ageing Res Rev ; 98: 102343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762101

ABSTRACT

Glucagon-like peptide-1 (GLP-1) receptor agonist-based drugs (incretin mimetics) have meaningfully impacted current treatment of type 2 diabetes mellitus (T2DM), and their actions on satiety and weight loss have led to their use as an obesity medication. With multiple pleotropic actions beyond their insulinotropic and weight loss ones, including anti-inflammatory and anti-insulin-resistant effects selectively mediated by their receptors present within numerous organs, this drug class offers potential efficacy for an increasing number of systemic and neurological disorders whose current treatment is inadequate. Among these are a host of neurodegenerative disorders that are prevalent in the elderly, such as Parkinson's and Alzheimer's disease, which have bucked previous therapeutic approaches. An increasing preclinical, clinical, and epidemiological literature suggests that select incretin mimetics may provide an effective treatment strategy, but 'which ones' for 'which disorders' and 'when' remain key open questions.


Subject(s)
Diabetes Mellitus, Type 2 , Neurodegenerative Diseases , Obesity , Humans , Diabetes Mellitus, Type 2/drug therapy , Neurodegenerative Diseases/drug therapy , Obesity/drug therapy , Animals , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Incretins/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/pharmacology
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612640

ABSTRACT

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that regulate postprandial glucose regulation, stimulating insulin secretion from pancreatic ß-cells in response to food ingestion. Modified GLP-1 receptor agonists (GLP-1RAs) are being administered for the treatment of obesity and type 2 diabetes mellitus (T2DM). Strongly related to those disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), especially its aggressive form, defined as metabolic dysfunction-associated steatohepatitis (MASH), is a major healthcare burden associated with high morbidity and extrahepatic complications. GLP-1RAs have been explored in MASH patients with evident improvement in liver dysfunction enzymes, glycemic control, and weight loss. Importantly, the combination of GLP-1RAs with GIP and/or glucagon RAs may be even more effective via synergistic mechanisms in amelioration of metabolic, biochemical, and histological parameters of MASLD but also has a beneficial impact on MASLD-related complications. In this current review, we aim to provide an overview of incretins' physiology, action, and signaling. Furthermore, we provide insight into the key pathophysiological mechanisms through which they impact MASLD aspects, as well as we analyze clinical data from human interventional studies. Finally, we discuss the current challenges and future perspectives pertinent to this growing area of research and clinical medicine.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Liver Diseases , Metabolic Diseases , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide/therapeutic use , Glucagon-Like Peptide 1/therapeutic use , Incretins/therapeutic use , Receptors, G-Protein-Coupled , Receptors, Glucagon
5.
Cardiovasc Diabetol ; 23(1): 146, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685051

ABSTRACT

BACKGROUND: The GLP-1 receptor agonist liraglutide is used to treat hyperglycemia in type 2 diabetes but is also known to induce weight loss, preserve the beta cell and reduce cardiovascular risk. The mechanisms underlying these effects are however still not completely known. Herein we explore the effect of liraglutide on markers of immune cell activity in a population of obese individuals with prediabetes or newly diagnosed type 2 diabetes mellitus. METHOD: Plasma levels of the monocyte/macrophage markers, soluble (s)CD163 and sCD14, the neutrophil markers myeloperoxidase (MPO) and neutrophil gelatinase-associated lipocalin (NGAL),the T-cell markers sCD25 and T-cell immunoglobulin mucin domain-3 (sTIM-3) and the inflammatory marker TNF superfamily (TNFSF) member 14 (LIGHT/TNFSF14) were measured by enzyme-linked immunosorbent assays in obese individuals with prediabetes or diabetes diagnosed within the last 12 months, prior to and after comparable weight loss achieved with lifestyle changes (n = 20) or liraglutide treatment (n = 20), and in healthy subjects (n = 13). RESULTS: At baseline, plasma levels of the macrophage marker sCD163, and the inflammatory marker LIGHT were higher in cases as compared to controls. Plasma levels of sCD14, NGAL, sTIM-3 and sCD25 did not differ at baseline between patients and controls. After weight reduction following lifestyle intervention or liraglutide treatment, sCD163 decreased significantly in the liraglutide group vs. lifestyle (between-group difference p = 0.023, adjusted for visceral adipose tissue and triglycerides basal values). MPO and LIGHT decreased significantly only in the liraglutide group (between group difference not significant). Plasma levels of MPO and in particular sCD163 correlated with markers of metabolic dysfunction and inflammation. After weight loss, only sCD163 showed a trend for decreased levels during OGTT, both in the whole cohort as in those of liraglutide vs lifestyle group. CONCLUSION: Weight loss following treatment with liraglutide was associated with reduced circulating levels of sCD163 when compared to the same extent of weight loss after lifestyle changes. This might contribute to reduced cardiometabolic risk in individuals receiving treatment with liraglutide.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Biomarkers , Diabetes Mellitus, Type 2 , Incretins , Liraglutide , Obesity , Prediabetic State , Receptors, Cell Surface , Risk Reduction Behavior , Weight Loss , Humans , Liraglutide/therapeutic use , Liraglutide/adverse effects , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/therapy , Weight Loss/drug effects , Male , Middle Aged , Female , Obesity/diagnosis , Obesity/blood , Obesity/therapy , Biomarkers/blood , Antigens, Differentiation, Myelomonocytic/blood , Prediabetic State/blood , Prediabetic State/diagnosis , Prediabetic State/therapy , Prediabetic State/drug therapy , Receptors, Cell Surface/blood , Treatment Outcome , Antigens, CD/blood , Incretins/therapeutic use , Incretins/adverse effects , Incretins/blood , Adult , Case-Control Studies , Time Factors , Down-Regulation , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Aged
6.
Discov Med ; 36(183): 655-665, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665015

ABSTRACT

Incretin hormones, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 and 2 (GLP-1, 2), belong to the group of gastrointestinal hormones. Their actions occur through interaction with GIP and GLP-1/2 receptors, which are present in various target tissues. Apart from their well-established roles in pancreatic function and insulin regulation, incretins elicit significant effects that extend beyond the pancreas. Specifically, these hormones stimulate osteoblast differentiation and inhibit osteoclast activity, thereby promoting bone anabolism. Moreover, they play a pivotal role in bone mineralization and overall bone quality and function, making them potentially therapeutic for managing bone health. Thus, this review provides a summary of the crucial involvement of incretins in bone metabolism, influencing both bone formation and resorption processes. While existing evidence is persuasive, further studies are necessary for a comprehensive understanding of the therapeutic potential of incretins in modifying bone health.


Subject(s)
Bone Remodeling , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Incretins , Humans , Bone Remodeling/drug effects , Gastric Inhibitory Polypeptide/metabolism , Incretins/therapeutic use , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/metabolism , Animals , Bone and Bones/metabolism , Bone and Bones/drug effects , Pancreas/metabolism , Pancreas/drug effects , Pancreas/pathology
7.
Diabetes Res Clin Pract ; 211: 111675, 2024 May.
Article in English | MEDLINE | ID: mdl-38636848

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most common form of chronic liver disease. It exists as either simple steatosis or its more progressive form, metabolic dysfunction-associated steatohepatitis (MASH), formerly, non-alcoholic steatohepatitis (NASH). The global prevalence of MASLD is estimated to be 32% among adults and is projected to continue to rise with increasing rates of obesity, type 2 diabetes, and metabolic syndrome. While simple steatosis is often considered benign and reversible, MASH is progressive, potentially leading to the development of cirrhosis, liver failure, and hepatocellular carcinoma. Treatment of MASH is therefore directed at slowing, stopping, or reversing the progression of disease. Evidence points to improved liver histology with therapies that result in sustained body weight reduction. Incretin-based molecules, such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs), alone or in combination with glucose-dependent insulinotropic polypeptide (GIP) and/or glucagon receptor agonists, have shown benefit here, and several are under investigation for MASLD/MASH treatment. In this review, we discuss current published data on GLP-1, GIP/GLP-1, GLP-1/glucagon, and GLP-1/GIP/glucagon RAs in MASLD/MASH, focusing on their efficacy on liver histology, liver fat, and MASH biomarkers.


Subject(s)
Incretins , Non-alcoholic Fatty Liver Disease , Humans , Incretins/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Diabetes Mellitus, Type 2/drug therapy
8.
Mol Metab ; 84: 101945, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653401

ABSTRACT

OBJECTIVE: Glucose dependent insulinotropic polypeptide (GIP) is well established as an incretin hormone, boosting glucose-dependent insulin secretion. However, whilst anorectic actions of its sister-incretin glucagon-like peptide-1 (GLP-1) are well established, a physiological role for GIP in appetite regulation is controversial, despite the superior weight loss seen in preclinical models and humans with GLP-1/GIP dual receptor agonists compared with GLP-1R agonism alone. METHODS: We generated a mouse model in which GIP expressing K-cells can be activated through hM3Dq Designer Receptor Activated by Designer Drugs (DREADD, GIP-Dq) to explore physiological actions of intestinally-released GIP. RESULTS: In lean mice, Dq-stimulation of GIP expressing cells increased plasma GIP to levels similar to those found postprandially. The increase in GIP was associated with improved glucose tolerance, as expected, but also triggered an unexpected robust inhibition of food intake. Validating that this represented a response to intestinally-released GIP, the suppression of food intake was prevented by injecting mice peripherally or centrally with antagonistic GIPR-antibodies, and was reproduced in an intersectional model utilising Gip-Cre/Villin-Flp to limit Dq transgene expression to K-cells in the intestinal epithelium. The effects of GIP cell activation were maintained in diet induced obese mice, in which chronic K-cell activation reduced food intake and attenuated body weight gain. CONCLUSIONS: These studies establish a physiological gut-brain GIP-axis regulating food intake in mice, adding to the multi-faceted metabolic effects of GIP which need to be taken into account when developing GIPR-targeted therapies for obesity and diabetes.


Subject(s)
Body Weight , Eating , Gastric Inhibitory Polypeptide , Animals , Gastric Inhibitory Polypeptide/metabolism , Mice , Male , Mice, Inbred C57BL , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Glucagon-Like Peptide 1/metabolism , Intestinal Mucosa/metabolism , Obesity/metabolism , Incretins/metabolism
9.
Obes Rev ; 25(5): e13717, 2024 May.
Article in English | MEDLINE | ID: mdl-38463003

ABSTRACT

Potent incretin-based therapy shows promise for the treatment of obesity along with reduced incidence of cardiovascular events in patients with preexisting cardiovascular disease and obesity. This study assessed the efficacy and safety of the incretin-based obesity treatments, once-weekly subcutaneous semaglutide 2.4 mg and tirzepatide 10 or 15 mg, in people with obesity without diabetes. Of the 744 records identified, seven randomized controlled trials (n = 5140) were included. Five studies (n = 3288) investigated semaglutide and two studies (n = 1852) investigated tirzepatide. The treatment effect, shown as placebo-subtracted difference, on body weight was -15.0% (95% CI, -17.8 to -12.2) with -12.9% (95% CI, -14.7 to -11.1) for semaglutide and -19.2% (95% CI, -22.2 to -16.2) for tirzepatide. The treatment effect on waist circumference was -11.4 cm (95% CI, -13.7 to -9.2) with -9.7 cm (95% CI, -10.8 to -8.5) for semaglutide and -14.6 cm (95% CI, -15.8 to -13.4) for tirzepatide. The adverse events related to semaglutide and tirzepatide were primarily of mild-to-moderate severity and mostly gastrointestinal, which was more frequent during the dose-titration period and leveled off during the treatment period. This emphasizes that once-weekly subcutaneous semaglutide 2.4 mg and tirzepatide 10 or 15 mg induce large reductions in body weight and waist circumference and are generally well-tolerated.


Subject(s)
Diabetes Mellitus, Type 2 , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide-2 Receptor , Glucagon-Like Peptides , Incretins , Humans , Incretins/therapeutic use , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Waist Circumference , Body Weight , Obesity/drug therapy , Obesity/chemically induced , Glucagon-Like Peptide-1 Receptor
10.
Arterioscler Thromb Vasc Biol ; 44(6): 1225-1245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511325

ABSTRACT

BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.


Subject(s)
Diabetes Mellitus, Experimental , Endothelial Progenitor Cells , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Glycolysis , Hindlimb , Ischemia , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic , Signal Transduction , Animals , Ischemia/drug therapy , Ischemia/physiopathology , Ischemia/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Neovascularization, Physiologic/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycolysis/drug effects , Glucagon-Like Peptide 1/analogs & derivatives , Glucagon-Like Peptide 1/pharmacology , Humans , Hindlimb/blood supply , Male , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/etiology , Nitric Oxide Synthase Type III/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Cells, Cultured , Angiogenesis Inducing Agents/pharmacology , Peptide Fragments/pharmacology , Mice , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Disease Models, Animal , Incretins/pharmacology , Angiogenesis
11.
Am J Physiol Endocrinol Metab ; 326(6): E747-E766, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38477666

ABSTRACT

Chronic kidney disease is a debilitating condition associated with significant morbidity and mortality. In recent years, the kidney effects of incretin-based therapies, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), have garnered substantial interest in the management of type 2 diabetes and obesity. This review delves into the intricate interactions between the kidney, GLP-1RAs, and glucagon, shedding light on their mechanisms of action and potential kidney benefits. Both GLP-1 and glucagon, known for their opposing roles in regulating glucose homeostasis, improve systemic risk factors affecting the kidney, including adiposity, inflammation, oxidative stress, and endothelial function. Additionally, these hormones and their pharmaceutical mimetics may have a direct impact on the kidney. Clinical studies have provided evidence that incretins, including those incorporating glucagon receptor agonism, are likely to exhibit improved kidney outcomes. Although further research is necessary, receptor polypharmacology holds promise for preserving kidney function through eliciting vasodilatory effects, influencing volume and electrolyte handling, and improving systemic risk factors.


Subject(s)
Incretins , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/physiopathology , Incretins/therapeutic use , Incretins/pharmacology , Animals , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Kidney/drug effects , Kidney/metabolism , Glucagon/metabolism
12.
J Cardiovasc Pharmacol ; 83(6): 621-634, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38547520

ABSTRACT

ABSTRACT: Type 2 diabetes mellitus increases the risk of cardiovascular diseases. Therefore, elucidation of the cardiovascular effects of antidiabetics is crucial. Incretin-based therapies are increasingly used for type 2 diabetes mellitus treatment as monotherapy and in combination. We aimed to study the effects of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sitagliptin on beating rates in isolated atria from diabetic rats. The chronotropic responses to GLP-1 RAs and sitagliptin as monotherapy and in combinations with metformin, pioglitazone, and glimepiride in isolated atria from control and diabetic rats were determined. GLP-1 (7-36), GLP-1 (9-36), and exendin-4 (1-39) produced increases in beating rates in both control and diabetic rat atria. However, sitagliptin increased the beating frequency only in the diabetic group. Exendin (9-39), nitro- l -arginine methyl ester hydrochloride, and indomethacin blocked responses to GLP-1 RAs but not the response to sitagliptin. Glibenclamide, 4-aminopyridine, apamin, charybdotoxin, superoxide dismutase, and catalase incubations did not change responses to GLP-1 RAs and sitagliptin. GLP-1 RAs increase beating rates in isolated rat atrium through GLP-1 receptor, nitric oxide, and cyclooxygenase pathways but not potassium channels and reactive oxygen radicals.


Subject(s)
Diabetes Mellitus, Experimental , Glucagon-Like Peptide-1 Receptor , Heart Atria , Heart Rate , Hypoglycemic Agents , Sitagliptin Phosphate , Animals , Sitagliptin Phosphate/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Male , Heart Atria/drug effects , Heart Atria/physiopathology , Heart Atria/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Heart Rate/drug effects , Hypoglycemic Agents/pharmacology , Rats , Rats, Wistar , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/metabolism , Exenatide/pharmacology , Incretins/pharmacology , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/metabolism , Pyrazines/pharmacology , Glucagon-Like Peptide-1 Receptor Agonists
13.
Am J Physiol Heart Circ Physiol ; 326(5): H1159-H1176, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38426865

ABSTRACT

Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.


Subject(s)
Atherosclerosis , Endothelium, Vascular , Glucagon-Like Peptide-1 Receptor Agonists , Animals , Humans , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Incretins/therapeutic use , Signal Transduction
14.
Prim Care Diabetes ; 18(3): 268-276, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555202

ABSTRACT

BACKGROUND: Based on the rapidly growing global burden of non-alcoholic fatty liver disease (NAFLD) or steatohepatitis (NASH), in order to evaluate the efficacy of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the treatment of NAFLD or NASH this paper presents a systematic review and meta-analysis of randomized controlled trials(RCTs). METHODS: In this systematic review and meta-analysis, We searched PubMed, Medline, Web of Science and The Cochrane Library databases. All randomized controlled trials involving GLP-1RAs and NAFLD or NASH were collected since the database was established. A meta-analysis of proportions was done with the generalised linear mixed model. Continuous variables were represented by Mean and Standard Deviation (SD), and binary variable were represented by Relative Risk (RR) and 95% Confidence Interval (CI) as effect indicators. The research results were presented by Revman 5.4. This study is registered with PROSPERO (CRD42023390735). FINDING: We included 16 placebo-controlled or active drug-controlled randomized controlled trials (involving 2178 patients) that used liraglutide, exenatide, dulaglutide, or semaglutie in the treatment of NAFLD or NASH, as measured by liver biopsy or imaging techniques. This study found that the effect of GLP-1RAs on histologic resolution of NASH with no worsening of liver fibrosis (n=2 RCTs; WMD:4.08, 95%CI 2.54-6.56, p < 0.00001) has statistically significant. At the same time, GLP-1RAs affected CRP (n = 7 RCTs; WMD:-0.41, 95% CI-0.78 to -0.04, p =0.002) and other serological indicators were significantly improved. CONCLUSION: This study evaluated the efficacy of GLP-1RAs in patients with NAFLD and NASH. These results suggest that GLP-1RAs may be a potential and viable therapeutic approach as a targeted agent to intervene in disease progression of NAFLD and NASH.


Subject(s)
Biomarkers , C-Reactive Protein , Glucagon-Like Peptide-1 Receptor , Incretins , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Randomized Controlled Trials as Topic , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/blood , Glucagon-Like Peptide-1 Receptor/agonists , Treatment Outcome , Biomarkers/blood , Liver Cirrhosis/drug therapy , Liver Cirrhosis/diagnosis , Incretins/therapeutic use , Incretins/adverse effects , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Male , Female , Middle Aged , Hypoglycemic Agents/therapeutic use , Adult , Liver/pathology , Liver/drug effects , Risk Factors , Severity of Illness Index , Aged , Recombinant Fusion Proteins/therapeutic use , Immunoglobulin Fc Fragments/therapeutic use , Liraglutide/therapeutic use , Glucagon-Like Peptides/therapeutic use , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/adverse effects , Glucagon-Like Peptide-1 Receptor Agonists
16.
Mol Cell Endocrinol ; 587: 112201, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494045

ABSTRACT

The gut plays a crucial role in metabolism by regulating the passage of nutrients, water and microbial-derived substances to the portal circulation. Additionally, it produces incretins, such as glucose-insulinotropic releasing peptide (GIP) and glucagon-like derived peptide 1 (GLP1, encoded by gcg gene) in response to nutrient uptake. We aimed to investigate whether offspring from overweight rats develop anomalies in the barrier function and incretin transcription. We observed pro-inflammatory related changes along with a reduction in Claudin-3 levels resulting in increased gut-permeability in fetuses and offspring from overweight rats. Importantly, we found decreased gip mRNA levels in both fetuses and offspring from overweight rats. Differently, gcg mRNA levels were upregulated in fetuses, downregulated in female offspring and unchanged in male offspring from overweight rats. When cultured with high glucose, intestinal explants showed an increase in gip and gcg mRNA levels in control offspring. In contrast, offspring from overweight rats did not exhibit any response in gip mRNA levels. Additionally, while females showed no response, male offspring from overweight rats did exhibit an upregulation in gcg mRNA levels. Furthermore, female and male offspring from overweight rats showed sex-dependent anomalies when orally challenged with a glucose overload, returning to baseline glucose levels after 120 min. These results open new research questions about the role of the adverse maternal metabolic condition in the programming of impairments in glucose homeostasis, enteroendocrine function and gut barrier function in the offspring from overweight mothers and highlight the importance of a perinatal maternal healthy metabolism.


Subject(s)
Gastric Inhibitory Polypeptide , Overweight , Rats , Male , Female , Animals , Overweight/metabolism , Gastric Inhibitory Polypeptide/metabolism , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Peptides/metabolism , Homeostasis , RNA, Messenger/genetics
17.
Diabetes Metab Syndr ; 18(2): 102956, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38364583

ABSTRACT

OBJECTIVE: Glucagon-like peptide-1 receptor belongs to the B family of G protein-coupled receptors, serving as a binding protein in membranes and is widely expressed in human tissues. Upon stimulation by its agonist, the glucagon-like peptide-1, the receptor plays a role in glucose metabolism, enhancing insulin secretion, and regulating appetite in the hypothalamus. Mutations in the glucagon-like peptide-1 receptor gene can lead to physiological changes that may explain phenotypic variations in individuals with obesity and diabetes. Therefore, this study aimed to evaluate missense variants of the glucagon-like peptide-1 receptor gene. METHODS: Data mining was performed on the single nucleotide polymorphism database, retrieving a total of 16,399 variants. Among them, 356 were missense. These 356 variants were analyzed using the PolyPhen-2 and filtered based on allele frequency, resulting in 6 pathogenic variants. RESULTS: D344E, A239T, R310Q, R227H, R421P, and R176G were analyzed using four different prediction tools. The D344E and A239T resulted in larger amino acid residues compared to their wild-type counterparts. The D344E showed a slightly destabilized structure, while A239T affected the transmembrane helices. Conversely, the R310Q, R227H, R421P, and R176G resulted in smaller amino acid residues than the wild-type, leading to a loss of positive charge and increased hydrophobicity. Particularly, the R421P, due to the presence of proline, significantly destabilized the α-helix structure and caused severe damage to the receptor. CONCLUSION: Elucidating the glucagon-like peptide-1 receptor variants and their potentially detrimental effects on receptor functionality can contribute to an understanding of metabolic diseases and the response to available pharmacological treatments.


Subject(s)
Diabetes Mellitus , Incretins , Humans , Amino Acids , Glucagon , Glucagon-Like Peptide-1 Receptor/genetics , Incretins/metabolism , Obesity/genetics , Phenotype
18.
Expert Opin Investig Drugs ; 33(3): 183-190, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38372052

ABSTRACT

INTRODUCTION: Type 2 diabetes (T2D) is metabolic disorder associated with a decrease in insulin activity and/or secretion from the ß-cells of the pancreas, leading to elevated circulating glucose. Current management practices for T2D are complex with varying long-term effectiveness. Agonism of the G protein-coupled receptor GPR119 has received a lot of recent interest as a potential T2D therapeutic. AREAS COVERED: This article reviews studies focused on GPR119 agonism in animal models of T2D and in patients with T2D. EXPERT OPINION: GPR119 agonists in vitro and in vivo can potentially regulate incretin hormone release from the gut, then pancreatic insulin release which regulates blood glucose concentrations. However, the success in controlling glucose homeostasis in rodent models of T2D and obesity, failed to translate to early-stage clinical trials in patients with T2D. However, in more recent studies, acute and chronic dosing with the GPR119 agonist DS-8500a had increased efficacy, although this compound was discontinued for further development. New trials on GPR119 agonists are needed, however it may be that the future of GPR119 agonists lie in the development of combination therapy with other T2D therapeutics.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Humans , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Incretins , Insulin/metabolism , Receptors, G-Protein-Coupled/agonists
19.
Biomed Pharmacother ; 172: 116245, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340396

ABSTRACT

'Globesity' is a foremost challenge to the healthcare system. The limited efficacy and adverse effects of available oral pharmacotherapies pose a significant obstacle in the fight against obesity. The biology of the leading incretin hormone glucagon-like-peptide-1 (GLP-1) has been highly captivated during the last decade owing to its multisystemic pleiotropic clinical outcomes beyond inherent glucoregulatory action. That fostered a pharmaceutical interest in synthetic GLP-1 analogues to tackle type-2 diabetes (T2D), obesity and related complications. Besides, mechanistic insights on metabolic surgeries allude to an incretin-based hormonal combination strategy for weight loss that emerged as a forerunner for the discovery of injectable 'unimolecular poly-incretin-agonist' therapies. Physiologically, intestinal enteroendocrine L-cells (EECs) are the prominent endogenous source of GLP-1 peptide. Despite comprehending the potential of various G protein-coupled receptors (GPCRs) to stimulate endogenous GLP-1 secretion, decades of translational GPCR research have failed to yield regulatory-approved endogenous GLP-1 secretagogue oral therapy. Lately, a dual/poly-GPCR agonism strategy has emerged as an alternative approach to the traditional mono-GPCR concept. This review aims to gain a comprehensive understanding by revisiting the pharmacology of a few potential GPCR-based complementary avenues that have drawn attention to the design of orally active poly-GPCR agonist therapy. The merits, challenges and recent developments that may aid future poly-GPCR drug discovery are critically discussed. Subsequently, we project the mechanism-based therapeutic potential and limitations of oral poly-GPCR agonism strategy to augment intestinal GLP-1 for weight loss. We further extend our discussion to compare the poly-GPCR agonism approach over invasive surgical and injectable GLP-1-based regimens currently in clinical practice for obesity.


Subject(s)
Glucagon-Like Peptide 1 , Incretins , Humans , Obesity/drug therapy , Receptors, G-Protein-Coupled , Weight Loss , Peptides
20.
Endocr Pract ; 30(5): 424-430, 2024 May.
Article in English | MEDLINE | ID: mdl-38325629

ABSTRACT

OBJECTIVE: Major adverse cardiovascular event (MACE) outcomes associated with sodium-glucose cotransporter 2 inhibitor (SGLT2i) and glucagon-like peptide-1 receptor agonist (GLP-1 RA) therapies remain unclear in patients with type 2 diabetes and newly diagnosed diabetic foot complications (DFCs). This study examined the impact of SGLT2i and GLP-1 RA use on the rates of MACEs and amputations in patients with type 2 diabetes and without cardiovascular disease. METHODS: Data from the Taiwan National Health Insurance Research Database (2004-2017) were analyzed, focusing on patients with type 2 diabetes without previous MACE and newly diagnosed DFCs. The primary outcome was the first MACE occurrence, and the secondary outcomes included MACE components, all-cause mortality, and lower extremity amputation (LEA) rates. RESULTS: SGLT2i users showed a significant decrease in the MACE (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.46-0.88) and hospitalization for heart failure (HR, 0.54; 95% CI, 0.35-0.83) rates compared with dipeptidyl peptidase-4 inhibitor users. The amputation rates were also lower in SGLT2i users without LEA at the first DFC diagnosis (HR, 0.28; 95% CI, 0.10-0.75) and did not increase in those with a history of peripheral artery disease or LEA. No significant differences were observed between dipeptidyl peptidase-4 inhibitor and GLP-1 RA users in terms of the primary or secondary outcomes. CONCLUSION: In patients with type 2 diabetes initially diagnosed with DFC, SGLT2i are effective in significantly reducing the hospitalization for heart failure and MACE rates. SGLT2i lower the amputation rates, especially in patients who have not previously had a LEA, than the dipeptidyl peptidase-4 inhibitor therapy.


Subject(s)
Amputation, Surgical , Diabetes Mellitus, Type 2 , Diabetic Foot , Heart Failure , Hospitalization , Incretins , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Amputation, Surgical/statistics & numerical data , Male , Female , Middle Aged , Aged , Incretins/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetic Foot/epidemiology , Diabetic Foot/surgery , Heart Failure/epidemiology , Hospitalization/statistics & numerical data , Taiwan/epidemiology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...