Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 582
Filter
1.
J Nanobiotechnology ; 22(1): 224, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702709

ABSTRACT

Poorly identified tumor boundaries and nontargeted therapies lead to the high recurrence rates and poor quality of life of prostate cancer patients. Near-infrared-II (NIR-II) fluorescence imaging provides certain advantages, including high resolution and the sensitive detection of tumor boundaries. Herein, a cyanine agent (CY7-4) with significantly greater tumor affinity and blood circulation time than indocyanine green was screened. By binding albumin, the absorbance of CY7-4 in an aqueous solution showed no effects from aggregation, with a peak absorbance at 830 nm and a strong fluorescence emission tail beyond 1000 nm. Due to its extended circulation time (half-life of 2.5 h) and high affinity for tumor cells, this fluorophore was used for primary and metastatic tumor diagnosis and continuous monitoring. Moreover, a high tumor signal-to-noise ratio (up to ~ 10) and excellent preferential mitochondrial accumulation ensured the efficacy of this molecule for photothermal therapy. Therefore, we integrated NIR-II fluorescence-guided surgery and intraoperative photothermal therapy to overcome the shortcomings of a single treatment modality. A significant reduction in recurrence and an improved survival rate were observed, indicating that the concept of intraoperative combination therapy has potential for the precise clinical treatment of prostate cancer.


Subject(s)
Carbocyanines , Mitochondria , Neoplasm Recurrence, Local , Photothermal Therapy , Prostatic Neoplasms , Male , Prostatic Neoplasms/diagnostic imaging , Photothermal Therapy/methods , Humans , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Carbocyanines/chemistry , Optical Imaging/methods , Mice , Surgery, Computer-Assisted/methods , Fluorescent Dyes/chemistry , Mice, Nude , Mice, Inbred BALB C , Infrared Rays , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/pharmacology
2.
ACS Appl Mater Interfaces ; 16(19): 25101-25112, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691046

ABSTRACT

The evolution of nano-drug delivery systems addresses the limitations of conventional cancer treatments with stimulus-responsive nanomaterial-based delivery systems presenting temporal and spatial advantages. Among various nanomaterials, boron nitride nanoparticles (BNNs) demonstrate significant potential in drug delivery and cancer treatment, providing a high drug loading capacity, multifunctionality, and low toxicity. However, the challenge lies in augmenting nanomaterial accumulation exclusively within tumors while preserving healthy tissues. To address this, we introduce a novel approach involving cancer cell membrane-functionalized BNNs (CM-BIDdT) for the codelivery of doxorubicin (Dox) and indocyanine green to treat homologous tumor. The cancer cell membrane biomimetic CM-BIDdT nanoparticles possess highly efficient homologous targeting capabilities toward tumor cells. The surface modification with acylated TAT peptides (dTAT) further enhances the nanoparticle intracellular accumulation. Consequently, CM-BIDdT nanoparticles, responsive to the acidic tumor microenvironment, hydrolyze amide bonds, activate the transmembrane penetrating function, and achieve precise targeting with substantial accumulation at the tumor site. Additionally, the photothermal effect of CM-BIDdT under laser irradiation not only kills cells through thermal ablation but also destroys the membrane on the surface of the nanoparticles, facilitating Dox release. Therefore, the fabricated CM-BIDdT nanoparticles orchestrate chemo-photothermal combination therapy and effectively inhibit tumor growth with minimal adverse effects, holding promise as a new modality for synergistic cancer treatment.


Subject(s)
Boron Compounds , Doxorubicin , Indocyanine Green , Nanoparticles , Doxorubicin/chemistry , Doxorubicin/pharmacology , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Animals , Humans , Mice , Nanoparticles/chemistry , Cell Line, Tumor , Photothermal Therapy , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , tat Gene Products, Human Immunodeficiency Virus/chemistry , Mice, Inbred BALB C , Drug Carriers/chemistry , Drug Delivery Systems
3.
J Colloid Interface Sci ; 670: 585-598, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38776693

ABSTRACT

Whilst the development of advanced organic dots with aggregation-induced emission characteristics (AIE-dots) is being intensively studied, their clinical translation in efficient biotherapeutic devices has yet to be tackled. This study explores the synergistic interplay of oligo(styryl)benzenes (OSBs), potent fluorogens with an increased emission in the aggregate state, and Indocyanine green (ICG) as dual Near Infrared (NIR)-visible fluorescent nanovesicles with efficient reactive oxygen species (ROS) generation capacity for cancer treatment using photodynamic therapy (PDT). The co-loading of OSBs and ICG in different nanovesicles has been thoroughly investigated. The nanovesicles' physicochemical properties were manipulated via molecular engineering by modifying the structural properties of the lipid bilayer and the number of oligo(ethyleneoxide) chains in the OSB structure. Diffusion Ordered Spectroscopy (DOSY) NMR and spectrofluorometric studies revealed key differences in the structure of the vesicles and the arrangement of the OSB and ICG in the bilayer. The in vitro assessment of these OSB-ICG nanovesicles revealed that the formulations can increase the temperature and generate ROS after photoirradiation, showing for the first time their potential as dual photothermal/photodynamic (PTT/PDT) agents in the treatment of prostate cancer. Our study provides an exciting opportunity to extend the range of applications of OSB derivates to potentiate the toxicity of phototherapy in prostate and other types of cancer.


Subject(s)
Liposomes , Photochemotherapy , Prostatic Neoplasms , Reactive Oxygen Species , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/therapy , Liposomes/chemistry , Reactive Oxygen Species/metabolism , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Particle Size , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Cell Survival/drug effects , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Optical Imaging , Quantum Dots/chemistry , Surface Properties , Molecular Structure
4.
Int J Biol Macromol ; 269(Pt 2): 132058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704065

ABSTRACT

In clinical practice, tumor-targeting diagnosis and immunotherapy against programmed death ligand 1 (PD-L1) have a significant impact. In this research, a PD-L1-antagonistic affibody dimer (ZPD-L1) was successfully prepared through Escherichia coli expression system, and conjugated with the photosensitizer of ICG via N-hydroxysuccinimide (NHS) ester to develop a novel tumor-targeting agent (ICG-ZPD-L1) for both tumor imaging diagnosis and photothermal-immunotherapy simultaneously. In vitro, ZPD-L1 could specifically bind to PD-L1-positive LLC and MC38 tumor cells, and ICG-ZPD-L1-mediated photothermal therapy (PTT) also showed excellent phototoxicity to these tumor cells. In vivo, ICG-ZPD-L1 selectively enriched into the PD-L1-positive MC38 tumor tissues, and the high-contrast optical imaging of tumors was obtained. ICG-ZPD-L1-mediated PTT exhibited a potent anti-tumor effect in vivo due to its remarkable photothermal properties. Furthermore, ICG-ZPD-L1-mediated PTT significantly induced the immunogenic cell death (ICD) of primary tumors, promoted maturation of dendritic cells (DCs), up-regulated anti-tumor immune response, enhanced immunotherapy, and superiorly inhibited the growth of metastatic tumors. In addition, ICG-ZPD-L1 showed favorable biosafety throughout the brief duration of treatment. In summary, these results suggest that ICG-ZPD-L1 is a multifunctional tumor-targeting drug integrating tumor imaging diagnosis and photothermal-immunotherapy, and has great guiding significance for the diagnosis and treatment of clinical PD-L1-positive tumor patients.


Subject(s)
B7-H1 Antigen , Immunotherapy , Indocyanine Green , Animals , B7-H1 Antigen/metabolism , Mice , Immunotherapy/methods , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Cell Line, Tumor , Photothermal Therapy/methods , Humans , Neoplasms/therapy , Neoplasms/diagnostic imaging , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , Phototherapy/methods
5.
Int J Nanomedicine ; 19: 4263-4278, 2024.
Article in English | MEDLINE | ID: mdl-38766663

ABSTRACT

Introduction: Photodynamic Therapy (PDT) is a promising, minimally invasive treatment for cancer with high immunostimulatory potential, no reported drug resistance, and reduced side effects. Indocyanine Green (ICG) has been used as a photosensitizer (PS) for PDT, although its poor stability and low tumor-target specificity strongly limit its efficacy. To overcome these limitations, ICG can be formulated as a tumor-targeting nanoparticle (NP). Methods: We nanoformulated ICG into recombinant heavy-ferritin nanocages (HFn-ICG). HFn has a specific interaction with transferrin receptor 1 (TfR1), which is overexpressed in most tumors, thus increasing HFn tumor tropism. First, we tested the properties of HFn-ICG as a PS upon irradiation with a continuous-wave diode laser. Then, we evaluated PDT efficacy in two breast cancer (BC) cell lines with different TfR1 expression levels. Finally, we measured the levels of intracellular endogenous heavy ferritin (H-Fn) after PDT treatment. In fact, it is known that cells undergoing ROS-induced autophagy, as in PDT, tend to increase their ferritin levels as a defence mechanism. By measuring intracellular H-Fn, we verified whether this interplay between internalized HFn and endogenous H-Fn could be used to maximize HFn uptake and PDT efficacy. Results: We previously demonstrated that HFn-ICG stabilized ICG molecules and increased their delivery to the target site in vitro and in vivo for fluorescence guided surgery. Here, with the aim of using HFn-ICG for PDT, we showed that HFn-ICG improved treatment efficacy in BC cells, depending on their TfR1 expression. Our data revealed that endogenous H-Fn levels were increased after PDT treatment, suggesting that this defence reaction against oxidative stress could be used to enhance HFn-ICG uptake in cells, increasing treatment efficacy. Conclusion: The strong PDT efficacy and peculiar Trojan horse-like mechanism, that we revealed for the first time in literature, confirmed the promising application of HFn-ICG in PDT.


Subject(s)
Breast Neoplasms , Indocyanine Green , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Receptors, Transferrin , Indocyanine Green/chemistry , Indocyanine Green/pharmacokinetics , Indocyanine Green/pharmacology , Indocyanine Green/administration & dosage , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Humans , Female , Photochemotherapy/methods , Cell Line, Tumor , Receptors, Transferrin/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Nanoparticles/chemistry , Apoferritins/chemistry , Ferritins/chemistry , Antigens, CD/metabolism , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Cell Survival/drug effects , MCF-7 Cells
6.
J Nanobiotechnology ; 22(1): 146, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566213

ABSTRACT

Thrombotic diseases impose a significant global health burden, and conventional drug-based thrombolytic therapies are encumbered by the risk of bleeding complications. In this study, we introduce a novel drug-free nanomedicine founded on tea polyphenols nanoparticles (TPNs), which exhibits multifaceted capabilities for localized photothermal thrombolysis. TPNs were synthesized through a one-pot process under mild conditions, deriving from the monomeric epigallocatechin-3-gallate (EGCG). Within this process, indocyanine green (ICG) was effectively encapsulated, exploiting multiple intermolecular interactions between EGCG and ICG. While both TPNs and ICG inherently possessed photothermal potential, their synergy significantly enhanced photothermal conversion and stability. Furthermore, the nanomedicine was functionalized with cRGD for targeted delivery to activated platelets within thrombus sites, eliciting robust thrombolysis upon laser irradiation across diverse thrombus types. Importantly, the nanomedicine's potent free radical scavenging abilities concurrently mitigated vascular inflammation, thus diminishing the risk of disease recurrence. In summary, this highly biocompatible multifunctional nanomaterial holds promise as a comprehensive approach that combines thrombolysis with anti-inflammatory actions, offering precision in thrombosis treatment.


Subject(s)
Nanomedicine , Thrombosis , Humans , Polyphenols/pharmacology , Tea , Thrombolytic Therapy , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Inflammation/drug therapy , Thrombosis/drug therapy
7.
J Colloid Interface Sci ; 663: 810-824, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447396

ABSTRACT

Nanozymes, as nanomaterials with natural enzyme activities, have been widely applied to deliver various therapeutic agents to synergistically combat the progression of malignant tumors. However, currently common inorganic nanozyme-based drug delivery systems still face challenges such as suboptimal biosafety, inadequate stability, and inferior tumor selectivity. Herein, a super-stable amino acid-based metallo-supramolecular nanoassembly (FPIC NPs) with peroxidase (POD)- and glutathione oxidase (GSHOx)-like activities was fabricated via Pt4+-driven coordination co-assembly of l-cysteine derivatives, the chemotherapeutic drug curcumin (Cur), and the photosensitizer indocyanine green (ICG). The superior POD- and GSHOx-like activities could not only catalyze the decomposition of endogenous hydrogen peroxide into massive hydroxyl radicals, but also deplete the overproduced glutathione (GSH) in cancer cells to weaken intracellular antioxidant defenses. Meanwhile, FPIC NPs would undergo degradation in response to GSH to specifically release Cur, causing efficient mitochondrial damage. In addition, FPIC NPs intrinsically enable fluorescence/photoacoustic imaging to visualize tumor accumulation of encapsulated ICG in real time, thereby determining an appropriate treatment time point for tumoricidal photothermal (PTT)/photodynamic therapy (PDT). In vitro and in vivo findings demonstrated the quadruple orchestration of catalytic therapy, chemotherapeutics, PTT, and PDT offers conspicuous antineoplastic effects with minimal side reactions. This work may provide novel ideas for designing supramolecular nanoassemblies with multiple enzymatic activities and therapeutic functions, allowing for wider applications of nanozymes and nanoassemblies in biomedicine.


Subject(s)
Curcumin , Nanoparticles , Neoplasms , Photochemotherapy , Humans , Amino Acids , Combined Modality Therapy , Indocyanine Green/pharmacology , Neoplasms/drug therapy , Coloring Agents , Oxidation-Reduction , Cell Line, Tumor
8.
Melanoma Res ; 34(3): 276-279, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38489577

ABSTRACT

Melanoma is known for its high metastatic potential and aggressive growth. Recurrence is common post-surgery, sometimes leading to unresectable disease. Locally recurrent unresectable melanoma of extremity has been treated with high-dose anticancer chemotherapy via isolated limb perfusion (ILP) to improve local efficacy of drug and salvage limbs. Standard ILP monitoring uses radiolabeled dyes, requiring specialized personnel and involving radiation exposure. In this case, we used indocyanine green (ICG) to track systemic drug leakage during ILP. A 47-year-old gentleman with recurrent malignant melanoma of the left foot, operated twice earlier and treated with adjuvant pembrolizumab, presented with multiple in-transit metastases in the limb. ILP was planned, with 5 mg ICG administered in the perfusion solution along with high-dose melphalan. Stryker's SPI PHI handheld device was employed to visualize ICG during ILP. Absence of fluorescence beyond the involved extremity, such as fingers, ears, and the abdominal wall, indicated no systemic drug dispersion. For control, technetium radiocolloid dye was co-administered, monitored by a precordial gamma probe, confirming no systemic leakage, and validating effectiveness of ICG in leakage monitoring. ICG proves to be a safe, reliable, cost-effective, radiation-free approach for precise systemic drug leakage monitoring during ILP for recurrent melanoma of extremity.


Subject(s)
Chemotherapy, Cancer, Regional Perfusion , Indocyanine Green , Melanoma , Neoplasm Recurrence, Local , Skin Neoplasms , Humans , Indocyanine Green/pharmacology , Male , Melanoma/drug therapy , Middle Aged , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Chemotherapy, Cancer, Regional Perfusion/methods , Feasibility Studies , Extremities/blood supply
9.
J Biophotonics ; 17(5): e202300429, 2024 May.
Article in English | MEDLINE | ID: mdl-38332581

ABSTRACT

A novel composite wound dressing hydrogel by incorporating single-walled carbon nanotubes and indocyanine green into a dual-crosslinked hydrogel through Schiff base reaction was developed. The objective was to prevent wound infection and enhance the thermal effect induced by laser energy. The hydrogel matrix was constructed using oxidized gelatin, pre-crosslinked with calcium ions, along with carboxymethyl chitosan, crosslinked via Schiff base reaction. Optimization of the blank hydrogel's gelation time, swelling index, degradation rate, and mechanical properties was achieved by adding 0.1% SWCNT and 0.1% ICG. Among them, the SWCNT-loaded hydrogel BCG-SWCNT exhibited superior performance overall: a gelation time of 102 s; a swelling index above 30 after equilibrium swelling; a degradation rate of 100.5% on the seventh day; and a compressive modulus of 8.8 KPa. It displayed significant inhibition against methicillin-resistant Staphylococcus aureus infection in wounds. When combined with laser energy usage, the composite hydrogel demonstrated excellent pro-healing activity in rats.


Subject(s)
Hydrogels , Methicillin-Resistant Staphylococcus aureus , Nanocomposites , Wound Healing , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Nanocomposites/chemistry , Wound Healing/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Collagen/chemistry , Nanotubes, Carbon/chemistry , Skin/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Male , Mechanical Phenomena , Rats, Sprague-Dawley , Indocyanine Green/chemistry , Indocyanine Green/pharmacology
10.
Turk J Ophthalmol ; 54(1): 38-45, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385319

ABSTRACT

The choroid plays an important role in the pathophysiology of the eye. Multimodal imaging offers different techniques to examine the choroid. Fundus fluorescein angiography offers limited visualization of the deep layers of the fundus due to the barrier property of the retinal pigment epithelium. Therefore, indocyanine green angiography (ICGA) is widely used in the angiographic examination of the choroidal structure. ICGA is an important component of multimodal imaging in the diagnosis and treatment of many degenerative, tumoral, and inflammatory diseases of the choroid and retina. This review presents the general characteristics of ICGA and a practical approach to its clinical use.


Subject(s)
Indocyanine Green , Retina , Humans , Indocyanine Green/pharmacology , Fluorescein Angiography/methods , Fundus Oculi , Choroid
11.
Photodiagnosis Photodyn Ther ; 45: 103996, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38336150

ABSTRACT

BACKGROUND: This study aimed to assess the effect of antibacterial photodynamic therapy (aPDT) with chitosan nanoparticles on Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in the culture medium. MATERIALS AND METHODS: In this in vitro, experimental study, chitosan nanoparticles (CHNPs) containing indocyanine green (ICG) were first synthesized and characterized. A. actinomycetemcomitans was cultured on trypticase soy agar. The culture media containing A. actinomycetemcomitans were randomly subjected to the following six decontamination protocols: negative control subjected to sterile phosphate buffered saline (PBS) for 5 min, positive control exposed to 0.2 % chlorhexidine (CHX) for 5 min, exposure to 0.25 mg/mL ICG in the dark at 37 °C for 5 min, aPDT with 0.25 mg/mL ICG and diode laser (808 nm, 250 mW, 14.94 J/cm2, 30 s, 1 mm distance, 8 mm tip diameter), exposure to CHNPs containing 0.25 mg/mL ICG in the dark at 37 °C for 5 min, and aPDT with CHNPs containing 0.25 mg/mL ICG and diode laser. The number of colonies was counted, and analyzed by one-way ANOVA and Tamhane test (alpha=0.050). RESULTS: Antimicrobial PDT with CHNPs, and CHX groups comparably showed the highest decontamination efficacy (P = 0.000). CONCLUSION: The results showed optimal efficacy of aPDT with CHNPs containing 0.25 mg/mL ICG and 808 nm diode laser for reduction of A. actinomycetemcomitans colony count. Thus, aPDT appears to be as effective as CHX, but with fewer adverse effects.


Subject(s)
Chitosan , Nanoparticles , Photochemotherapy , Aggregatibacter actinomycetemcomitans , Chitosan/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Chlorhexidine , Culture Media , Indocyanine Green/pharmacology
12.
Biomacromolecules ; 25(3): 2041-2051, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38380621

ABSTRACT

Triple-negative breast cancer (TNBC), accounting for approximately 20% of breast cancer cases, is a particular subtype that lacks tumor-specific targets and is difficult to treat due to its high aggressiveness and poor prognosis. Chemotherapy remains the major systemic treatment for TNBC. However, its applicability and efficacy in the clinic are usually concerning due to a lack of targeting, adverse side effects, and occurrence of multidrug resistance, suggesting that the development of effective therapeutics is still highly demanded nowadays. In this study, an injectable alginate complex hydrogel loaded with indocyanine green (ICG)-entrapped perfluorocarbon nanoemulsions (IPNEs) and camptothecin (CPT)-doped chitosan nanoparticles (CCNPs), named IPECCNAHG, was developed for photochemotherapy against TNBC. IPNEs with perfluorocarbon can induce hyperthermia and generate more singlet oxygen than an equal dose of free ICG upon near-infrared (NIR) irradiation to achieve photothermal and photodynamic therapy. CCNPs with positive charge may facilitate cellular internalization and provide sustained release of CPT to carry out chemotherapy. Both nanovectors can stabilize agents in the same hydrogel system without interactions. IPECCNAHG integrating IPNEs and CCNPs enables stage-wise combinational therapeutics that may overcome the issues described above. With 60 s of NIR irradiation, IPECCNAHG significantly inhibited the growth of MDA-MB-231 tumors in the mice without systemic toxicity within the 21 day treatment. We speculate that such anticancer efficacy was accomplished by phototherapy followed by chemotherapy, where cancer cells were first destroyed by IPNE-derived hyperthermia and singlet oxygen, followed by sustained damage with CPT after internalization of CCNPs; a two-stage tumoricidal process. Taken together, the developed IPECCNAHG is anticipated to be a feasible tool for TNBC treatment in the clinic.


Subject(s)
Fluorocarbons , Nanoparticles , Photochemotherapy , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Hydrogels/therapeutic use , Singlet Oxygen , Phototherapy , Indocyanine Green/pharmacology , Cell Line, Tumor
13.
J Colloid Interface Sci ; 662: 760-773, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38377695

ABSTRACT

Nanoscale drug delivery systems derived from natural bioactive materials accelerate the innovation and evolution of cancer treatment modalities. Morusin (Mor) is a prenylated flavonoid compound with high cancer chemoprevention activity, however, the poor water solubility, low active pharmaceutical ingredient (API) loading content, and instability compromise its bioavailability and therapeutic effectiveness. Herein, a full-API carrier-free nanoparticle is developed based on the self-assembly of indocyanine green (ICG), copper ions (Cu2+) and Mor, termed as IMCNs, via coordination-driven and π-π stacking for synergistic tumor therapy. The IMCNs exhibits a desirable loading content of Mor (58.7 %) and pH/glutathione (GSH)-responsive motif. Moreover, the photothermal stability and photo-heat conversion efficiency (42.8 %) of IMCNs are improved after coordination with Cu2+ and help to achieve photothermal therapy. Afterward, the released Cu2+ depletes intracellular overexpressed GSH and mediates Fenton-like reactions, and further synergizes with ICG at high temperatures to expand oxidative damage. Furthermore, the released Mor elicits cytoplasmic vacuolation, expedites mitochondrial dysfunction, and exerts chemo-photothermal therapy after being combined with ICG to suppress the migration of residual live tumor cells. In vivo experiments demonstrate that IMCNs under laser irradiation could excellently inhibit tumor growth (89.6 %) through the multi-modal therapeutic performance of self-enhanced chemotherapy/coordinated-drugs/ photothermal therapy (PTT), presenting a great potential for cancer therapy.


Subject(s)
Hyperthermia, Induced , Mitochondrial Diseases , Nanoparticles , Neoplasms , Humans , Indocyanine Green/pharmacology , Copper/pharmacology , Phototherapy , Photothermal Therapy , Flavonoids , Cell Line, Tumor
14.
Biomacromolecules ; 25(2): 964-974, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38232296

ABSTRACT

Thermosensitive nanoparticles can be activated by externally applying heat, either through laser irradiation or magnetic fields, to trigger the release of drug payloads. This controlled release mechanism ensures that drugs are specifically released at the tumor site, maximizing their effectiveness while minimizing systemic toxicity and adverse effects. However, its efficacy is limited by the low concentration of drugs at action sites, which is caused by no specific target to tumor sties. Herein, hyaluronic acid (HA), a gooey, slippery substance with CD44-targeting ability, was conjugated with a thermosensitive polymer poly(acrylamide-co-acrylonitrile) to produce tumor-targeting and thermosensitive polymeric nanocarrier (HA-P) with an upper critical solution temperature (UCST) at 45 °C, which further coloaded chemo-drug doxorubicin (DOX) and photosensitizer Indocyanine green (ICG) to prepare thermosensitive nanoreactors HA-P/DOX&ICG. With photosensitizer ICG acting as the "temperature control element", HA-P/DOX&ICG nanoparticles can respond to temperature changes when receiving near-infrared irradiation and realize subsequent structure depolymerization for burst drug release when the ambient temperature was above 45 °C, achieving programmable and on-demand drug release for effective antitumor therapy. Tumor inhibition rate increased from 61.8 to 95.9% after laser irradiation. Furthermore, the prepared HA-P/DOX&ICG nanoparticles possess imaging properties, with ICG acting as a probe, enabling real-time monitoring of drug distribution and therapeutic response, facilitating precise treatment evaluation. These results provide enlightenment for the design of active tumor targeting and NIR-triggered programmable and on-demand drug release of thermosensitive nanoreactors for tumor therapy.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Photosensitizing Agents/therapeutic use , Hyperthermia, Induced/methods , Phototherapy/methods , Doxorubicin/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Indocyanine Green/pharmacology , Indocyanine Green/chemistry , Nanotechnology , Drug Liberation , Cell Line, Tumor
15.
Photodiagnosis Photodyn Ther ; 45: 103976, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224726

ABSTRACT

BACKGROUND: Urethral injury occurs in 1-6 % of male cases during minimally invasive surgery of lower rectal cancer. A Foley catheter emitting near-infrared (NIR) fluorescence of sufficient intensity has been expected to locate the urethra during image-guided surgery. Although it has been difficult to impart NIR fluorescent properties to biocompatible thermosetting polymers, we have recently succeeded in developing a NIR fluorescent compound for silicone rubber and a NIR fluorescent Foley catheter (HICARL). Here, we evaluated its NIR fluorescence properties and visibility performance using porcine anorectal isolation specimens. METHODS: The HICARL catheter was made of a mixture of solid silicone rubber and a NIR fluorescent compound that emits fluorescence with a wavelength of 820-880 nm, while a conventional transparent Foley catheter was made of solid silicone rubber only. As a standard for comparison of the intensity of NIR fluorescence, a transparent Foley catheter the lumen of which was filled with a mixture of indocyanine green (ICG) and human plasma was used. As a comparison to assess the visibility performance of the HICARL catheter, a transparent Foley catheter into which a commercially available NIR fluorescent polyurethane ureteral catheter (NIRC) was placed was used. RESULTS: A NIR fluorescence quantitative imaging analysis revealed that the Foley-NIRC catheter and the HICARL catheter emitted 3.42 ± 0.42 and 6.43 ± 0.07 times more fluorescence than the Foley-ICG catheter, respectively. The location of the HICARL catheter placed in the anorectum with a wall thickness of 3.8 ± 0.1 mm was clearly delineated in its entirety by NIR fluorescence, while that of the Foley-NIRC catheter was faintly or only partially visible. CONCLUSIONS: The HICARL catheter emitting NIR fluorescence of sufficient intensity is a promising and easy-to-use tool for urethral visualization during image-guided surgery of lower rectal cancer.


Subject(s)
Photochemotherapy , Rectal Neoplasms , Surgery, Computer-Assisted , Humans , Male , Animals , Swine , Silicone Elastomers , Photochemotherapy/methods , Photosensitizing Agents , Coloring Agents , Indocyanine Green/pharmacology , Catheters , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/surgery
16.
Biofabrication ; 16(2)2024 02 07.
Article in English | MEDLINE | ID: mdl-38277678

ABSTRACT

The inflammatory response is one of the general symptoms that accompany tumorigenesis, the pro-inflammatory factors cyclooxygenase-2 (COX-2) and COX-2-derived prostaglandin-2 (PGE-2) in the inflammatory environment surrounding tumors possess promoting tumor development, metastasis and angiogenesis effects. In addition, the hypoxic environment of tumors severely limits the effectiveness of photodynamic therapy (PDT). In this study, a universal extracellular-intracellular 'on-demand' release nanomedicine DOX@PDA-ICG@MnO2@GN-CEL was developed for the combined fight against malignant tumors using a spatiotemporal controlled gelatin coated polydopamine (PDA@GN) as the carrier and loaded with the chemotherapeutic drug doxorubicin (DOX), the photosensitizer indocyanine green (ICG), the PDT enhancer MnO2and the anti-inflammatory drug celecoxib (CEL) individually. Our results showed that DOX@PDA-ICG@MnO2@GN-CEL could release CEL extracellularly by matrix metalloproteinase-2 response and inhibit the COX-2/PGE-2 pathway, reduce chemotherapy resistance and attenuate the concurrent inflammation. After entering the tumor cells, the remaining DOX@PDA-ICG@MnO2released DOX, ICG and MnO2intracellularly through PDA acid response. MnO2promoted the degradation of endogenous H2O2to generate oxygen under acidic conditions to alleviate the tumor hypoxic environment, enhance PDT triggered by ICG. PDA and ICG exhibited photothermal therapy synergistically, and DOX exerted chemotherapy with reduced chemotherapy resistance. The dual responsive drug release switch enabled the chemotherapeutic, photothermal, photodynamic and anti-inflammatory drugs precisely acted on different sites of tumor tissues and realized a promising multimodal combination therapy.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Matrix Metalloproteinase 2 , Drug Liberation , Tumor Microenvironment , Cyclooxygenase 2 , Manganese Compounds , Hyperthermia, Induced/methods , Oxides , Doxorubicin/pharmacology , Indocyanine Green/pharmacology , Anti-Inflammatory Agents , Cell Line, Tumor
17.
J Mater Chem B ; 12(7): 1846-1853, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38284427

ABSTRACT

Combining phototherapy with other treatments has significantly advanced cancer therapy. Here, we designed and fabricated calcium-enriched carbon nanoparticles (Ca-CNPs) that could effectively deplete glutathione (GSH) and release calcium ions in tumors, thereby enhancing the efficacy of photodynamic therapy (PDT) and the calcium overload effect that leads to mitochondrial dysfunction. Due to the electrostatic interaction, π-π stacking interaction, multiple hydrogen bonds, and microporous structures, indocyanine green (ICG) was loaded onto the surface of Ca-CNPs with a high loading efficiency of 44.7 wt%. The obtained Ca-CNPs@ICG can effectively improve the photostability of ICG while retaining its ability to generate singlet oxygen (1O2) and undergo photothermal conversion (Ca-CNPs@ICG vs. ICG, 45.1% vs. 39.5%). In vitro and in vivo experiments demonstrated that Ca-CNPs@ICG could be used for near-infrared fluorescence imaging-guided synergistic calcium overload, photothermal therapy, and GSH depletion-enhanced PDT. This study sheds light on the improvement of 1O2 utilization efficiency and calcium overload-induced mitochondrial membrane potential imbalance in tumor cells.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Indocyanine Green/pharmacology , Indocyanine Green/chemistry , Calcium , Photothermal Therapy , Nanoparticles/chemistry , Neoplasms/therapy , Optical Imaging , Carbon/pharmacology
18.
J Photochem Photobiol B ; 251: 112843, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262341

ABSTRACT

Laser ablation therapy (LA) uses Indocyanine Green dye (ICG) which efficiently absorbs laser energy and the increased temperature results in an instantaneous flame that chars tissue and microbes. Photodynamic therapy (PDT) uses different dyes that are activated by light to kill bacteria. This study evaluated the biocompatibility of the dye Curcumin (CUR), Methylene Blue (MB), and Indocyanine Green (ICG) before and after laser activation (ACT). Polyethylene tubes containing one of the dyes were implanted in the subcutaneous tissue of 32 rats (4 tubes per rat) which were divided into 8 groups: C - control (saline solution); C + ACT (Red Laser 660 nm); CUR; CUR + ACT (480 nm blue LED); MB; MB + ACT (Red Laser 660 nm); ICG; ICG + ACT (810 nm Infrared Laser). After 7 and 30 days (n = 8/time), the rats were euthanized and the tubes with the surrounding tissue were removed and processed for histological analysis of inflammation using H&E stain, and collagen fiber maturation using picrosirius red (PSR). A two-way analysis of variance statistical test was applied (p < 0.05). At 7 days, regardless of laser activation, the CUR group showed a greater inflammatory infiltrate compared to the ICG and control groups, and the MB group had a greater inflammation only in relation to the control (p < 0.05). At 30 days, CUR and MB groups showed a greater inflammatory infiltrate than the control (p < 0.05). ICG group was equal to the control in both periods, regardless of the laser activation (p > 0.05). Laser activation induced the proliferation of collagen immature fibers at 7 days, regardless of the dye (p < 0.05). The CUR group showed a lower percentage of immature and mature fibers at 7 days, compared to ICG and control (p < 0.05) and, at 30 days, compared to control (p < 0.05). Regardless of laser activation, the ICG showed the results of collagen maturation closest to the control (p > 0.05). It was concluded that all dyes are biocompatible and that laser activation did not interfere with biocompatibility. In addition, the maturity of collagen was adequate before and after the laser activation. These results demonstrate that the clinical use of dyes is safe even when activated with a laser.


Subject(s)
Curcumin , Laser Therapy , Photochemotherapy , Rats , Animals , Coloring Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Indocyanine Green/pharmacology , Photochemotherapy/methods , Curcumin/pharmacology , Collagen , Inflammation
19.
J Biomed Mater Res B Appl Biomater ; 112(1): e35313, 2024 01.
Article in English | MEDLINE | ID: mdl-37596854

ABSTRACT

This study aimed to develop material for multimodal imaging by means of X-ray and near-infrared containing FDA- and EMA-approved iohexol and indocyanine green (ICG). The mentioned contrast agents (CAs) are hydrophilic and amphiphilic, respectively, which creates difficulties in fabrication of functional polymeric composites for fiducial markers (FMs) with usage thereof. Therefore, this study exploited for the first time the possibility of enhancing the radiopacity and introduction of the NIR fluorescence of FMs by adsorption of the CAs on hydroxyapatite (HAp) nanoparticles. The particles were embedded in the poly(L-lactide-co-caprolactone) (P[LAcoCL]) matrix resulting in the composite material for bimodal near-infrared fluorescence- and X-ray-based imaging. The applied method of material preparation provided homogenous distribution of both CAs with high iohexol loading efficiency and improved fluorescence signal due to hindered ICG aggregation. The material possessed profound contrasting properties for both imaging modalities. Its stability was evaluated during in vitro experiments in phosphate-buffered saline (PBS) and foetal bovine serum (FBS) solutions. The addition of HAp nanoparticles had significant effect on the fluorescence signal. The X-ray radiopacity was stable within minimum 11 weeks, even though the addition of ICG contributed to a faster release of iohexol. The stiffness of the material was not affected by iohexol or ICG, but incorporation of HAp nanoparticles elevated the values of bending modulus by approximately 70%. Moreover, the performed cell study revealed that all tested materials were not cytotoxic. Thus, the developed material can be successfully used for fabrication of FMs.


Subject(s)
Indocyanine Green , Iohexol , Polyesters , Indocyanine Green/pharmacology , Durapatite , Fluorescence , X-Rays
20.
Photodiagnosis Photodyn Ther ; 45: 103912, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043762

ABSTRACT

INTRODUCTION: Laser speckle contrast imaging (LSCI) can achieve real-time 2D perfusion maps non-invasively. However, LSCI is still difficult to use in general clinical applications because of movement sensitivity and limitations in blood flow analysis. To overcome this, fluorescence imaging (FI) is combined with LSCI using a light source with a wavelength of 785 nm in near-infrared (NIR) region and validates to visualize real-time blood perfusion. MATERIALS AND METHODS: The system was performed using Intralipid and indocyanine green (ICG) in a flow phantom that has three tubes and controlled the flow rate in 0-150 µl/min range. First, real-time LSCI was monitored and measured the change in speckle contrast by reperfusion. Then, we visualized blood perfusion of a rabbit ear under the non-invasive condition by intravenous injection using a total of five different ICG concentration solutions from 128 µM to 3.22 mM. RESULTS: The combined system achieved the performance of processing laser speckle images at about 37-38 fps, and we simultaneously confirmed the fluorescence of ICG and changes in speckle contrast due to intralipid as a light scatterer. In addition, we obtained real-time contrast variation and fluorescent images occurring in rabbit's blood perfusion. CONCLUSIONS: The aim of this study is to provide a real-time diagnostic imaging system that can be used in general clinical applications. LSCI and FI are combined complementary for observing tissue perfusion using a single NIR light source. The combined system could achieve real-time visualization of blood perfusion non-invasively.


Subject(s)
Photochemotherapy , Animals , Rabbits , Photochemotherapy/methods , Photosensitizing Agents , Coloring Agents , Optical Imaging , Indocyanine Green/pharmacology , Lasers
SELECTION OF CITATIONS
SEARCH DETAIL
...