Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 943
Filter
1.
Medicine (Baltimore) ; 103(20): e38018, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758855

ABSTRACT

Incretin-based drugs, a class of Antidiabetic medications (ADMs) used in the treatment of type 2 diabetes, may affect the incidence of prostate cancer (PCa). But real-world evidence for this possible effect is lacking. Therefore, the aim of this study is to assess the effect of incretin-based drugs on the incidence of PCa, including glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors. We searched PubMed, Embase, and Cochrane Library databases for eligible studies through September 2023. Two independent reviewers performed screening and data extraction. We used the Cochrane Handbook for Systematic Reviews and the Newcastle-Ottawa Scale (NOS) to assess the quality of included randomized controlled trials (RCTs) and cohort studies. We did a meta-analysis of available trial data to calculate overall risk ratios (RRs) for PCa. A total of 1238 articles were identified in our search. After screening for eligibility, 7 high-quality studies met the criteria for meta-analysis, including 2 RCTs and 5 cohort studies, with a total of 1165,738 patients. Compared with the control group, we found that incretin-based drugs reduced the relative risk of PCa by 35% (95% confidence interval (CI), 0.17-0.49; P = .0006). In subgroup analysis, the RR values for GLP-1 receptor agonists and DPP-4 inhibitors were 62% (95% CI, 0.45-0.85; P = .003) and 72% (95% CI, 0.46-1.12; P = .14), respectively. Incretin-based drugs are associated with lower incidence of prostate cancer and may have a preventive effect on prostate cancer in patients with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Incretins , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/epidemiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Incidence , Incretins/therapeutic use , Hypoglycemic Agents/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use
2.
Cardiovasc Diabetol ; 23(1): 146, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685051

ABSTRACT

BACKGROUND: The GLP-1 receptor agonist liraglutide is used to treat hyperglycemia in type 2 diabetes but is also known to induce weight loss, preserve the beta cell and reduce cardiovascular risk. The mechanisms underlying these effects are however still not completely known. Herein we explore the effect of liraglutide on markers of immune cell activity in a population of obese individuals with prediabetes or newly diagnosed type 2 diabetes mellitus. METHOD: Plasma levels of the monocyte/macrophage markers, soluble (s)CD163 and sCD14, the neutrophil markers myeloperoxidase (MPO) and neutrophil gelatinase-associated lipocalin (NGAL),the T-cell markers sCD25 and T-cell immunoglobulin mucin domain-3 (sTIM-3) and the inflammatory marker TNF superfamily (TNFSF) member 14 (LIGHT/TNFSF14) were measured by enzyme-linked immunosorbent assays in obese individuals with prediabetes or diabetes diagnosed within the last 12 months, prior to and after comparable weight loss achieved with lifestyle changes (n = 20) or liraglutide treatment (n = 20), and in healthy subjects (n = 13). RESULTS: At baseline, plasma levels of the macrophage marker sCD163, and the inflammatory marker LIGHT were higher in cases as compared to controls. Plasma levels of sCD14, NGAL, sTIM-3 and sCD25 did not differ at baseline between patients and controls. After weight reduction following lifestyle intervention or liraglutide treatment, sCD163 decreased significantly in the liraglutide group vs. lifestyle (between-group difference p = 0.023, adjusted for visceral adipose tissue and triglycerides basal values). MPO and LIGHT decreased significantly only in the liraglutide group (between group difference not significant). Plasma levels of MPO and in particular sCD163 correlated with markers of metabolic dysfunction and inflammation. After weight loss, only sCD163 showed a trend for decreased levels during OGTT, both in the whole cohort as in those of liraglutide vs lifestyle group. CONCLUSION: Weight loss following treatment with liraglutide was associated with reduced circulating levels of sCD163 when compared to the same extent of weight loss after lifestyle changes. This might contribute to reduced cardiometabolic risk in individuals receiving treatment with liraglutide.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Biomarkers , Diabetes Mellitus, Type 2 , Incretins , Liraglutide , Obesity , Prediabetic State , Receptors, Cell Surface , Risk Reduction Behavior , Weight Loss , Humans , Liraglutide/therapeutic use , Liraglutide/adverse effects , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/therapy , Weight Loss/drug effects , Male , Middle Aged , Female , Obesity/diagnosis , Obesity/blood , Obesity/therapy , Biomarkers/blood , Antigens, Differentiation, Myelomonocytic/blood , Prediabetic State/blood , Prediabetic State/diagnosis , Prediabetic State/therapy , Prediabetic State/drug therapy , Receptors, Cell Surface/blood , Treatment Outcome , Antigens, CD/blood , Incretins/therapeutic use , Incretins/adverse effects , Incretins/blood , Adult , Case-Control Studies , Time Factors , Down-Regulation , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Aged
3.
Diabetes Res Clin Pract ; 211: 111675, 2024 May.
Article in English | MEDLINE | ID: mdl-38636848

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most common form of chronic liver disease. It exists as either simple steatosis or its more progressive form, metabolic dysfunction-associated steatohepatitis (MASH), formerly, non-alcoholic steatohepatitis (NASH). The global prevalence of MASLD is estimated to be 32% among adults and is projected to continue to rise with increasing rates of obesity, type 2 diabetes, and metabolic syndrome. While simple steatosis is often considered benign and reversible, MASH is progressive, potentially leading to the development of cirrhosis, liver failure, and hepatocellular carcinoma. Treatment of MASH is therefore directed at slowing, stopping, or reversing the progression of disease. Evidence points to improved liver histology with therapies that result in sustained body weight reduction. Incretin-based molecules, such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs), alone or in combination with glucose-dependent insulinotropic polypeptide (GIP) and/or glucagon receptor agonists, have shown benefit here, and several are under investigation for MASLD/MASH treatment. In this review, we discuss current published data on GLP-1, GIP/GLP-1, GLP-1/glucagon, and GLP-1/GIP/glucagon RAs in MASLD/MASH, focusing on their efficacy on liver histology, liver fat, and MASH biomarkers.


Subject(s)
Incretins , Non-alcoholic Fatty Liver Disease , Humans , Incretins/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Diabetes Mellitus, Type 2/drug therapy
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612640

ABSTRACT

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that regulate postprandial glucose regulation, stimulating insulin secretion from pancreatic ß-cells in response to food ingestion. Modified GLP-1 receptor agonists (GLP-1RAs) are being administered for the treatment of obesity and type 2 diabetes mellitus (T2DM). Strongly related to those disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), especially its aggressive form, defined as metabolic dysfunction-associated steatohepatitis (MASH), is a major healthcare burden associated with high morbidity and extrahepatic complications. GLP-1RAs have been explored in MASH patients with evident improvement in liver dysfunction enzymes, glycemic control, and weight loss. Importantly, the combination of GLP-1RAs with GIP and/or glucagon RAs may be even more effective via synergistic mechanisms in amelioration of metabolic, biochemical, and histological parameters of MASLD but also has a beneficial impact on MASLD-related complications. In this current review, we aim to provide an overview of incretins' physiology, action, and signaling. Furthermore, we provide insight into the key pathophysiological mechanisms through which they impact MASLD aspects, as well as we analyze clinical data from human interventional studies. Finally, we discuss the current challenges and future perspectives pertinent to this growing area of research and clinical medicine.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Liver Diseases , Metabolic Diseases , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide/therapeutic use , Glucagon-Like Peptide 1/therapeutic use , Incretins/therapeutic use , Receptors, G-Protein-Coupled , Receptors, Glucagon
5.
Discov Med ; 36(183): 655-665, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665015

ABSTRACT

Incretin hormones, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 and 2 (GLP-1, 2), belong to the group of gastrointestinal hormones. Their actions occur through interaction with GIP and GLP-1/2 receptors, which are present in various target tissues. Apart from their well-established roles in pancreatic function and insulin regulation, incretins elicit significant effects that extend beyond the pancreas. Specifically, these hormones stimulate osteoblast differentiation and inhibit osteoclast activity, thereby promoting bone anabolism. Moreover, they play a pivotal role in bone mineralization and overall bone quality and function, making them potentially therapeutic for managing bone health. Thus, this review provides a summary of the crucial involvement of incretins in bone metabolism, influencing both bone formation and resorption processes. While existing evidence is persuasive, further studies are necessary for a comprehensive understanding of the therapeutic potential of incretins in modifying bone health.


Subject(s)
Bone Remodeling , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Incretins , Humans , Bone Remodeling/drug effects , Gastric Inhibitory Polypeptide/metabolism , Incretins/therapeutic use , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/metabolism , Animals , Bone and Bones/metabolism , Bone and Bones/drug effects , Pancreas/metabolism , Pancreas/drug effects , Pancreas/pathology
6.
Am J Physiol Heart Circ Physiol ; 326(5): H1159-H1176, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38426865

ABSTRACT

Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.


Subject(s)
Atherosclerosis , Endothelium, Vascular , Glucagon-Like Peptide-1 Receptor Agonists , Animals , Humans , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Incretins/therapeutic use , Signal Transduction
7.
Prim Care Diabetes ; 18(3): 268-276, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555202

ABSTRACT

BACKGROUND: Based on the rapidly growing global burden of non-alcoholic fatty liver disease (NAFLD) or steatohepatitis (NASH), in order to evaluate the efficacy of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the treatment of NAFLD or NASH this paper presents a systematic review and meta-analysis of randomized controlled trials(RCTs). METHODS: In this systematic review and meta-analysis, We searched PubMed, Medline, Web of Science and The Cochrane Library databases. All randomized controlled trials involving GLP-1RAs and NAFLD or NASH were collected since the database was established. A meta-analysis of proportions was done with the generalised linear mixed model. Continuous variables were represented by Mean and Standard Deviation (SD), and binary variable were represented by Relative Risk (RR) and 95% Confidence Interval (CI) as effect indicators. The research results were presented by Revman 5.4. This study is registered with PROSPERO (CRD42023390735). FINDING: We included 16 placebo-controlled or active drug-controlled randomized controlled trials (involving 2178 patients) that used liraglutide, exenatide, dulaglutide, or semaglutie in the treatment of NAFLD or NASH, as measured by liver biopsy or imaging techniques. This study found that the effect of GLP-1RAs on histologic resolution of NASH with no worsening of liver fibrosis (n=2 RCTs; WMD:4.08, 95%CI 2.54-6.56, p < 0.00001) has statistically significant. At the same time, GLP-1RAs affected CRP (n = 7 RCTs; WMD:-0.41, 95% CI-0.78 to -0.04, p =0.002) and other serological indicators were significantly improved. CONCLUSION: This study evaluated the efficacy of GLP-1RAs in patients with NAFLD and NASH. These results suggest that GLP-1RAs may be a potential and viable therapeutic approach as a targeted agent to intervene in disease progression of NAFLD and NASH.


Subject(s)
Biomarkers , C-Reactive Protein , Glucagon-Like Peptide-1 Receptor , Incretins , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Randomized Controlled Trials as Topic , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/blood , Glucagon-Like Peptide-1 Receptor/agonists , Treatment Outcome , Biomarkers/blood , Liver Cirrhosis/drug therapy , Liver Cirrhosis/diagnosis , Incretins/therapeutic use , Incretins/adverse effects , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Male , Female , Middle Aged , Hypoglycemic Agents/therapeutic use , Adult , Liver/pathology , Liver/drug effects , Risk Factors , Severity of Illness Index , Aged , Recombinant Fusion Proteins/therapeutic use , Immunoglobulin Fc Fragments/therapeutic use , Liraglutide/therapeutic use , Glucagon-Like Peptides/therapeutic use , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/adverse effects , Glucagon-Like Peptide-1 Receptor Agonists
8.
Am J Physiol Endocrinol Metab ; 326(6): E747-E766, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38477666

ABSTRACT

Chronic kidney disease is a debilitating condition associated with significant morbidity and mortality. In recent years, the kidney effects of incretin-based therapies, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), have garnered substantial interest in the management of type 2 diabetes and obesity. This review delves into the intricate interactions between the kidney, GLP-1RAs, and glucagon, shedding light on their mechanisms of action and potential kidney benefits. Both GLP-1 and glucagon, known for their opposing roles in regulating glucose homeostasis, improve systemic risk factors affecting the kidney, including adiposity, inflammation, oxidative stress, and endothelial function. Additionally, these hormones and their pharmaceutical mimetics may have a direct impact on the kidney. Clinical studies have provided evidence that incretins, including those incorporating glucagon receptor agonism, are likely to exhibit improved kidney outcomes. Although further research is necessary, receptor polypharmacology holds promise for preserving kidney function through eliciting vasodilatory effects, influencing volume and electrolyte handling, and improving systemic risk factors.


Subject(s)
Incretins , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/physiopathology , Incretins/therapeutic use , Incretins/pharmacology , Animals , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Kidney/drug effects , Kidney/metabolism , Glucagon/metabolism
9.
Obes Rev ; 25(5): e13717, 2024 May.
Article in English | MEDLINE | ID: mdl-38463003

ABSTRACT

Potent incretin-based therapy shows promise for the treatment of obesity along with reduced incidence of cardiovascular events in patients with preexisting cardiovascular disease and obesity. This study assessed the efficacy and safety of the incretin-based obesity treatments, once-weekly subcutaneous semaglutide 2.4 mg and tirzepatide 10 or 15 mg, in people with obesity without diabetes. Of the 744 records identified, seven randomized controlled trials (n = 5140) were included. Five studies (n = 3288) investigated semaglutide and two studies (n = 1852) investigated tirzepatide. The treatment effect, shown as placebo-subtracted difference, on body weight was -15.0% (95% CI, -17.8 to -12.2) with -12.9% (95% CI, -14.7 to -11.1) for semaglutide and -19.2% (95% CI, -22.2 to -16.2) for tirzepatide. The treatment effect on waist circumference was -11.4 cm (95% CI, -13.7 to -9.2) with -9.7 cm (95% CI, -10.8 to -8.5) for semaglutide and -14.6 cm (95% CI, -15.8 to -13.4) for tirzepatide. The adverse events related to semaglutide and tirzepatide were primarily of mild-to-moderate severity and mostly gastrointestinal, which was more frequent during the dose-titration period and leveled off during the treatment period. This emphasizes that once-weekly subcutaneous semaglutide 2.4 mg and tirzepatide 10 or 15 mg induce large reductions in body weight and waist circumference and are generally well-tolerated.


Subject(s)
Diabetes Mellitus, Type 2 , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide-2 Receptor , Glucagon-Like Peptides , Incretins , Humans , Incretins/therapeutic use , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Waist Circumference , Body Weight , Obesity/drug therapy , Obesity/chemically induced , Glucagon-Like Peptide-1 Receptor
10.
Peptides ; 174: 171168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320643

ABSTRACT

The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Receptors, Gastrointestinal Hormone , Humans , Incretins/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Obesity/drug therapy , Obesity/metabolism , Blood Glucose/metabolism , Duodenum/metabolism , Peptides/therapeutic use , Enteroendocrine Cells/metabolism , Receptors, G-Protein-Coupled , Glucagon-Like Peptide-1 Receptor/metabolism
11.
Physiology (Bethesda) ; 39(3): 142-156, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353610

ABSTRACT

The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Adult , Humans , Adolescent , Incretins/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Gastric Inhibitory Polypeptide/therapeutic use , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Obesity/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/therapeutic use
12.
Endocr Pract ; 30(5): 424-430, 2024 May.
Article in English | MEDLINE | ID: mdl-38325629

ABSTRACT

OBJECTIVE: Major adverse cardiovascular event (MACE) outcomes associated with sodium-glucose cotransporter 2 inhibitor (SGLT2i) and glucagon-like peptide-1 receptor agonist (GLP-1 RA) therapies remain unclear in patients with type 2 diabetes and newly diagnosed diabetic foot complications (DFCs). This study examined the impact of SGLT2i and GLP-1 RA use on the rates of MACEs and amputations in patients with type 2 diabetes and without cardiovascular disease. METHODS: Data from the Taiwan National Health Insurance Research Database (2004-2017) were analyzed, focusing on patients with type 2 diabetes without previous MACE and newly diagnosed DFCs. The primary outcome was the first MACE occurrence, and the secondary outcomes included MACE components, all-cause mortality, and lower extremity amputation (LEA) rates. RESULTS: SGLT2i users showed a significant decrease in the MACE (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.46-0.88) and hospitalization for heart failure (HR, 0.54; 95% CI, 0.35-0.83) rates compared with dipeptidyl peptidase-4 inhibitor users. The amputation rates were also lower in SGLT2i users without LEA at the first DFC diagnosis (HR, 0.28; 95% CI, 0.10-0.75) and did not increase in those with a history of peripheral artery disease or LEA. No significant differences were observed between dipeptidyl peptidase-4 inhibitor and GLP-1 RA users in terms of the primary or secondary outcomes. CONCLUSION: In patients with type 2 diabetes initially diagnosed with DFC, SGLT2i are effective in significantly reducing the hospitalization for heart failure and MACE rates. SGLT2i lower the amputation rates, especially in patients who have not previously had a LEA, than the dipeptidyl peptidase-4 inhibitor therapy.


Subject(s)
Amputation, Surgical , Diabetes Mellitus, Type 2 , Diabetic Foot , Heart Failure , Hospitalization , Incretins , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Amputation, Surgical/statistics & numerical data , Male , Female , Middle Aged , Aged , Incretins/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetic Foot/epidemiology , Diabetic Foot/surgery , Heart Failure/epidemiology , Hospitalization/statistics & numerical data , Taiwan/epidemiology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use , Adult
13.
Am J Physiol Endocrinol Metab ; 326(4): E472-E480, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38381398

ABSTRACT

New incretin-based pharmacotherapies provide efficient and safe therapeutic options to curb appetite and produce weight loss in patients with obesity. Delivered systemically, these molecules produce pleiotropic metabolic benefits, but the target sites mediating their weight-suppressive action are located within the brain. Recent research has increased our understanding of the neural circuits and behavioral mechanisms involved in the anorectic and metabolic consequences of glucagon-like peptide 1 (GLP-1)-based weight loss strategies, yet little is known about how these drugs access their functional targets in the brain to produce sustained weight loss. The majority of brain cells expressing incretin receptors are located behind the blood-brain barrier, shielded from the circulation and fluctuations in the availability of peripheral signals, which is a major challenge for the development of CNS-targeted therapeutic peptides. GLP-1 receptor (GLP-1R) agonists with increased half-life and enhanced therapeutic benefit do not cross the blood-brain barrier, yet they manage to access discrete brain sites relevant to the regulation of energy homeostasis. In this review, we give a brief overview of the different routes for peptide hormones to access the brain. We then examine the evidence informing the routes employed by incretins and incretin receptor agonists to access brain targets relevant for their appetite and weight-suppressive actions. We highlight existing controversies and suggest future directions to further establish the functionally relevant access routes for GLP-1-based weight loss compounds, which might guide the development and selection of the future generation of incretin receptor polypharmacologies.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Humans , Incretins/therapeutic use , Incretins/metabolism , Appetite , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/metabolism , Brain/metabolism , Weight Loss , Glucagon-Like Peptide-1 Receptor/metabolism
14.
Aliment Pharmacol Ther ; 59(4): 475-491, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38169126

ABSTRACT

BACKGROUND: Obesity has reached epidemic proportions, with >40% of the US population affected. Although traditionally managed by lifestyle modification, and less frequently by bariatric therapies, there are significant pharmacological advancements. AIMS: To conduct a narrative review of the neurohormonal and physiological understanding of weight gain and obesity, and the development, clinical testing, indications, expected clinical outcomes, and associated risks of current FDA-approved and upcoming anti-obesity medications (AOMs). METHODS: We conducted a comprehensive review in PubMed for articles on pathophysiology and complications of obesity, including terms 'neurohormonal', 'obesity', 'incretin', and 'weight loss'. Next, we searched for clinical trial data of all FDA-approved AOMs, including both the generic and trade names of orlistat, phentermine/topiramate, bupropion/naltrexone, liraglutide, and semaglutide. Additional searches were conducted for tirzepatide and retatrutide - medications expecting regulatory approval. Searches included combinations of terms related to mechanism of action, indications, side effects, risks, and future directions. RESULTS: We reviewed the pathophysiology of obesity, including specific role of incretins and glucagon. Clinical data supporting the use of various FDA-approved medications for weight loss are presented, including placebo-controlled or, when available, head-to-head trials. Beneficial metabolic effects, including impact on liver disease, adverse effects and risks of medications are discussed, including altered gastrointestinal motility and risk for periprocedural aspiration. CONCLUSION: AOMs have established efficacy and effectiveness for weight loss even beyond 52 weeks. Further pharmacological options, such as dual and triple incretins, are probable forthcoming additions to clinical practice for combating obesity and its metabolic consequences such as metabolic dysfunction-associated steatotic liver disease.


Subject(s)
Anti-Obesity Agents , Liver Diseases , Humans , Incretins/therapeutic use , Topiramate/therapeutic use , Fructose/adverse effects , Obesity/drug therapy , Anti-Obesity Agents/adverse effects , Weight Loss , Liver Diseases/drug therapy
15.
Obes Rev ; 25(4): e13686, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38204284

ABSTRACT

BACKGROUND: Growing evidence indicates that incretin-based therapies (IBTs), glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and dipeptidyl peptidase-4 inhibitors (DPP4is) are effective and safe for treating pediatric obesity patients with or without type 2 diabetes. Therefore, we aimed to perform a systematic review and meta-analysis for updating current evidence. METHODS: We searched the PubMed, the Cochrane Library, and the EMBASE database for articles published until September 15, 2023, and limited to randomized control trials. The primary outcomes were changed from baseline in weight metrics and the cardiometabolic profile. A random effects model will be used, as high heterogeneity is expected. All analyses were performed using STATA 17.0. RESULTS: Fifteen trials with a total number of 1286 participants were included in our meta-analysis. Overall, the mean difference in weight change between the IBTs group and the control group was -2.89 kg (95% confidence interval, -5.12 to -0.65, p = 0.011). Additionally, IBTs significantly reduced the HbA1c level and fasting plasma glucose by 0.37% and 6.99 mg/dl, compared with control groups. IBTs showed a little increased risk of GI side effects and hypoglycemia events, but none of the severe hypoglycemia events were occurred in IBTs group. CONCLUSIONS: Our study results have proved that GLP-1 RAs are safe, acceptable, and effective in weight reduction and sugar control for children with obesity. In addition, DPP-4is seems to have no effect on glycemic control and weight loss in childhood obesity. Further research is needed to confirm these findings, especially in younger children.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemia , Pediatric Obesity , Child , Humans , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemia/chemically induced , Hypoglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Incretins/therapeutic use , Pediatric Obesity/drug therapy , Pediatric Obesity/chemically induced , Weight Loss
16.
Peptides ; 173: 171149, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184193

ABSTRACT

Options for the treatment of type 2 diabetes mellitus (T2DM) and obesity have recently been expanded by the results of several large clinical trials with incretin-based peptide therapies. Most of these studies have been conducted with the glucagon-like peptide-1 (GLP-1) receptor agonist semaglutide, which is available as a once weekly subcutaneous injection and once daily tablet, and the once weekly injected dual agonist tirzepatide, which interacts with receptors for GLP-1 and glucose-dependent insulinotropic polypeptide (GIP). In individuals with T2DM these therapies have achieved reductions of glycated haemoglobin (HbA1c) by > 2% and lowered body weight by > 10%. In some studies, these agents tested in non-diabetic, obese individuals at much higher doses have lowered body weight by > 15%. Emerging evidence suggests these agents can also offer cardio-protective and potentially reno-protective effects. Other incretin-based peptide therapies in early clinical development, notably a triple GLP-1/GIP/glucagon receptor agonist (retatrutide) and a combination of semaglutide with the amylin analogue cagrilintide (CagriSema), have shown strong efficacy. Although incretin therapies can incur adverse gastrointestinal effects these are for most patients mild-to-moderate and transient but result in cessation of treatment in some cases. Thus, the efficacy of new incretin-based peptide therapies is enhancing the opportunity to control body weight and blood glucose and improve the treatment of T2DM and obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Incretins/therapeutic use , Gastric Inhibitory Polypeptide/therapeutic use , Obesity , Glucagon-Like Peptide 1/therapeutic use , Body Weight , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use
17.
Curr Opin Cardiol ; 39(3): 148-153, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38294187

ABSTRACT

PURPOSE OF REVIEW: Incretin-based drugs are potent weight-lowering agents, emerging as potential breakthrough therapy for the treatment of obesity-related phenotype of heart failure with preserved ejection fraction (HFpEF). In this review article, we will discuss the contribution of weight loss as part of the benefits of incretin-based medications in obese patients with HFpEF. Furthermore, we will describe the potential effects of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists on the heart, particularly in relation to HFpEF pathophysiology. RECENT FINDINGS: In the STEP-HFpEF trial, the GLP-1 receptor agonist semaglutide significantly improved quality of life outcomes in obese HFpEF patients. Whether the beneficial effects of semaglutide in obese patients with HFpEF are merely a consequence of body weight reduction is unclear. Considering the availability of other weight loss strategies (e.g., caloric restriction, exercise training, bariatric surgery) to be used in obese HFpEF patients, answering this question is crucial to provide tailored therapeutic options in these subjects. SUMMARY: Incretin-based drugs may represent a milestone in the treatment of obesity in HFpEF. Elucidating the contribution of weight loss in the overall benefit observed with these drugs is critical in the management of obese HFpEF patients, considering that other weight-lowering strategies are available and might represent potential alternative options for these patients.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Humans , Incretins/therapeutic use , Heart Failure/drug therapy , Quality of Life , Stroke Volume/physiology , Weight Loss/physiology , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Obesity/complications , Diabetes Mellitus, Type 2/drug therapy
18.
JAMA ; 331(1): 38-48, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38078870

ABSTRACT

Importance: The effect of continued treatment with tirzepatide on maintaining initial weight reduction is unknown. Objective: To assess the effect of tirzepatide, with diet and physical activity, on the maintenance of weight reduction. Design, Setting, and Participants: This phase 3, randomized withdrawal clinical trial conducted at 70 sites in 4 countries with a 36-week, open-label tirzepatide lead-in period followed by a 52-week, double-blind, placebo-controlled period included adults with a body mass index greater than or equal to 30 or greater than or equal to 27 and a weight-related complication, excluding diabetes. Interventions: Participants (n = 783) enrolled in an open-label lead-in period received once-weekly subcutaneous maximum tolerated dose (10 or 15 mg) of tirzepatide for 36 weeks. At week 36, a total of 670 participants were randomized (1:1) to continue receiving tirzepatide (n = 335) or switch to placebo (n = 335) for 52 weeks. Main Outcomes and Measures: The primary end point was the mean percent change in weight from week 36 (randomization) to week 88. Key secondary end points included the proportion of participants at week 88 who maintained at least 80% of the weight loss during the lead-in period. Results: Participants (n = 670; mean age, 48 years; 473 [71%] women; mean weight, 107.3 kg) who completed the 36-week lead-in period experienced a mean weight reduction of 20.9%. The mean percent weight change from week 36 to week 88 was -5.5% with tirzepatide vs 14.0% with placebo (difference, -19.4% [95% CI, -21.2% to -17.7%]; P < .001). Overall, 300 participants (89.5%) receiving tirzepatide at 88 weeks maintained at least 80% of the weight loss during the lead-in period compared with 16.6% receiving placebo (P < .001). The overall mean weight reduction from week 0 to 88 was 25.3% for tirzepatide and 9.9% for placebo. The most common adverse events were mostly mild to moderate gastrointestinal events, which occurred more commonly with tirzepatide vs placebo. Conclusions and Relevance: In participants with obesity or overweight, withdrawing tirzepatide led to substantial regain of lost weight, whereas continued treatment maintained and augmented initial weight reduction. Trial Registration: ClinicalTrials.gov Identifier: NCT04660643.


Subject(s)
Anti-Obesity Agents , Obesity , Weight Loss , Adult , Female , Humans , Male , Middle Aged , Double-Blind Method , Gastric Inhibitory Polypeptide/administration & dosage , Gastric Inhibitory Polypeptide/adverse effects , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/therapeutic use , Obesity/drug therapy , Obesity/complications , Overweight/complications , Overweight/drug therapy , Treatment Outcome , Weight Loss/drug effects , Glucagon-Like Peptide-2 Receptor/administration & dosage , Glucagon-Like Peptide-2 Receptor/agonists , Glucagon-Like Peptide-2 Receptor/therapeutic use , Incretins/administration & dosage , Incretins/adverse effects , Incretins/pharmacology , Incretins/therapeutic use , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/adverse effects , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Maintenance Chemotherapy , Injections, Subcutaneous , Withholding Treatment
20.
J Clin Endocrinol Metab ; 109(2): 557-568, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37602701

ABSTRACT

CONTEXT: Efficacy and safety of tirzepatide, a once-weekly glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonist, have been studied in patients with type 2 diabetes in the global phase 3 SURPASS program. OBJECTIVE: This work aimed to assess the efficacy and safety of tirzepatide in Hispanic/Latino and non-Hispanic/Latino patients in SURPASS-1 to -4 clinical trials. METHODS: A total of 5679 patients were included, 2895 of self-reported Hispanic/Latino ethnicity, in this exploratory analysis of SURPASS-1 to -4 trial data. Interventions included tirzepatide 5, 10, or 15 mg, placebo, or active comparator (semaglutide 1 mg, insulin degludec, and insulin glargine). Change in glycated hemoglobin A1c (HbA1c) and body weight from baseline to week 40 (SURPASS-1 and -2) and to week 52 (SURPASS-3 and -4), and other efficacy and safety outcomes were evaluated within Hispanic/Latino and non-Hispanic/Latino subgroups. RESULTS: Among Hispanic/Latino and non-Hispanic/Latino patients treated with tirzepatide, respectively, HbA1c decreased significantly from baseline, ranging from 1.9% to 2.7% and 1.7% to 2.5%, and body weight decreased significantly from baseline, ranging from 5.3 kg to 12.4 and 6.5 kg to 17.1 kg (both P < .05) vs comparators across all trials. Subgroup trends were consistent with the overall trial populations. Treatment-emergent adverse events were reported in similar proportions across the subgroups and were primarily gastrointestinal disorders. The incidence of hypoglycemia was low. CONCLUSION: Tirzepatide significatively reduced HbA1c and body weight in Hispanic/Latino and non-Hispanic/Latino patients. Tirzepatide was generally well tolerated in both subgroups. Efficacy and safety trends were comparable between subgroups and within the overall trial populations.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Incretins , Humans , Body Weight , Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-2 Receptor , Glycated Hemoglobin , Hispanic or Latino , Hypoglycemic Agents/therapeutic use , Incretins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...