Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 379
Filter
1.
ACS Chem Neurosci ; 15(10): 2042-2057, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38656184

ABSTRACT

Based on the neuroprotection of butylphthalide and donepezil, a series of indanone/benzofuranone and piperidine hybrids were designed and synthesized for assessment of their neuroprotective activities, aiming to enhance the bioavailability and therapeutic efficacy of natural phthalide analogues. Within this study, it was observed that most indanone derivatives bearing 1-methylpiperidine in the tail segment demonstrated superior neuroprotective effects on the oxygen glucose deprivation/reperfusion (OGD/R)-induced rat primary neuronal cell injury model in vitro compared to benzofuranone compounds. Among the synthesized compounds, 11 (4, 14, 15, 22, 26, 35, 36, 37, 48, 49, and 52) displayed robust cell viabilities in the OGD/R model, along with favorable blood-brain barrier permeability as confirmed by the parallel artificial membrane permeability assay. Notably, compound 4 showed significant neuronal cell viabilities within the concentration range of 3.125 to 100 µM, without inducing cytotoxicity. Further results from in vivo middle cerebral artery occlusion/R experiments revealed that 4 effectively ameliorated ischemia-reperfusion injury, reducing the infarct volume to 18.45% at a dose of 40 mg/kg. This outcome suggested a superior neuroprotective effect compared to edaravone at 20 mg/kg, further highlighting the potential therapeutic efficacy of compound 4 in addressing neurological disorders.


Subject(s)
Benzofurans , Indans , Neuroprotective Agents , Piperidines , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Piperidines/pharmacology , Piperidines/chemical synthesis , Piperidines/chemistry , Indans/pharmacology , Indans/chemical synthesis , Indans/chemistry , Benzofurans/pharmacology , Benzofurans/chemical synthesis , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Neurons/drug effects , Neurons/metabolism , Male , Cell Survival/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Infarction, Middle Cerebral Artery/drug therapy
2.
ChemMedChem ; 17(2): e202100611, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34704363

ABSTRACT

The development of imaging agents for in vivo detection of alpha-synuclein (α-syn) pathologies faces several challenges. A major gap in the field is the lack of diverse molecular scaffolds with high affinity and selectivity to α-syn fibrils for in vitro screening assays. Better in vitro scaffolds can instruct the discovery of better in vivo agents. We report the rational design, synthesis, and in vitro evaluation of a series of novel 1-indanone and 1,3-indandione derivatives from a Structure-Activity Relationship (SAR) study centered on some existing α-syn fibril binding ligands. Our results from fibril saturation binding experiments show that two of the lead candidates compounds 8 and 32 bind α-syn fibrils with binding constants (Kd ) of 9.0 and 18.8 nM, respectively, and selectivity of greater than 10× for α-syn fibrils compared with amyloid-ß (Aß) and tau fibrils. Our results demonstrate that the lead ligands avidly label all forms of α-syn on PD brain tissue sections, but only the dense core of senile plaques in AD brain tissue, respectively. These results are corroborated by ligand-antibody colocalization data from Syn211, which shows immunoreactivity toward all forms of α-syn aggregates, and Syn303, which displays preferential reactivity toward mature Lewy pathology. Our results reveal that 1-indanone derivatives have desirable properties for the biological evaluation of α-synucleinopathies.


Subject(s)
Alzheimer Disease/drug therapy , Indans/pharmacology , Neuroprotective Agents/pharmacology , alpha-Synuclein/antagonists & inhibitors , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Dose-Response Relationship, Drug , Drug Design , Humans , Indans/chemical synthesis , Indans/chemistry , Ligands , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Protein Folding/drug effects , Structure-Activity Relationship , alpha-Synuclein/metabolism
3.
Eur J Med Chem ; 228: 113978, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34810020

ABSTRACT

Focal adhesion kinase (FAK) promotes tumor progression by intracellular signal transduction and regulation of gene expression and protein turnover, which is a compelling therapeutic target for various cancer types, including ovarian cancer. However, the clinical responses of FAK inhibitors remain unsatisfactory. Here, we describe the discovery of FAK inhibitors using a scaffold hopping strategy. Structure-activity relationship (SAR) exploration identified 36 as a potent FAK inhibitor, which exhibited inhibitory activities against FAK signaling in vitro. Treatment with 36 not only decreased migration and invasion of PA-1 cells, but also reduced expression of MMP-2 and MMP-9. Moreover, 36 inhibited tumor growth and metastasis, and no obvious adverse effects were observed during the in vivo study. These results revealed the potential of FAK inhibitor 36 for treatment of ovarian cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Focal Adhesion Kinase 1/antagonists & inhibitors , Indans/pharmacology , Ovarian Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Female , Focal Adhesion Kinase 1/metabolism , Humans , Indans/chemical synthesis , Indans/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
4.
ACS Appl Mater Interfaces ; 13(39): 46353-46360, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34559529

ABSTRACT

Rational manipulation of nonradiative decay channels is of crucial significance to improve photothermal conversion efficiency (PCE) and design photothermal agents. We first used the "internal and external combined" nonradiative decay strategy to enhance PCE. Specifically, organic IR-Y6 NPs with strong NIR absorption and high molar extinction coefficient were prepared and characterized. By means of TD-DFT calculations and fs-TA spectroscopy, the dual nonradiative decay channels composed of the free rotor (external strategy) and ultrafast dark excited states (DESs) between S0 and S1 states (internal strategy) were proved, which significantly enhanced PCE, up to 66%. IR-Y6 NPs were applied to a mice tumor model for photoacoustic image-guided photothermal therapy, showing complete tumor ablation ability and good biocompatibility for the normal organs. This work is of significance to deeply understand the nonradiation decay mechanism and rational design of high-performance PTT agents.


Subject(s)
Antineoplastic Agents/therapeutic use , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Indans/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/radiation effects , Cell Line, Tumor , Combined Modality Therapy , Density Functional Theory , Female , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/radiation effects , Humans , Indans/chemical synthesis , Indans/radiation effects , Infrared Rays , Mice, Inbred BALB C , Models, Chemical , Nanoparticles/chemistry , Nanoparticles/radiation effects , Photoacoustic Techniques , Photothermal Therapy , Theranostic Nanomedicine/methods
5.
Bioorg Chem ; 115: 105259, 2021 10.
Article in English | MEDLINE | ID: mdl-34426144

ABSTRACT

In this study, we report the expeditious synthesis of ten new antifungal and antioxidant agents containing heterocyclic linked 7-arylidene indanone moiety. The solvent-free microwave technique, ample substrate scope, superfast synthesis, and very simple operation are noteworthy features of this protocol. Antifungal activities of the newly synthesized compounds were evaluated against four fungal strains namely Rhizophus oryzae, Mucor mucido, Aspergillus niger, and Candida albicans. Most of the compounds were shown strong inhibition of the investigated fungal agents. In vitro, antioxidant potential against DPPH and OH radicals affirmed that the synthesized compounds are good to excellent radicals scavenging agents. The cytotoxicity data of the synthesized compounds towards HL-60 cells uncovered that the synthesized compounds display very low to negligible cytotoxicity. The structural and quantum chemical parameters of the synthesized compounds were explored by employing density functional theory (DFT) at B3LYP functional using 6-311G(d,p) basis set. The compound 3a is discussed in detail for the theoretical and experimental correlation. Time-dependent density functional theory (TD-DFT) at CAM-B3LYP functional with 6-311G(d,p) basis set was used for the electronic absorption study in the gas phase and indichloromethane and benzene solvents. The UV-Visible absorption peaks and fundamental vibrational wavenumbers were computed and a good agreement between observed and theoretical results has been achieved. From the DFT and antifungal activity correlation, it has been found that the 7-heteroarylidene indanones with more stabilized LUMO energy levels display good antifungal potential.


Subject(s)
Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Heterocyclic Compounds/pharmacology , Indans/pharmacology , Microwaves , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Aspergillus niger/drug effects , Candida albicans/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HL-60 Cells , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Indans/chemical synthesis , Indans/chemistry , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mucor/drug effects , Oryza/drug effects , Structure-Activity Relationship
6.
Bioorg Chem ; 114: 105130, 2021 09.
Article in English | MEDLINE | ID: mdl-34225162

ABSTRACT

The enzymes, catechol O-methyltransferase (COMT) and monoamine oxidase (MAO) are important drug targets, and inhibitors of these enzymes are established therapy for symptomatic Parkinson's disease (PD). COMT inhibitors enhance the bioavailability of levodopa to the brain, and therefore are combined with levodopa for the treatment of motor fluctuations in PD. Inhibitors of the MAO-B isoform, in turn, are used as monotherapy or in conjunction with levodopa in PD, and function by reducing the central degradation of dopamine. It has been reported that 1-tetralone and 1-indanone derivatives are potent and specific inhibitors of MAO-B, while compounds containing the nitrocatechol moiety (e.g. tolcapone and entacapone) are often potent COMT inhibitors. The present study attempted to discover compounds that exhibit dual COMT and MAO-B inhibition by synthesizing series of 1-tetralone, 1-indanone and related derivatives substituted with the nitrocatechol moiety. These compounds are structurally related to series of nitrocatechol derivatives of chalcone that have recently been investigated as potential dual COMT/MAO inhibitors. The results show that 4-chromanone derivative (7) is the most promising dual inhibitor with IC50 values of 0.57 and 7.26 µM for COMT and MAO-B, respectively, followed by 1-tetralone derivative (4d) with IC50 values of 0.42 and 7.83 µM for COMT and MAO-B, respectively. Based on their potent inhibition of COMT, it may be concluded that nitrocatechol compounds investigated in this study are appropriate for peripheral COMT inhibition, which represents an important strategy in the treatment of PD.


Subject(s)
Catechol O-Methyltransferase Inhibitors/pharmacology , Catechols/pharmacology , Indans/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Nitro Compounds/pharmacology , Tetralones/pharmacology , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase Inhibitors/chemical synthesis , Catechol O-Methyltransferase Inhibitors/chemistry , Catechols/chemistry , Dose-Response Relationship, Drug , Humans , Indans/chemical synthesis , Indans/chemistry , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Nitro Compounds/chemistry , Structure-Activity Relationship , Tetralones/chemical synthesis , Tetralones/chemistry
7.
Arch Pharm (Weinheim) ; 354(10): e2100081, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34323311

ABSTRACT

The indan-1,3-dione and its derivatives are important building blocks in organic synthesis and present important biological activities. Herein, the leishmanicidal and cytotoxicity evaluation of 16 2-arylidene indan-1,3-diones is described. The compounds were evaluated against the leukemia cell lines HL60 and Nalm6, and the most effective ones were 2-(4-nitrobenzylidene)-1H-indene-1,3(2H)-dione (4) and 4-[(1,3-dioxo-1H-inden-2(3H)-ylidene)methyl]benzonitrile (10), presenting IC50 values of around 30 µmol/L against Nalm6. The leishmanicidal activity was assessed on Leishmania amazonensis, with derivative 4 (IC50 = 16.6 µmol/L) being the most active. A four-dimensional quantitative structure-activity analysis (4D-QSAR) was applied to the indandione derivatives, through partial least-squares regression. The statistics presented by the regression models built with the selected field descriptors of Coulomb (C) and Lennard-Jones (L) nature, considering the activities against L. amazonensis, HL60, and Nalm6 leukemia cells, were, respectively, R2 = 0.88, 0.92, and 0.98; Q2 = 0.83, 0.88, and 0.97. The presence of positive Coulomb descriptors near the carbonyl groups indicates that these polar groups are related to the activities. Besides, the presence of positive Lennard-Jones descriptors close to substituents R3 or R1 indicates that bulky nonpolar substituents in these positions tend to increase the activities. This study provides useful insights into the mode of action of indandione derivatives for each biological activity involved.


Subject(s)
Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Indans/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cell Line, Tumor , HL-60 Cells , Humans , Indans/chemical synthesis , Indans/chemistry , Inhibitory Concentration 50 , Leishmania mexicana/drug effects , Leukemia/drug therapy , Quantitative Structure-Activity Relationship
8.
Chem Biol Drug Des ; 98(1): 127-143, 2021 07.
Article in English | MEDLINE | ID: mdl-33969634

ABSTRACT

Indanocine, a potent anticancer investigational drug of National Cancer Institute-USA, has been much discussed in recent years. Present communication aimed at total synthesis of indanocine and its close analogues. Total synthesis was improved by double yields than previously reported yields. Some of the benzylidene and 2-benzyl derivatives with free rotation at C2 position exhibited potential cytotoxicities against various human cancer cell lines. Five such analogues exhibited potential antiproliferative effect against HCT-116 and MIA PACA-2 cell lines. Benzylindanocine 12i induced microtubule destabilization by occupying colchicine binding pocket of ß-tubulin. It also exhibited anti-inflammatory activity by down-regulating IL-6 and TNF-α. In Ehrlich ascites carcinoma model, 12i reduced 78.4% of EAC tumour in Swiss albino mice at 90 mg/kg (i.p.) dose. Further, in in vivo safety studies, 12i was found to be safe to rodents up to 1,000 mg/kg dose. Concomitant anticancer and anti-inflammatory activity of benzylindanocine is distinctive, which suggests its further optimization for better efficacy and druggability.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Indans/chemical synthesis , Microtubules/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzylidene Compounds/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/chemistry , Dose-Response Relationship, Drug , Humans , Indans/pharmacology , Interleukin-6/metabolism , Mice , Molecular Docking Simulation , Structure-Activity Relationship , Tubulin/chemistry , Tumor Necrosis Factor-alpha/metabolism
9.
Arch Pharm (Weinheim) ; 354(7): e2000453, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33872422

ABSTRACT

Inspired by the structures of donepezil and rivastigmine, a novel series of indanone-carbamate hybrids was synthesized using the pharmacophore hybridization-based design strategy, and their biological activities toward acetylcholinesterase (AChE) and butyrylcholinesterase were evaluated. Among the synthesized compounds, 4d and 4b showed the highest AChE inhibitory activities with IC50 values in the micromolar range (compound 4d: IC50 = 3.04 µM; compound 4b: IC50 = 4.64 µM). Moreover, the results of the Aß1-40 aggregation assay revealed that compound 4b is a potent Aß1-40 aggregation inhibitor. The kinetics of AChE enzymatic activity in the presence of 4b was investigated, and the results were indicative of a reversible partial noncompetitive type of inhibition. A molecular docking study was conducted to determine the possible allosteric binding mode of 4b with the enzyme. The allosteric nature of AChE inhibition by these compounds provides the opportunity for the design of subtype-selective enzyme inhibitors. The presented indanone-carbamate scaffold can be structurally modified and optimized through medicinal chemistry-based approaches for designing novel multitargeted anti-Alzheimer agents.


Subject(s)
Carbamates/pharmacology , Cholinesterase Inhibitors/pharmacology , Indans/pharmacology , Acetylcholinesterase/drug effects , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Animals , Butyrylcholinesterase/drug effects , Butyrylcholinesterase/metabolism , Carbamates/chemical synthesis , Carbamates/chemistry , Chemistry, Pharmaceutical/methods , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Drug Design , Electrophorus , Horses , Indans/chemical synthesis , Indans/chemistry , Inhibitory Concentration 50 , Molecular Docking Simulation , Structure-Activity Relationship
10.
J Phys Chem Lett ; 12(16): 3875-3884, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33856801

ABSTRACT

The experimental investigation of the unidirectional motion characterizing the photoisomerization of single-molecule rotary motors requires accessible lab prototypes featuring an electronic circular dichroism (ECD) signal that is sensitive to the geometrical and electronic changes occurring during an ultrafast reactive process. Here we report a combined experimental/computational study of a candidate obtained via the asymmetrization of a light-driven biomimetic molecular switch. We show that the achieved motor has an ECD band that is remarkably sensitive to the isomerization motion, and it is therefore suitable for time-resolved ECD studies. However, we also find that, unexpectedly, the synthesized motor isomerizes on a time scale longer than the subpicosecond time measured for the achiral parent, a result that points to alternative candidates conserving a high reaction speed.


Subject(s)
Biomimetic Materials/chemistry , Indans/chemistry , Pyrrolidinones/chemistry , Biomimetic Materials/chemical synthesis , Biomimetic Materials/radiation effects , Circular Dichroism , Density Functional Theory , Indans/chemical synthesis , Indans/radiation effects , Models, Chemical , Pyrrolidinones/chemical synthesis , Pyrrolidinones/radiation effects , Rotation , Stereoisomerism , Ultraviolet Rays
11.
Bioorg Chem ; 110: 104798, 2021 05.
Article in English | MEDLINE | ID: mdl-33735710

ABSTRACT

Novel spirooxindolopyrrolidine embedded indandione heterocyclic hybrids were obtained in excellent yields via a regio- and stereoselective one-pot three component reaction between Baylis-Hillman adduct and non-stabilized azomethine ylides. The structure of newly synthesized compounds was elucidated through 1D and 2D spectroscopic data and the stereochemistry was determined by single crystal X-ray diffraction analysis. In vitro tubercular activity against Mycobacterium tuberculosis H37Rv using MABA assay reveals that the compound bearing chlorine substituted on the oxindole ring displayed the most potent activity with MIC 0.78 µg/mL and is two-fold active than the standard drug, ethambutol (MIC 1.56 µg/mL).


Subject(s)
Anti-Bacterial Agents/pharmacology , Indans/pharmacology , Mycobacterium tuberculosis/drug effects , Oxindoles/pharmacology , Pyrrolidines/pharmacology , Spiro Compounds/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Drug Discovery , Indans/chemical synthesis , Indans/chemistry , Microbial Sensitivity Tests , Molecular Structure , Oxindoles/chemical synthesis , Oxindoles/chemistry , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Stereoisomerism , Structure-Activity Relationship
12.
J Med Chem ; 64(4): 1844-1855, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33570950

ABSTRACT

The acetylcholinesterase (AChE) inhibitors remain key therapeutic drugs for the treatment of Alzheimer's disease (AD). However, the low-safety window limits their maximum therapeutic benefits. Here, a novel kinetics-driven drug design strategy was employed to discover new-generation AChE inhibitors that possess a longer drug-target residence time and exhibit a larger safety window. After detailed investigations, compound 12 was identified as a highly potent, highly selective, orally bioavailable, and brain preferentially distributed AChE inhibitor. Moreover, it significantly ameliorated cognitive impairments in different mouse models with a lower effective dose than donepezil. The X-ray structure of the cocrystal complex provided a precise binding mode between 12 and AChE. Besides, the data from the phase I trials demonstrated that 12 had good safety, tolerance, and pharmacokinetic profiles at all preset doses in healthy volunteers, providing a solid basis for its further investigation in phase II trials for the treatment of AD.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/therapeutic use , Indans/therapeutic use , Nootropic Agents/therapeutic use , Piperidines/therapeutic use , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Animals , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Crystallography, X-Ray , Dogs , Drug Design , Female , Humans , Indans/chemical synthesis , Indans/metabolism , Kinetics , Male , Mice, Inbred ICR , Molecular Structure , Nootropic Agents/chemical synthesis , Nootropic Agents/metabolism , Piperidines/chemical synthesis , Piperidines/metabolism , Protein Binding , Rats, Sprague-Dawley , Scopolamine , Structure-Activity Relationship
13.
ACS Chem Biol ; 16(2): 371-379, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33435665

ABSTRACT

Dopamine D2 receptors (D2Rs) are major targets in the treatment of psychiatric and neurodegenerative diseases. As with many other G protein-coupled receptors (GPCRs), D2Rs interact within the cellular membrane, leading to a transient receptor homo- or heterodimerization. These interactions are known to alter ligand binding, signaling, and receptor trafficking. Bivalent ligands are ideally suited to target GPCR dimers and are composed of two pharmacophores connected by a spacer element. If properly designed, bivalent ligands are able to engange the two orthosteric binding sites of a GPCR dimer simultaneously. Taking advantage of previously developed ligands for heterodimers of D2R and the neurotensin receptor 1 (NTSR1), we synthesized homobivalent ligands targeting D2R. Employing bioluminescence resonance energy transfer, we found that the bivalent ligands 3b and 4b comprising a 92-atom spacer are able to foster D2R-homodimerization while simultaneously reducing interactions of D2R with NTSR1. Both receptors are coexpressed in the central nervous system and involved in important physiological processes. The newly developed bivalent ligands are excellent tools to further understand the pharmacological consequences of D2R homo- and heterodimerization. Not limited to the dopaminergic system, modifying class A GPCRs' dynamic equilibrium between monomers, homomers, and heteromers with bivalent ligands may represent a novel pharmacological concept paving the way toward innovative drugs.


Subject(s)
Dopamine Agonists/pharmacology , Dopamine D2 Receptor Antagonists/pharmacology , Polyethylene Glycols/pharmacology , Protein Multimerization/drug effects , Receptors, Dopamine D2/metabolism , Dopamine Agonists/chemical synthesis , Dopamine D2 Receptor Antagonists/chemical synthesis , HEK293 Cells , Humans , Indans/chemical synthesis , Indans/pharmacology , Ligands , Piperazines/chemical synthesis , Piperazines/pharmacology , Polyethylene Glycols/chemical synthesis
14.
Molecules ; 26(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498575

ABSTRACT

Starting from the enantiopure precursors, a pair of chiral macrocyclic arenes named helic[1]triptycene[3]arenes were conveniently synthesized. The circular dichroism (CD) spectra of the enantiomeric macrocyclic arenes exhibited mirror images, and the X-ray single crystal structures confirmed their absolute conformations as well. Moreover, the macrocyclic arenes showed strong complexation with secondary ammonium and primary ammonium salts containing aminoindan groups. In particular, the chiral macrocyclic arenes exhibited enantioselective recognition ability towards the chiral secondary ammonium salts containing aminoindan groups with an enantioselective ratio up to 3.89.


Subject(s)
Anthracenes/chemistry , Indans/chemistry , Stereoisomerism , Ammonium Compounds/chemistry , Anthracenes/chemical synthesis , Circular Dichroism , Indans/chemical synthesis
15.
Bioorg Med Chem ; 32: 115960, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33477020

ABSTRACT

OBJECTIVE: A new family of 3'-(Mono, di or tri-substituted phenyl)-4'-(4-(methylsulfonyl) phenyl) spiroisoxazoline derivatives containing indanone spirobridge was designed, synthesized, and evaluated for their selective COX-2 inhibitory potency and cytotoxicity on different cell lines. METHODS: A synthetic reaction based on 1,3-dipolar cycloaddition mechanism was applied for the regiospecific formation of various spiroisoxazolines. The activity of the newly synthesized compounds was determined using in vitro cyclooxygenase inhibition assay. The toxicity of the compounds was evaluated by MTT assay. In addition, induction of apoptosis, and expression levels of Bax, Bcl-2 and caspase-3 mRNA in MCF-7 cells were evaluated following exposure to compound 9f. The docking calculations and molecular dynamics simulation were performed to study the most probable modes of interactions of compound 9f upon binding to COX-2 enzyme. RESULTS: The docking results showed that the synthesized compounds were able to form hydrogen bonds with COX-2 involving methyl sulfonyl, spiroisoxazoline, meta-methoxy and fluoro functional groups. Spiroisoxazoline derivatives containing methoxy group at the C-3' phenyl ring meta position (9f and 9g) showed superior selectivity with higher potency of inhibiting COX-2 enzyme. Furthermore, compound 9f, which possesses 3,4-dimethoxyphenyl on C-3' carbon atom of isoxazoline ring, exhibited the highest COX-2 inhibitory activity, and also displayed the most potent cytotoxicity on MCF-7 cells with an IC50 value of 0.03 ± 0.01 µM, comparable with that of doxorubicin (IC50 of 0.062 ± 0.012 µM). The results indicated that compound 9f could promote apoptosis. Also, compared to the control group, the mRNA expression of Bax and caspase-3 significantly increased, while that of Bcl-2 significantly decreased upon exposure to compound 9f which may propose the activation of mitochondrial-associated pathway as the mechanism of observed apoptosis. CONCLUSION: In vitro biological evaluations accompanied with in silico studies revealed that indanone tricyclic spiroisoxazoline derivatives are good candidates for the development of new anti-inflammatory and anticancer (colorectal and breast) agents.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Drug Design , Indans/pharmacology , Isoxazoles/pharmacology , Spiro Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indans/chemical synthesis , Indans/chemistry , Isoxazoles/chemistry , Molecular Structure , Spiro Compounds/chemistry , Structure-Activity Relationship
16.
Med Chem ; 17(8): 887-902, 2021.
Article in English | MEDLINE | ID: mdl-32851965

ABSTRACT

BACKGROUND: Diabetes mellitus is one of the most chronic metabolic disorders. Since past few years, our research group had synthesized and evaluated libraries of heterocyclic compounds against α and ß-glucosidase enzymes and found encouraging results. The current study comprises of evaluation of indane-1,3-dione as antidiabetic agents based on our previously reported results obtained from closely related moiety isatin and its derivatives. OBJECTIVE: A library of twenty three indane-1,3-dione derivatives (1-23) was synthesized and evaluated for α and ß-glucosidase inhibitions. Moreover, in silico docking studies were carried out to investigate the putative binding mode of selected compounds with the target enzyme. METHODS: The indane-1,3-dione derivatives (1-23) were synthesized by Knoevenagel condensation of different substituted benzaldehydes with indane-1,3-dione under basic condition. The structures of synthetic molecules were deduced by using different spectroscopic techniques, including 1H-, 13C-NMR, EI-MS, and CHN analysis. Compounds (1-23) were evaluated for α and ß-glucosidase inhibitions by adopting the literature protocols. RESULT: Off twenty three, eleven compounds displayed good to moderate activity against α- glucosidase enzyme, nonetheless, all compounds exhibited less than 50% inhibition against ß- glucosidase enzyme. Compounds 1, 14, and 23 displayed good activity against α-glucosidase enzyme with IC50 values of 2.80 ± 0.11, 0.76 ± 0.01, and 2.17 ± 0.18 µM, respectively. The results have shown that these compounds have selectively inhibited the α-glucosidase enzyme. The in silico docking studies also supported the above results and showed different types of interactions of synthetic molecules with the active site of enzyme. CONCLUSION: The compounds 1, 14, and 23 have shown good inhibition against α-glucosidase and may potentially serve as lead for the development of new therapeutic representatives.


Subject(s)
Computer Simulation , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Indans/chemistry , Indans/pharmacology , alpha-Glucosidases/metabolism , Catalytic Domain , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/metabolism , Humans , Indans/chemical synthesis , Indans/metabolism , Kinetics , Molecular Docking Simulation , Structure-Activity Relationship , alpha-Glucosidases/chemistry
17.
Eur J Med Chem ; 209: 112856, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33007602

ABSTRACT

Human carboxylesterase 2 (hCES2A), one of the major serine hydrolases distributed in the small intestine, plays a crucial role in hydrolysis of ester-bearing drugs. Accumulating evidence has indicated that hCES2A inhibitor therapy can modulate the pharmacokinetic and toxicological profiles of some important hCES2A-substrate drugs, such as the anticancer agent CPT-11. Herein, a series of indanone-chalcone hybrids are designed and synthesized to find potent and highly selective hCES2A inhibitors. Inhibition assays demonstrated that most indanone-chalcone hybrids displayed strong to moderate hCES2A inhibition activities. Structure-hCES2A inhibition activity relationship studies showed that introduction of a hydroxyl at the C4' site and introduction of an N-alkyl group at the C6 site were beneficial for hCES2A inhibition. Particularly, B7 (an N-alkylated 1-indanone-chalcone hybrid) exhibited the most potent inhibition on hCES2A and excellent specificity (this agent could not inhibit other human esterases including hCES1A and butyrylcholinesterase). Inhibition kinetic analyses demonstrated that B7 potently inhibited hCES2A-mediated FD hydrolysis in a mixed inhibition manner, with a calculated Ki value of 0.068 µM. Furthermore, B7 was capable of inhibiting intracellular hCES2A in living cells and displayed good metabolic stability. Collectively, our findings show that indanone-chalcone hybrids are good choices for the development of hCES2A inhibitors, while B7 is a promising candidate for the development of novel anti-diarrhea agents to ameliorate irinotecan-induced intestinal toxicity.


Subject(s)
Carboxylesterase/antagonists & inhibitors , Chalcones/chemistry , Chalcones/pharmacology , Indans/chemistry , Indans/pharmacology , Carboxylesterase/metabolism , Chalcones/chemical synthesis , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hep G2 Cells , Humans , Indans/chemical synthesis , Molecular Docking Simulation , Structure-Activity Relationship
18.
Pak J Pharm Sci ; 33(3): 1095-1103, 2020 May.
Article in English | MEDLINE | ID: mdl-33191234

ABSTRACT

The aim of study was to synthesize 1-indanyl isoniazid and sixteen other hydrazide Schiff base derivatives from 1-indanone. All synthesized derivatives were screened for the inhibitory activity against Mycobacterium tuberculosis on three Mycobacterial strains ATCC H37Rv, known INH-sensitive (INH-S) and INH-resistant strains (INH-R) by proportion method. The derivatives were characterized using different spectroscopic techniques such as UV-Visible, FTIR, 1H NMR, and HREIMS. In addition, to gain more insight into morphology of the structures, Scanning electron microscopy (SEM) was also performed. The results revealed that 1-indanyl isoniazid derivative (UN-1) exhibited more potent and high anti-mycobacterial activity against both INH-sensitive and INH-resistant strains of Mycobacterium tuberculosis when compared to standard anti-tubercular drug isoniazid which might be a novel isoniazid derivative as a new anti-tubercular agent.


Subject(s)
Antitubercular Agents/pharmacology , Indans/pharmacology , Isoniazid/pharmacology , Microscopy, Electrochemical, Scanning , Mycobacterium tuberculosis/drug effects , Schiff Bases/pharmacology , Antitubercular Agents/chemical synthesis , Drug Resistance, Bacterial , Humans , Indans/chemical synthesis , Isoniazid/analogs & derivatives , Isoniazid/chemical synthesis , Microbial Viability , Molecular Structure , Proton Magnetic Resonance Spectroscopy , Schiff Bases/chemical synthesis , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship
19.
Nature ; 588(7836): 83-88, 2020 12.
Article in English | MEDLINE | ID: mdl-33049755

ABSTRACT

Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years1-7. However, the field has progressed greatly since the development of early programs such as LHASA1,7, for which reaction choices at each step were made by human operators. Multiple software platforms6,8-14 are now capable of completely autonomous planning. But these programs 'think' only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary15,16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program's knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships17,18, allowing it to 'strategize' over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.


Subject(s)
Artificial Intelligence , Biological Products/chemical synthesis , Chemistry Techniques, Synthetic/methods , Chemistry, Organic/methods , Software , Artificial Intelligence/standards , Automation/methods , Automation/standards , Benzylisoquinolines/chemical synthesis , Benzylisoquinolines/chemistry , Chemistry Techniques, Synthetic/standards , Chemistry, Organic/standards , Indans/chemical synthesis , Indans/chemistry , Indole Alkaloids/chemical synthesis , Indole Alkaloids/chemistry , Knowledge Bases , Lactones/chemical synthesis , Lactones/chemistry , Macrolides/chemical synthesis , Macrolides/chemistry , Reproducibility of Results , Sesquiterpenes/chemical synthesis , Sesquiterpenes/chemistry , Software/standards , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/chemistry
20.
Bioorg Med Chem Lett ; 30(13): 127212, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32371100

ABSTRACT

This Letter details our ongoing efforts to develop selective positive allosteric modulators (PAMs) of the mGlu2/4 heterodimeric receptor that exists in the CNS and may represent a novel drug target to modulate the glutamatergic system. As multiple hit-to-lead campaigns from HTS hits failed to produce selective small molecule mGlu2/4 heterodimer PAMs, we were inspired by the work of Portoghese to synthesize and evaluate a set of nine bivalent tethered ligands (possessing an mGlu2 PAM at one terminus and an mGlu4 PAM at the other). Utilizing G protein-Inwardly Rectifying Potassium (GIRK) channel functional assays, we found that the tethered ligands displayed PAM activity in a cell line co-expressing both mGlu2 and mGlu4 but also in cells expressing mGlu2 or mGlu4 alone. In a CODA-RET assay, one of the tethered ligands potentiated mGlu2/4 heterodimers; however, another compound displayed 75-fold preference for the mGlu2/2 homodimer over heterodimeric mGlu2/4 or homomeric mGlu4/4. This work highlights the development of mGlu receptor PAMs with homodimer/heterodimer preference and expands the potential for PAMs as tethered ligands beyond the more classical antagonists and NAMs.


Subject(s)
Benzamides/pharmacology , Indans/pharmacology , Receptors, Metabotropic Glutamate/agonists , Allosteric Regulation/drug effects , Animals , Benzamides/chemical synthesis , HEK293 Cells , Humans , Indans/chemical synthesis , Ligands , Molecular Structure , Protein Structure, Quaternary , Rats , Receptors, Metabotropic Glutamate/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...