Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 806
Filter
1.
PLoS One ; 19(5): e0302015, 2024.
Article in English | MEDLINE | ID: mdl-38728332

ABSTRACT

Nature has proven to be a treasure resource of bioactive metabolites. In this regard, Tamarix aphylla (F. Tamaricaceae) leaves crude extract was investigated for its gastroprotective effect against indomethacin-induced damage to the gastric mucosa. Additionally, phytochemical investigation of the methanolic extract afforded eight flavonoids' derivatives (1-8). On pharmacology networking study, the isolated compounds identified 123 unique targets where only 45 targets were related to peptic ulcer conditions, these 45 targets include 11 targets specifically correlate to gastric ulcer. The protein-protein interaction defined the PTGS2 gene as one of the highly interacted genes and the complete pharmacology network defined the PTGS2 gene as the most represented gene. The top KEGG signaling pathways according to fold enrichment analysis was the EGFR tyrosine kinase inhibitor resistance pathway. As a result, these findings highlighted the significance of using T. aphylla leaves crude extract as an anti-gastric ulcer candidate, which provides a safer option to chemical antisecretory medicines, which are infamous for their negative side effects. Our findings have illuminated the potent anti-inflammatory and antioxidant effects of T. aphylla, which are likely mediated by suppressing IL-1ß, IL-6, TNF-α, and MAPK signaling pathways, without compromising gastric acidity.


Subject(s)
Indomethacin , MAP Kinase Signaling System , Oxidative Stress , Plant Extracts , Stomach Ulcer , Tamaricaceae , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Animals , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Indomethacin/adverse effects , Indomethacin/toxicity , Rats , Tamaricaceae/chemistry , MAP Kinase Signaling System/drug effects , Male , Plant Leaves/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Rats, Sprague-Dawley , Network Pharmacology , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry
2.
Toxicol Appl Pharmacol ; 486: 116950, 2024 May.
Article in English | MEDLINE | ID: mdl-38701902

ABSTRACT

Antidepressant duloxetine has been shown protective effect on indomethacin-induced gastric ulcer, which was escorted by inflammation in the gastric mucosa. Cytokines are the principal mediators of inflammation. Thus, by screening the differential expression of cytokines in the gastric mucosa using cytokine array at 3 h after indomethacin exposure, when the gastric ulcer began to format, we found that indomethacin increased cytokines which promoted inflammation responses, whereas duloxetine decreased pro-inflammatory cytokines increased by indomethacin and increased RANTES expression. RANTES was consistently increased by pretreated with both 5 mg/kg and 20 mg/kg duloxetine at 3 h and 6 h after indomethacin exposure in male rats. Selective blockade of RANTES-CCR5 axis by a functional antagonist Met-RANTES or a CCR5 antagonist maraviroc suppressed the protection of duloxetine. Considering the pharmacologic action of duloxetine on reuptake of monoamine neurotransmitters, we examined the serotonin (5-HT), norepinephrine and dopamine contents in the blood and discovered 20 mg/kg duloxetine increased 5-HT levels in platelet-poor plasma, while treatment with 5-HT promoted expression of RANTES in the gastric mucosa and alleviated the indomethacin-induced gastric injury. Furthermore, duloxetine activated PI3K-AKT-VEGF signaling pathway, which was regulated by RANTES-CCR5, and selective inhibitor of VEGF receptor axitinib blocked the prophylactic effect of duloxetine. Furthermore, duloxetine also protected gastric mucosa from indomethacin in female rats, and RANTES was increased by duloxetine after 6 h after indomethacin exposure too. Together, our results identified the role of cytokines, particularly RANTES, and the underlying mechanisms in gastroprotective effect of duloxetine against indomethacin, which advanced our understanding in inflammatory modulation by monoamine-based antidepressants.


Subject(s)
Chemokine CCL5 , Duloxetine Hydrochloride , Gastric Mucosa , Indomethacin , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Serotonin , Signal Transduction , Stomach Ulcer , Vascular Endothelial Growth Factor A , Animals , Duloxetine Hydrochloride/pharmacology , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Male , Indomethacin/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Chemokine CCL5/metabolism , Signal Transduction/drug effects , Rats , Vascular Endothelial Growth Factor A/metabolism , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/pathology , Stomach Ulcer/metabolism , Serotonin/metabolism , Phosphatidylinositol 3-Kinases/metabolism
3.
Biotech Histochem ; 99(3): 147-156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644776

ABSTRACT

The purpose of this study was to evaluate the effects of syringic acid, an anti-oxidant, on indomethacin induced gastric ulcers in rats. Experimental groups were control, ulcer, ulcer treated with 20 mg/kg esomeprazole (a proton pump inhibitor that reduces acid secretion), and ulcer treated with 100 mg/kg syringic acid. Rats were pretreated with esomeprazole or syringic acid two weeks before ulcer induction. Our histopathological observations showed that either syringic acid or esomeprazole attenuated the severity of gastric mucosal damage. Moreover, syringic acid and esomeprazole pretreatments alleviated indomethacin-induced damage by regulating oxidative stress, inflammatory response, the level of transforming growth factor-ß (TGF-ß), expressions of COX and prostaglandin E2, cell proliferation, apoptosis and regulation of the NF-κB signaling pathway. We conclude that either esomeprazole or syringic acid administration protected the gastric mucosa from harmful effects of indomethacin. Syringic acid might, therefore be a potential therapeutic agent for preventing and treating indomethacin-induced gastric damage.


Subject(s)
Apoptosis , Gallic Acid , Indomethacin , Inflammation , Oxidative Stress , Stomach Ulcer , Animals , Indomethacin/pharmacology , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Oxidative Stress/drug effects , Apoptosis/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Male , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacology , Rats , Rats, Sprague-Dawley , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Esomeprazole/pharmacology
4.
Toxicol Appl Pharmacol ; 484: 116880, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447874

ABSTRACT

Gastric ulcer (GU) is a serious upper gastrointestinal tract disorder that affects people worldwide. The drugs now available for GU treatment have a high rate of relapses and drug interactions, as well as mild to severe side effects. As a result, new natural therapeutic medications for treating GU with fewer negative side effects are desperately needed. Because of quercetin's (QCT) diverse pharmacological effects and unique structural features, we decided to semi-synthesize new QCT derivatives and test them for antiulcer activity. Docking assays were performed on the synthesized compounds to determine their affinity for TLR-4/MD-2, MyD88/TIR, and NF-κB domains, an important inflammatory pathway involved in GU development and progression. Mice were given oral famotidine (40 mg/kg/day), QCT, QCT pentamethyl (QPM), or QCT pentaacetyl (QPA) (50 mg/kg/day) for 5 days before GU induction by a single intraperitoneal injection of indomethacin (INDO; 18 mg/kg). QPM and QPA have a stronger binding affinity for TLR-4/MD-2, MyD88/TIR and NF-κB domains than QCT. In comparison, they demonstrated the greatest reduction in ulcer score and index, gastric MDA and nitric oxide (NO) contents, MyD88 and NF-κB expressions, and gastric TLR-4 immunostaining. They also enhanced the levels of GSH, CAT, COX-1, and COX-2 in the gastric mucosa, as well as HO-1 and Nrf2 expression, with histological regression in gastric mucosal lesions, with QPA-treated mice demonstrating the best GU healing. QPA is safe against all of the target organs and adverse pathways studied, with good ADME properties. However, further in vitro experiments are necessary to demonstrate the inhibitory effects of QPM and QPA on the protein targets of interest. In addition, preclinical research on its bioavailability and safety is essential before clinical management can be undertaken. Overall, the new QPA derivative could one day serve as the basis for a new class of potential antiulcer drugs.


Subject(s)
Indomethacin , Stomach Ulcer , Humans , Mice , Animals , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Quercetin/pharmacology , Quercetin/therapeutic use , Molecular Docking Simulation , Ulcer/metabolism , Ulcer/pathology , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/pathology
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1791-1801, 2024 03.
Article in English | MEDLINE | ID: mdl-37740773

ABSTRACT

Gastric ulcer is one of the most frequent gastrointestinal ailments worldwide. Indomethacin, one of the most potent NSAIDs, suffers undesirable ulcerogenic activity. Caffeic acid phenethyl ester (CAPE) has known health benefits. The current study examined the potential of CAPE to combat indomethacin-induced gastric ulcers in rats. Animals were randomized into 5 groups: control, Indomethacin (50 mg/kg) mg/kg), Indomethacin + CAPE (5 mg/kg/day), Indomethacin + CAPE (10 mg/kg), and Indomethacin + Omeprazole (30 mg/kg). CAPE prevented the rise in ulcer index, attenuated histopathological changes and preserved gastric mucin concentration. CAPE efficiently significantly prevented accumulation of malondialdehude (MDA) and prevented exhaustion of the enzymatic activities of catalase (CAT) and superoxide dismutase (SOD). Further, CAPE prevented the rise in the expression of tumor necrosis factor-α (TNF-α), cyclo-oxygenase-2 (COX-2) and nuclear factor kapp-B (NFκB). This was associated with down-regulation of Bax and up-regulation of Bcl-2 mRNA. Finally, CAPE prevented induced indomethacin-induced decrease in heat shock protein 70 (HSP70) in gastric tissues. In conclusion, CAPE possesses the ability to prevent indomethacin-induced gastric ulcer in rats. This involves, at least partially, antioxidation, anti-inflammation, anti-apoptosis and enhancement of HSP70 expression.


Subject(s)
Indomethacin , Phenylethyl Alcohol/analogs & derivatives , Stomach Ulcer , Rats , Animals , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Antioxidants/pharmacology , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use
6.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1715-1725, 2024 03.
Article in English | MEDLINE | ID: mdl-37721555

ABSTRACT

RATIONALE: Indomethacin (INDO) is a widely utilized non-steroidal anti-inflammatory drug (NSAID) with recognized effect on the central nervous system. Although previous reports demonstrate that prolonged treatment with indomethacin can lead to behavioral alterations such as anxiety disorder, the biochemical effect exerted by this drug on the brain are not fully understood. OBJECTIVES: The aim of present study was to evaluate if anxiety-like behavior elicited by indomethacin is mediated by brains oxidative stress as well as if alpha-tocopherol, a potent antioxidant, is able to prevent the behavioral and biochemical alterations induced by indomethacin treatment. METHODS: Zebrafish were utilized as experimental model and subdivided into control, INDO 1 mg/Kg, INDO 2 mg/Kg, INDO 3 g/Kg, α-TP 2 mg/Kg, α-TP 2 mg/Kg + INDO 1 mg/Kg and α-TP + INDO 2 mg/Kg groups. Vertical distributions elicited by novelty and brain oxidative stress were utilized to determinate behavioral and biochemical alterations elicited by indomethacin treatment, respectively. RESULTS: Our results showed that treatment with indomethacin 3 mg/kg induces animal death. No changes in animal survival were observed in animals treated with lower doses of indomethacin. Indomethacin induced significant anxiogenic-like behavior as well as intense oxidative stress in zebrafish brain. Treatment with alpha-tocopherol was able to prevent anxiety-like behavior and brain oxidative stress induced by indomethacin. CONCLUSIONS: Data presented in current study demonstrated for the first time that indomethacin induces anxiety-like behavior mediated by brain oxidative stress in zebrafish as well as that pre-treatment with alpha-tocopherol is able to prevent these collateral effects.


Subject(s)
Indomethacin , Zebrafish , Animals , Indomethacin/toxicity , alpha-Tocopherol/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Oxidative Stress , Brain , Anxiety/chemically induced , Anxiety/drug therapy , Anxiety/prevention & control
7.
Int J Mol Sci ; 24(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895164

ABSTRACT

Sambucus nigra (SN) berry extract is characterized by high antioxidant and anti-inflammatory activity. The current study aimed to investigate the effect of SN berry extract against indomethacin (IND)-induced gastric ulcer in rats and the mechanism involved. SN berry extract alleviated IND-induced gastric ulcers, as shown by assessing pathological manifestations in the gastric mucosa. These protective effects are attributed to attenuated oxidative damage to the gastric mucosa, correlated to increased activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), enhanced glutathione (GSH) levels, total antioxidant capacity (TAC), and upregulation of the Nrf2/HO-1 cascade. Moreover, oxidative stress markers, including malondialdehyde (MDA) and total oxidant status (TOS), were downregulated in SN-extract-treated animals. Furthermore, SN berry extract suppressed gastric mucosal inflammation by downregulating interleukin (IL)-33, IL-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) levels, and attenuating myeloperoxidase (MPO) activity. The protective effects of SN berry extract were similar to those exerted by esomeprazole (ESO), an acid-secretion-suppressive drug. In conclusion, SN berry extract has antiulcerative effects, alleviating oxidative stress and inflammation.


Subject(s)
Sambucus nigra , Stomach Ulcer , Animals , Rats , Antioxidants/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Fruit/metabolism , Glutathione/metabolism , Indomethacin/adverse effects , Indomethacin/toxicity , Inflammation , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Signal Transduction , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Superoxide Dismutase/metabolism
8.
Benef Microbes ; 14(3): 239-253, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37646075

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) induce a broad spectrum of gastro-intestinal adverse effects, including ulceration and bleeding. The pathophysiology of NSAID enteropathy is complex and incompletely understood, but some evidence showed that NSAIDs impair the intestinal barrier and cause a gut dysbiosis. Identifying new treatments aiming to reverse or attenuate NSAID-induced adverse effects would have a significant impact on a high number of patients. The aim of this work is to assess the effects of the probiotic yeast Saccharomyces boulardii CNCM I-745 (Sb) on a model of NSAID-induced enteropathy. Four groups of mice were tested: Control, Indomethacin, Sb, and Sb + Indomethacin. A clinical score was evaluated throughout the experiment. Faecal calprotectin, microbiota and haemoglobin analyses were performed. At the end of the treatments, the small intestine, colon, and caecum lengths, and intestinal permeability were measured. Sections of ileum and jejunum were observed to assess a histological score and ileal cytokines were measured by immunoassay. Indomethacin-treated animals showed an increase in their clinical scores, reflecting a worsening of their general state. Mice co-treated with Sb and indomethacin displayed an improvement of their clinical score in comparison with mice treated with indomethacin alone. Sb prevented the indomethacin-induced shortening of the small intestine and caecum, and significantly attenuated the severity of intestinal lesions. Sb also prevented the increase in faecal calprotectin, reduced faecal haemoglobin, and prevented the increase of intestinal permeability in mice treated with indomethacin. Sb also counteracted the increase of faecal bacteria associated with the pathogenesis of NSAID-enteropathy. In conclusion, our results show a protective effect of Sb in a model of indomethacin-induced enteropathy. Sb improved the intestinal barrier function and exerted a positive action on gut microbiota composition.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Intestinal Diseases , Probiotics , Saccharomyces boulardii , Humans , Animals , Mice , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Indomethacin/toxicity , Saccharomyces cerevisiae , Intestinal Diseases/chemically induced , Intestinal Diseases/prevention & control , Models, Theoretical , Hemoglobins , Leukocyte L1 Antigen Complex
9.
Sci Total Environ ; 900: 165722, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37482350

ABSTRACT

BACKGROUND: The mycotoxin deoxynivalenol (DON) is a frequent contaminant of grain and cereal products worldwide. Exposure to DON can cause gastrointestinal inflammation, disturb gut barrier function, and induce gut dysbiosis in vivo under basal conditions, but little is known about the effects of DON ingestion in individuals with pre-existing gastrointestinal disease. OBJECTIVES: Mice were orally exposed to 10 and 100 µg/kg bw/day of DON, corresponding to 10 to 100-fold human tolerable daily intake concentrations, and to the translation in mice of current human daily intake. The effects of DON exposure were explored under steady-state conditions, and in murine models of enteritis and colorectal cancer (CRC). RESULTS: After 8 days of DON exposure, an increase of histomorphological and molecular parameters of epithelial proliferation were observed in normal mice, from the duodenum to the colon. The same exposure in a murine model of indomethacin-induced enteritis led to exacerbation of lesion development and induction of ileal cytokines. DON exposure also worsened the development of colitis-associated CRC in mice as shown by increases in endoscopic and histological colitis scores, tumor grades, and histological hyperplasia. In colon of DON-exposed mice, upstream and downstream ERK signaling genes were upregulated including Mapk1, Mapk3, Map 2k1, Map2k2 core ERK pathway effectors, and Bcl2 and Bcl2l1 antiapoptotic genes. The effects observed in the CRC model were associated with alterations in cecal microbiota taxonomic composition and metabolism of bacterial fucose and rhamnose. Strong Spearman's correlations were revealed between the relative abundance of the changed bacterial genera and CRC-related variables. DISCUSSION: Ingestion of DON mycotoxin at concentrations representative of human real-world exposure worsened the development of indomethacin-induced enteritis and colitis-associated CRC in mice. Our results suggest that even at low doses, which are currently tolerated in the human diet, DON could promote the development of intestinal inflammatory diseases and CRC.


Subject(s)
Colitis , Colorectal Neoplasms , Enteritis , Mycotoxins , Mice , Humans , Animals , Enteritis/chemically induced , Enteritis/pathology , Diet , Indomethacin/toxicity , Colorectal Neoplasms/chemically induced
10.
J Biochem Mol Toxicol ; 37(11): e23479, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37483153

ABSTRACT

Gastric ulcer is a common disease with increased prevalence in the aged population. Aged gastric mucosa has increased susceptibility to injury along with nonsteroidal anti-inflammatory drugs use due to impaired mucosal defense and decreased vasodilator release. We investigated whether l-arginine could protect against age-related gastric ulceration induced by indomethacin. Aged and adult male Wistar rats were administered sole and combined treatment of  l-arginine and Nω -nitro-l-arginine methyl ester ( l-NAME) before induction of gastric ulceration by indomethacin. The gastroprotective effect of  l-arginine was displayed only in adult rats with indomethacin-induced gastric ulceration, as evidenced by a significant decrease in ulcer index, oxidative stress parameters, and mucosal myeloperoxidase activity along with increased mucosal PGE2 levels. Interestingly, the mucosal gene expressions of NF-кB, iNOS, and COX-2 were significantly suppressed by  l-arginine pretreatment and aggregated upon pretreatment with  l-NAME in both adult and aged rats treated with indomethacin. In conclusion,  l-arginine protected the rats' gastric mucosa against indomethacin-induced gastric ulceration, possibly, at least in part, by enhancement of mucosal nitric oxide/PGE2 content along with suppressing gastric inflammation and oxidative stress. This study supposed that the gastroprotective effect of  l-arginine depends on aging, and even so, the adoption of a new approach to gastric ulcer treatment for the aged population is warranted.


Subject(s)
Indomethacin , Stomach Ulcer , Male , Animals , Rats , Rats, Wistar , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Nitric Oxide , Dinoprostone , NG-Nitroarginine Methyl Ester/pharmacology , Arginine/pharmacology
11.
Biotech Histochem ; 98(6): 424-431, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37291906

ABSTRACT

We investigated the anti-ulcer activity of ethanol extracts of Polygonum cognatum on indomethacin induced gastric damage in rats. We evaluated the number of ulcer areas, oxidant and antioxidant parameters as well as histopathologic features in rat stomach. We measured the total antioxidant status of P. cognatum in concentrations from 1.56-100 mg/ml. P. cognatum extract inhibited indomethacin induced ulcer formation with an effect similar to a 20 mg/kg dose of the standard anti-ulcer drug, esomeprazole. All doses of P. cognatum extract exhibited positive effects on oxidative stress markers and histopathological features in the stomach tissue of rats. We suggest that the antioxidant activity of P. cognatum extract may be responsible for its gastroprotective effect and that P. cognatum extract may be a useful gastroprotective agent.


Subject(s)
Polygonum , Stomach Ulcer , Rats , Animals , Indomethacin/toxicity , Antioxidants/pharmacology , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Plant Extracts/pharmacology , Rats, Wistar
12.
J Ethnopharmacol ; 314: 116545, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37196816

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ruda-6 (RD-6), a typical traditional Mongolian medicine formulae consisting of 6 herbs, has been traditionally used in treating gastric disorders. Even though it has been shown to protect against gastric ulcers (GU) in animal models, the gut microbiome and serum metabololite-related mechanisms that prevent GU are not well understood. AIM OF THE STUDY: This study was conducted to evaluate the gastroprotective mechanism of RD-6 associated with the alteration of the gut microbiome and serum metabolic profiles in GU rats. MATERIALS AND METHODS: RD-6 (0.27, 1.35 and 2.7 g/kg) or ranitidine (40 mg/kg) were orally administered in rats for three weeks before the induction of gastric ulcer using indomethacin (30 mg/kg, single oral dose). The gastric ulcer index, ulcer area, H&E staining, and the levels of TNF-α, iNOS, MPO and MDA were quantified to evaluate the ulcer inhibitory effects of RD-6. Then, 16S rRNA gene sequencing combined with LC-MS metabolic profiling was performed to investigate the effect of RD-6 on the gut microbiota and serum metabolites in rats. Moreover, a spearman analysis was used to calculate the correlation coefficient between the different microbiota and the metabolites. RESULTS: RD-6 inhibited the gastric lesion damage caused by indomethacin in rats, decreased the ulcer index by 50.29% (p < 0.05), reduced the levels of TNF-α, iNOS, MDA and MPO in gastric tissue. Additionally, RD-6 reshaped the diversity and microbial composition, and reversed the reduced bacteria including [Eubacterium]_xylanophilum group, Sellimonas, Desulfovibrio, and UCG-009, and the increased bacteria Aquamicrobium caused by indomethacin induction. Furthermore, RD-6 regulated the levels of metabolites including amino acids and organic acids, and these affected metabolites were involved in taurine and hypotaurine metabolism and tryptophan metabolism. Spearman analysis revealed that the perturbed gut microbiota were closely related to the changes in differential serum metabolites. CONCLUSION: In view of the 16S rRNA gene sequencing and LC-MS metabolic results, the present study suggests the mechanism of RD-6 ameliorating GU via modulating intestinal microbiota and their metabolites.


Subject(s)
Gastrointestinal Microbiome , Stomach Ulcer , Rats , Animals , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Medicine, Mongolian Traditional , Ulcer , Tumor Necrosis Factor-alpha/pharmacology , RNA, Ribosomal, 16S/genetics , Metabolomics
13.
Nutrients ; 15(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049515

ABSTRACT

The aim of this study was to investigate the potential protective effects of walnut oligopeptides (WOPs) on indomethacin-induced gastric ulcers in rats. The rats were divided into the following groups: normal group, model group, omeprazole group (0.02 g/kg), and WOPs groups (0.22, 0.44, and 0.88 g/kg, respectively). After receiving gavage once per day for 30 consecutive days, the rats were injected intraperitoneally with indomethacin 48 mg/kg to induce gastric ulcers. Then, the serum inflammatory cytokines and gastric prostaglandin E2 (PGE2), oxidative stress-related indicators, and the RNA expression of COX-1 and COX-2 were measured. The results revealed that WOPs confer significant gastroprotection on gastric ulcers caused by indomethacin, regulating inflammatory cytokines, oxidative stress, and prostaglandins synthesis, and enhancing the expression of COX-1 and COX-2 in gastric tissue, thus exerting its protective effect on gastric mucosa. The gastroprotective mechanism may be related to the involvement of the arachidonic acid metabolism and upregulation of tryptophan, phenylalanine, tyrosine, and alpha-Linolenic acid metabolism synthesis in vivo.


Subject(s)
Juglans , Stomach Ulcer , Rats , Animals , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Gastric Mucosa , Cytokines/metabolism , Oligopeptides/adverse effects
14.
Pharmacology ; 108(3): 286-300, 2023.
Article in English | MEDLINE | ID: mdl-37023725

ABSTRACT

INTRODUCTION: Nonsteroidal anti-inflammatory drug (NSAID)-induced small intestinal damage is a serious and escalating clinical problem without effective treatment. Lafutidine (LAF) is a novel histamine H2 receptor antagonist with a mucosal protective action. This study aimed to investigate the protective effect of LAF on indomethacin (IND)-induced enteropathy in rats. METHODS: Rats were treated with LAF for 10 days with concomitant IND treatment on the final 5 days. Changes in metabolism and hematological and biochemical parameters were measured, and intestinal damage was blindly scored. Intestinal mucosal tissue and luminal contents were collected for transcriptome and microbiota sequencing. Intestinal inflammation and barrier function were also evaluated. RESULTS: LAF treatment prevented anorexia and weight loss in rats and ameliorated reductions in hemoglobin, hematocrit, total protein, and albumin levels. LAF reduced the severity of IND-induced intestinal damage including macroscopic and histopathological damage score. Transcriptome sequencing results indicated that LAF might have positive effects on intestinal inflammation and the intestinal mucosal barrier. Further research revealed that LAF decreased neutrophil infiltration, and IL-1ß and TNF-α expression in intestinal tissue. Besides, the treatment increased mucus secretion, MUC2, Occludin, and ZO-1 expression, and decreased serum D-lactate levels. LAF treatment also ameliorates microbial dysbiosis in small intestine induced by IND and increased the abundance of Lactobacillus acidophilus. CONCLUSION: LAF may protect against NSAID enteropathy via enhancing the intestinal mucosal barrier, inhibiting inflammation, and regulating microbiota.


Subject(s)
Intestinal Diseases , Microbiota , Rats , Animals , Indomethacin/toxicity , Intestine, Small , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Intestinal Mucosa , Intestinal Diseases/chemically induced
15.
Chem Biol Interact ; 375: 110430, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36868495

ABSTRACT

The mechanism of indomethacin toxicity at the systemic level is largely unknown. In this study, multi-specimen molecular characterization was conducted in rats treated with three doses of indomethacin (2.5, 5, and 10 mg/kg) for 1 week. Kidney, liver, urine, and serum samples were collected and analyzed using untargeted metabolomics. The kidney and liver transcriptomics data (10 mg indomethacin/kg and control) were subjected to a comprehensive omics-based analysis. Indomethacin exposure at 2.5 and 5 mg/kg doses did not cause significant metabolome changes, whereas considerable alterations in the metabolic profile compared to the control were induced by a dose of 10 mg/kg. Decreased levels of metabolites and an increased creatine level in the urine metabolome indicated injury to the kidney. The integrated omics analysis in both liver and kidney revealed an oxidant-antioxidant imbalance due to an excess of reactive oxygen species, likely originating from dysfunctional mitochondria. Specifically, indomethacin exposure induced changes in metabolites related to the citrate cycle, cell membrane composition, and DNA synthesis in the kidney. The dysregulation of genes related to ferroptosis and suppression of amino acid and fatty acid metabolism were evidence of indomethacin-induced nephrotoxicity. In conclusion, a multi-specimen omics investigation provided important insights into the mechanism of indomethacin toxicity. The identification of targets that ameliorate indomethacin toxicity will enhance the therapeutic utility of this drug.


Subject(s)
Indomethacin , Multiomics , Rats , Animals , Indomethacin/toxicity , Kidney/metabolism , Metabolomics , Metabolome
16.
Br J Pharmacol ; 180(18): 2317-2340, 2023 09.
Article in English | MEDLINE | ID: mdl-36914615

ABSTRACT

BACKGROUND AND PURPOSE: Mitochondrial oxidative stress, inflammation and apoptosis primarily underlie gastric mucosal injury caused by the widely used non-steroidal anti-inflammatory drugs (NSAIDs). Alternative gastroprotective strategies are therefore needed. Sirtuin-3 pivotally maintains mitochondrial structural integrity and metabolism while preventing oxidative stress; however, its relevance to gastric injury was never explored. Here, we have investigated whether and how sirtuin-3 stimulation by the phytochemical, honokiol, could rescue NSAID-induced gastric injury. EXPERIMENTAL APPROACH: Gastric injury in rats induced by indomethacin was used to assess the effects of honokiol. Next-generation sequencing-based transcriptomics followed by functional validation identified the gastroprotective function of sirtuin-3. Flow cytometry, immunoblotting, qRT-PCR and immunohistochemistry were used measure effects on oxidative stress, mitochondrial dynamics, electron transport chain function, and markers of inflammation and apoptosis. Sirtuin-3 deacetylase activity was also estimated and gastric luminal pH was measured. KEY RESULTS: Indomethacin down-regulated sirtuin-3 to induce oxidative stress, mitochondrial hyperacetylation, 8-oxoguanine DNA glycosylase 1 depletion, mitochondrial DNA damage, respiratory chain defect and mitochondrial fragmentation leading to severe mucosal injury. Indomethacin dose-dependently inhibited sirtuin-3 deacetylase activity. Honokiol prevented mitochondrial oxidative damage and inflammatory tissue injury by attenuating indomethacin-induced depletion of both sirtuin-3 and its transcriptional regulators PGC1α and ERRα. Honokiol also accelerated gastric wound healing but did not alter gastric acid secretion, unlike lansoprazole. CONCLUSIONS AND IMPLICATIONS: Sirtuin-3 stimulation by honokiol prevented and reversed NSAID-induced gastric injury through maintaining mitochondrial integrity. Honokiol did not affect gastric acid secretion. Sirtuin-3 stimulation by honokiol may be utilized as a mitochondria-based, acid-independent novel gastroprotective strategy against NSAIDs.


Subject(s)
Sirtuin 3 , Rats , Animals , Sirtuin 3/metabolism , Rats, Sprague-Dawley , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Indomethacin/toxicity , Gastric Mucosa/metabolism , Apoptosis , Inflammation/metabolism
17.
Clin Exp Pharmacol Physiol ; 50(5): 369-379, 2023 05.
Article in English | MEDLINE | ID: mdl-36648304

ABSTRACT

Gastric ulcer is the most common gastrointestinal disorder affecting people globally. Although many drugs are available to treat ulcers, the mortality rate is relatively high, and drugs lack selectivity to treat ulcers without causing side effects. In this study, the potential therapeutic effects of phylloquinone were tested against indomethacin-induced gastric ulcer in rats by giving rats a single oral dose of indomethacin (48 mg/kg), followed by phylloquinone (10 mg/kg) orally, once daily for six consecutive days. Phylloquinone significantly attenuated indomethacin-induced oxidative and inflammatory responses through hindering the inflammatory cascade by decreasing the levels of TNF-α, NF-κB, INOS and COX-2 which counteracts indomethacin effects. Also, it increased NAD+ which enhanced SIRT-1 level. Furthermore, phylloquinone was effective in increasing mucus secretion, decreasing acid secretion, reversing histological effects caused by indomethacin and minimizing ulcer and lesion indices All these findings indicate that phylloquinone may be used in protection and treatment of indomethacin-induced gastric ulcer.


Subject(s)
Indomethacin , Stomach Ulcer , Rats , Animals , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Vitamin K 1 , Ulcer/chemically induced , Tumor Necrosis Factor-alpha
18.
Naunyn Schmiedebergs Arch Pharmacol ; 396(2): 289-300, 2023 02.
Article in English | MEDLINE | ID: mdl-36322163

ABSTRACT

Soft corals and their secondary metabolites represent an exceptional source of potential drugs. In this regard, Sarcophyton glaucum-derived secondary metabolites were examined for their preventive activities against indomethacin-induced gastric ulcer. Extraction and chromatographic processing of a specimen of S. glaucum collected from the Red Sea waters of Jeddah city resulted in the isolation of eight metabolites including two furanone-based cembranoids (1 and 2), two known pyran-based cembranoids (3 and 4), a known aromadendrene derivative (5), a δ-lactone fatty acid derivative (6), and two known gorgostane-type sterols (7 and 8). Compounds 1 and 6 are new chemical structures, named Δ12(20)-sarcophine and sarcoglaucanoate, respectively. In an initial pilot experiment, compounds 1 and 2 showed significant protective activities against indomethacin-induced peptic ulcer in rats. These data were evidenced by their ability to ameliorate the elevated ulcer indices and prevent histopathological alterations observed in the untreated animals. Their effects were mediated by enhanced mucin as shown by Alcian blue and periodic acid-Schiff (PAS) staining of stomach sections. Compounds 1 and 2 exerted significant antioxidant properties as they prevent reduced glutathione (GSH) depletion, malondialdehyde (MDA) accumulation, and superoxide dismutase (SOD) exhaustion. Furthermore, immunohistochemical analyses indicated that both compounds inhibited the expression of interleukin-6 (IL-6) and tumor necrosis-α (TNF-α) as compared to indomethacin alone-treated animals. These actions were accompanied by significant enhancement of tumor growth factor-ß (TGF-ß) expression. In conclusion, two cembranoids exhibited protective activities against indomethacin-induced peptic ulcer. This is, at least partly, mediated by their pro-mucin, antioxidant, anti-inflammatory, and TGF-ß stimulating properties.


Subject(s)
Anthozoa , Diterpenes , Stomach Ulcer , Rats , Animals , Indomethacin/toxicity , Antioxidants/pharmacology , Antioxidants/therapeutic use , Diterpenes/pharmacology , Diterpenes/chemistry , Anthozoa/chemistry , Indian Ocean , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/drug therapy , Transforming Growth Factor beta
19.
Biomed Pharmacother ; 156: 113866, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228371

ABSTRACT

Huang-Qi-Jian-Zhong-Tang (HQJZT) is a well-known traditional Chinese herbal formulation. This study aimed to investigate the duodenoprotective properties of HQJZT against Indomethacin (IND)-induced duodenal ulceration in rats, and the mechanisms involved, particularly through NF-κB and STAT signaling pathways. Our results showed that HQJZT completely protected the duodenal mucosa from ulceration caused by IND, as indicated by improved macroscopic and histological appearances. There was a significant decrease in ulcer index and microscopic score, an increase in villus height and crypt depth, and a normalization of the tissue architecture of the duodenum in rats following HQJZT treatment. Blood flow into the duodenal mucosa was significantly increased after HQJZT administration. HQJZT significantly increased PGE2 and NO levels in the duodenal mucosa. A significant reduction in the production of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was observed in the duodenal mucosa under treatment with HQJZT. Mechanistically, the administration of HQJZT significantly lowered the duodenal protein expression of inflammation-related genes, including p-NF-κB and p-IκBß, compared with the ulcer control group. Furthermore, the STAT signaling pathway-related protein markers p-JAK and p-STAT were significantly reduced in the HQJZT (1.30 and 2.60 g/kg) groups. As a result of these findings, HQJZT alleviates duodenal mucosal ulcers caused by IND. A protective effect of HQJZT on duodenal ulcers is attributed to its ability to improve mucosal blood flow, stimulate the production of cytoprotective mediators, minimize proinflammatory cytokines, and block the activation of NF-κB and STAT signaling pathways.


Subject(s)
Drugs, Chinese Herbal , Duodenal Ulcer , Animals , Rats , Cytokines/metabolism , Duodenal Ulcer/chemically induced , Duodenal Ulcer/drug therapy , Indomethacin/toxicity , Medicine, Chinese Traditional , NF-kappa B/metabolism , Signal Transduction , Drugs, Chinese Herbal/therapeutic use
20.
Biomed Pharmacother ; 150: 113026, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35658250

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastric ulcers represent a significant clinical concern and adversely affect the quality of life. Inducible nitric oxide synthase/endothelial nitric oxide synthase (iNOS/eNOS) and asymmetric dimethylarginine/ dimethylarginine dimethylaminohydrolase-1 (ADMA/DDAH-1) signaling are key players in gastric ulcer pathogenesis. This work was planned to explore the role of iNOS/eNOS and ADMA/DDAH-1 signaling in rats with indomethacin-induced gastric ulcer, as potential pathways for the gastro-protective effect of tadalafil. Split into 5 separate groups, rats were assigned to control, tadalafil (10 mg/kg, p.o), indomethacin (single oral dose of 60 mg/kg), indomethacin + pantoprazole (40 mg/kg, p.o), and indomethacin + tadalafil (10 mg/kg, p.o). The results indicated that pretreatment with tadalafil significantly reduced ulcer index (UI), increased preventive index (PI), and counteracted indomethacin-induced histopathological aberrations. Tadalafil significantly reduced the gastric content of NO while it significantly elevated that of GSH and enhanced SOD activity. It significantly reduced the gastric expression of TNF-α and ADMA while it significantly elevated that of COX-2, PGE-2, and DDAH-1. Western blot analysis revealed that pretreatment with tadalafil significantly reduced iNOS protein expression while it significantly elevated that of eNOS. Collectively, these data suggest that tadalafil exerts potential protective effect against indomethacin-induced ulcer through suppression of inflammation, attenuation of oxidative stress, and boosting of antioxidants. Moreover, tadalafil protective effects are mediated via upregulation of PGE-2 with modulating the signaling pathways of ADMA/DDAH-1, and iNOS/eNOS. As a result, the current evidence corroborates the use of tadalafil in controlling gastric ulcers and preventing NSAID gastric side effects.


Subject(s)
Indomethacin , Stomach Ulcer , Amidohydrolases/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arginine/pharmacology , Indomethacin/therapeutic use , Indomethacin/toxicity , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Prostaglandins E/therapeutic use , Quality of Life , Rats , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Tadalafil/pharmacology , Tadalafil/therapeutic use , Ulcer/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...