Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.289
Filter
1.
J Cereb Blood Flow Metab ; 44(7): 1246-1249, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38629577

ABSTRACT

Cell therapy and regenerative medicine have made remarkable progress in treating neurodegenerative disorders. Induced pluripotent stem cells (iPSCs) offer a promising source for cell replacement therapies, but their practical application faces challenges due to poor survival and integration after transplantation. Park et al. propose a novel therapeutic strategy involving the co-transplantation of regulatory T cells (Tregs) and iPSC-derived dopamine neurons. This combined approach enhances the survival of transplanted cells and protects against neuroinflammation-induced damage. In PD animal models, the co-transplantation approach significantly suppressed the host immune response, resulting in improved behavioral recovery. Additionally, Tregs demonstrate acute neuroprotection and contribute to delayed neuro-restoration in ischemic stroke. This combined approach of cell therapy with immunomodulation offers a promising avenue for advancing our understanding of neurological diseases and promoting the development of novel treatments.


Subject(s)
Brain Diseases , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Humans , Animals , Brain Diseases/therapy , Brain Diseases/immunology , Induced Pluripotent Stem Cells/transplantation , Cell- and Tissue-Based Therapy/methods , Transplantation, Autologous/methods
2.
J Neural Eng ; 21(2)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38479026

ABSTRACT

Objective.Although human induced pluripotent stem cell (iPSC)-derived cell replacement for Parkinson's disease has considerable reparative potential, its full therapeutic benefit is limited by poor graft survival and dopaminergic maturation. Injectable biomaterial scaffolds, such as collagen hydrogels, have the potential to address these issues via a plethora of supportive benefits including acting as a structural scaffold for cell adherence, shielding from the host immune response and providing a reservoir of neurotrophic factors to aid survival and differentiation. Thus, the aim of this study was to determine if a neurotrophin-enriched collagen hydrogel could improve the survival and maturation of iPSC-derived dopaminergic progenitors (iPSC-DAPs) after transplantation into the rat parkinsonian brain.Approach.Human iPSC-DAPs were transplanted into the 6-hydroxydopamine-lesioned striatum either alone, with the neurotrophins GDNF and BDNF, in an unloaded collagen hydrogel, or in a neurotrophin-loaded collagen hydrogel.Post-mortem, human nuclear immunostaining was used to identify surviving iPSC-DAPs while tyrosine hydroxylase immunostaining was used to identify iPSC-DAPs that had differentiated into mature dopaminergic neurons.Main results.We found that iPSC-DAPs transplanted in the neurotrophin-enriched collagen hydrogel survived and matured significantly better than cells implanted without the biomaterial (8 fold improvement in survival and 16 fold improvement in dopaminergic differentiation). This study shows that transplantation of human iPSC-DAPs in a neurotrophin-enriched collagen hydrogel improves graft survival and maturation in the parkinsonian rat brain.Significance.The data strongly supports further investigation of supportive hydrogels for improving the outcome of iPSC-derived brain repair in Parkinson's disease.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Rats , Animals , Humans , Nerve Growth Factors/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Hydrogels/chemistry , Parkinson Disease/therapy , Brain/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/transplantation , Biocompatible Materials , Collagen , Cell Differentiation
3.
Stem Cell Reports ; 19(3): 331-342, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38335965

ABSTRACT

Several retinal degenerations affect the human central retina, which is primarily comprised of cones and is essential for high acuity and color vision. Transplanting cone photoreceptors is a promising strategy to replace degenerated cones in this region. Although this approach has been investigated in a handful of animal models, commonly used rodent models lack a cone-rich region and larger models can be expensive and inaccessible, impeding the translation of therapies. Here, we transplanted dissociated GFP-expressing photoreceptors from retinal organoids differentiated from human induced pluripotent stem cells into the subretinal space of damaged and undamaged cone-dominant 13-lined ground squirrel eyes. Transplanted cell survival was documented via noninvasive high-resolution imaging and immunohistochemistry to confirm the presence of human donor photoreceptors for up to 4 months posttransplantation. These results demonstrate the utility of a cone-dominant rodent model for advancing the clinical translation of cell replacement therapies.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Degeneration , Animals , Humans , Retinal Cone Photoreceptor Cells/transplantation , Induced Pluripotent Stem Cells/transplantation , Retina , Retinal Degeneration/therapy , Sciuridae
4.
Stem Cell Res Ther ; 15(1): 35, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321505

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is a devastating disease that causes extensive damage to oligodendrocytes and neurons leading to demyelination and axonal degeneration. In this study, we co-transplanted cell grafts containing oligodendrocyte progenitor cells (OPCs) derived from human-induced pluripotent stem cells (iPSCs) combined with human umbilical vein endothelial cells (HUVECs), which were reported to promote OPCs survival and migration, into rat contusion models to promote functional recovery after SCI. METHODS: OPCs were derived from iPSCs and identified by immunofluorescence at different time points. Functional assays in vitro were performed to evaluate the effect of HUVECs on the proliferation, migration, and survival of OPCs by co-culture and migration assay, as well as on the neuronal axonal growth. A combination of OPCs and HUVECs was transplanted into the rat contusive model. Upon 8 weeks, immunofluorescence staining was performed to test the safety of transplanted cells and to observe the neuronal repairment, myelination, and neural circuit reconstruction at the injured area; also, the functional recovery was assessed by Basso, Beattie, and Bresnahan open-field scale, Ladder climb, SEP, and MEP. Furthermore, the effect of HUVECs on grafts was also determined in vivo. RESULTS: Data showed that HUVECs promote the proliferation, migration, and survival of OPCs both in vitro and in vivo. Furthermore, 8 weeks upon engraftment, the rats with OPCs and HUVECs co-transplantation noticeably facilitated remyelination, enhanced functional connection between the grafts and the host and promoted functional recovery. In addition, compared with the OPCs-alone transplantation, the co-transplantation generated more sensory neurons at the lesion border and significantly improved the sensory functional recovery. CONCLUSIONS: Our study demonstrates that transplantation of OPCs combined with HUVECs significantly enhances both motor and sensory functional recovery after SCI. No significance was observed between OPCs combined with HUVECs group and OPCs-alone group in motor function recovery, while the sensory function recovery was significantly promoted in OPCs combined with HUVECs groups compared with the other two groups. These findings provide novel insights into the field of SCI research.


Subject(s)
Induced Pluripotent Stem Cells , Oligodendrocyte Precursor Cells , Spinal Cord Injuries , Rats , Humans , Animals , Oligodendrocyte Precursor Cells/pathology , Oligodendrocyte Precursor Cells/transplantation , Human Umbilical Vein Endothelial Cells , Recovery of Function , Induced Pluripotent Stem Cells/transplantation , Spinal Cord Injuries/pathology , Oligodendroglia , Spinal Cord/pathology , Cell Differentiation/physiology
5.
Exp Neurol ; 374: 114694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38272159

ABSTRACT

Parkinson's disease (PD) is a relentlessly progressive and currently incurable neurodegenerative disease with significant unmet medical needs. Since PD stems from the degeneration of midbrain dopaminergic (DA) neurons in a defined brain location, PD patients are considered optimal candidates for cell replacement therapy. Clinical trials for cell transplantation in PD are beginning to re-emerge worldwide with a new focus on induced pluripotent stem cells (iPSCs) as a source of DA neurons since they can be derived from adult somatic cells and produced in large quantities under current good manufacturing practices. However, for this therapeutic strategy to be realized as a viable clinical option, fundamental translational challenges need to be addressed including the manufacturing process, purity and efficacy of the cells, the method of delivery, the extent of host reinnervation and the impact of patient-centered adjunctive interventions. In this study we report on the impact of physical and cognitive training (PCT) on functional recovery in the nonhuman primate (NHP) model of PD after cell transplantation. We observed that at 6 months post-transplant, the PCT group returned to normal baseline in their daily activity measured by actigraphy, significantly improved in their sensorimotor and cognitive tasks, and showed enhanced synapse formation between grafted cells and host cells. We also describe a robust, simple, efficient, scalable, and cost-effective manufacturing process of engraftable DA neurons derived from iPSCs. This study suggests that integrating PCT with cell transplantation therapy could promote optimal graft functional integration and better outcome for patients with PD.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Parkinson Disease , Adult , Animals , Humans , Dopaminergic Neurons/physiology , Induced Pluripotent Stem Cells/transplantation , Callithrix , Cognitive Training , Parkinson Disease/surgery , Stem Cell Transplantation/methods , Cell Differentiation/physiology
6.
Biochem Biophys Res Commun ; 674: 190-198, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37532637

ABSTRACT

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) are a promising cell source for regenerative medicine and drug discovery. However, the use of animal models for studying human cardiomyocytes derived from hiPSCs in vivo is limited and challenging. Given the shared properties between humans and zebrafish, their ethical advantages over mammalian models, and their immature immune system that is rejection-free against xenografted human cells, zebrafish provide a suitable alternative model for xenograft studies. We microinjected fluorescence-labeled cardiac lineage cells derived from hiPSCs, specifically mesoderm or cardiac mesoderm cells, into the yolk and the area proximal to the outflow tract of the linear heart at 24 hours post-fertilization (hpf). The cells injected into the yolk survived and did not migrate to other tissues. In contrast, the cells injected contiguous with the outflow tract of the linear heart migrated into the pericardial cavity and heart. After 1 day post injection (1 dpi, 22-24 hpi), the injected cells migrated into the pericardial cavity and heart. Importantly, we observed heartbeat-like movements of some injected cells in the zebrafish heart after 1 dpi. These results suggested successful xenografting of hiPSC-derived cardiac lineage cells into the zebrafish embryo heart. Thus, we developed a valuable tool using zebrafish embryos as a model organism for investigating the molecular and cellular mechanisms involved in the grafting process. This is essential in developing cell transplantation-based cardiac therapeutics as well as for drug testing, notably contributing to advancements in the field of cardio-medicine.


Subject(s)
Induced Pluripotent Stem Cells , Zebrafish , Animals , Humans , Induced Pluripotent Stem Cells/transplantation , Cell Differentiation , Transplantation, Heterologous , Heterografts , Myocytes, Cardiac , Mammals
7.
Expert Opin Biol Ther ; 23(9): 883-899, 2023.
Article in English | MEDLINE | ID: mdl-37545020

ABSTRACT

INTRODUCTION: Spinal cord injury (SCI) can lead to severe neurological dysfunction. Despite scientific and medical advances, clinically effective regenerative therapies including stem cells are lacking for SCI. AREAS COVERED: This paper discusses translational challenges related to the safe, effective use of stem cells for SCI, with a focus on mesenchymal stem cells (MSCs), neural stem cells (NSCs), Schwann cells (SCs), olfactory ensheathing cells (OECs), oligodendrocyte precursor cells (OPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). We discuss approaches to enhance the efficacy of cell-based strategies by i) addressing patient heterogeneity and enhancing patient selection; ii) selecting cell type, cell source, cell developmental stage, and delivery technique; iii) enhancing graft integration and mitigating immune-mediated graft rejection; and iv) ensuring availability of cells. Additionally, we review strategies to optimize outcomes including combinatorial use of rehabilitation and discuss ways to mitigate potential risks of tumor formation associated with stem cell-based strategies. EXPERT OPINION: Basic science research will drive translational advances to develop stem cell-based therapies for SCI. Genetic, serological, and imaging biomarkers may enable individualization of cell-based treatments. Moreover, combinatorial strategies will be required to enhance graft survival, migration and functional integration, to enable precision-based intervention.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Spinal Cord Injuries , Humans , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Stem Cell Transplantation/adverse effects , Stem Cell Transplantation/methods , Embryonic Stem Cells , Induced Pluripotent Stem Cells/transplantation , Spinal Cord
8.
Medicina (Kaunas) ; 59(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37512047

ABSTRACT

Cell transplantation therapy using human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) has attracted attention as a regenerative therapy for spinal cord injury (SCI), and its efficacy in treating the subacute phase of SCI has been reported in numerous studies. However, few studies have focused on treatment in the chronic phase, which accounts for many patients, suggesting that there are factors that are difficult to overcome in the treatment of chronic SCI. The search for therapeutic strategies that focus on chronic SCI is fraught with challenges, and the combination of different therapies is thought to be the key to a solution. In addition, many issues remain to be addressed, including the investigation of therapeutic approaches for more severe injury models of chronic SCI and the acquisition of practical motor function. This review summarizes the current progress in regenerative therapy for SCI and discusses the prospects for regenerative medicine, particularly in animal models of chronic SCI.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Spinal Cord Injuries , Animals , Humans , Induced Pluripotent Stem Cells/transplantation , Cell Differentiation , Spinal Cord Injuries/therapy , Neural Stem Cells/transplantation , Stem Cell Transplantation/methods , Spinal Cord
9.
Nature ; 619(7970): 606-615, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438521

ABSTRACT

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Subject(s)
Cell- and Tissue-Based Therapy , Dopaminergic Neurons , Graft Survival , Neuroinflammatory Diseases , Parkinson Disease , T-Lymphocytes, Regulatory , Tyrosine 3-Monooxygenase , Humans , Dopamine/analogs & derivatives , Dopamine/metabolism , Dopaminergic Neurons/immunology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/transplantation , Mesencephalon/pathology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/prevention & control , Neuroinflammatory Diseases/therapy , Parkinson Disease/complications , Parkinson Disease/pathology , Parkinson Disease/surgery , Parkinson Disease/therapy , Tyrosine 3-Monooxygenase/deficiency , Tyrosine 3-Monooxygenase/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation , Cell- and Tissue-Based Therapy/methods , Animals , Mice , Rats , Oxidopamine/metabolism , Graft Survival/immunology , Cell Death , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Neostriatum/metabolism , Time Factors , Cell Proliferation , Treatment Outcome
10.
Cell Transplant ; 32: 9636897221107009, 2023.
Article in English | MEDLINE | ID: mdl-37088987

ABSTRACT

One of the challenges in clinical translation of cell-replacement therapies is the definition of optimal cell generation and storage/recovery protocols which would permit a rapid preparation of cell-treatment products for patient administration. Besides, the availability of injection devices that are simple to use is critical for potential future dissemination of any spinally targeted cell-replacement therapy into general medical practice. Here, we compared the engraftment properties of established human-induced pluripotent stem cells (hiPSCs)-derived neural precursor cell (NPCs) line once cells were harvested fresh from the cell culture or previously frozen and then grafted into striata or spinal cord of the immunodeficient rat. A newly developed human spinal injection device equipped with a spinal cord pulsation-cancelation magnetic needle was also tested for its safety in an adult immunosuppressed pig. Previously frozen NPCs showed similar post-grafting survival and differentiation profile as was seen for freshly harvested cells. Testing of human injection device showed acceptable safety with no detectable surgical procedure or spinal NPCs injection-related side effects.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Injections, Spinal , Neural Stem Cells , Stem Cell Transplantation , Adult , Animals , Humans , Rats , Cell Differentiation/physiology , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Genetic Vectors/genetics , Graft Survival/physiology , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/transplantation , Injections, Spinal/adverse effects , Injections, Spinal/instrumentation , Injections, Spinal/methods , Neural Stem Cells/physiology , Neural Stem Cells/transplantation , Sendai virus , Specimen Handling/methods , Stem Cell Transplantation/adverse effects , Stem Cell Transplantation/instrumentation , Stem Cell Transplantation/methods , Swine , Tissue and Organ Harvesting/methods , Treatment Outcome , Brain , Spinal Cord
11.
J Heart Lung Transplant ; 42(6): 716-729, 2023 06.
Article in English | MEDLINE | ID: mdl-36964085

ABSTRACT

BACKGROUND: Transplanting human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) tissue sheets effectively treat ischemic cardiomyopathy. Cardiac functional recovery relies on graft survival in which angiogenesis played an important part. ONO-1301 is a synthetic prostacyclin analog with proangiogenic effects. We hypothesized that transplantation of hiPSC-CM tissue sheets with slow-release ONO-1301 scaffold could promote hostgraft angiogenesis, enhance tissue survival and therapeutic effect. METHODS: We developed hiPSC-CM tissue sheets with ONO-1301 slow-release scaffold and evaluated their morphology, gene expression, and effects on angiogenesis. Three tissue sheet layers were transplanted into a rat myocardial infarction (MI) model. Left ventricular ejection fraction, gene expression in the MI border zone, and angiogenesis effects were investigated 4 weeks after transplantation. RESULTS: In vitro assessment confirmed the slow-release of ONO-1301, and its pro-angiogenesis effects. In addition, in vivo data demonstrated that ONO-1301 administration positively correlated with graft survival. Cardiac tissue as thick as ∼900 µm was retained in the ONO (+) treated group. Additionally, left ventricular ejection fraction of the ONO (+) group was significantly enhanced, compared to ONO (-) group. The ONO (+) group also showed significantly improved interstitial fibrosis, higher capillary density, increased number of mature blood vessels, along with an enhanced supply of oxygen, and nutrients. CONCLUSIONS: Slow-release ONO-1301 scaffold provided an efficient delivery method for thick hiPSC-CM tissue. ONO-1301 promotes angiogenesis between the host and graft and improves nutritional and oxygen supply, thereby enhancing the survival of transplanted cells, effectively improving ejection fraction, and therapeutic effects.


Subject(s)
Induced Pluripotent Stem Cells , Myocardial Infarction , Humans , Rats , Animals , Induced Pluripotent Stem Cells/transplantation , Stroke Volume , Angiogenesis Inducing Agents/pharmacology , Ventricular Function, Left , Myocardial Infarction/therapy , Myocytes, Cardiac/metabolism , Disease Models, Animal
12.
Stem Cells Dev ; 32(7-8): 163-169, 2023 04.
Article in English | MEDLINE | ID: mdl-36727603

ABSTRACT

Cellular therapy (CT) can be defined as the transference into a person of healthy cells to correct defective functions. Yesterday (1950-2010), CT consisted mostly of hematopoietic transplants for the treatment of a variety of hematological disorders. Interestingly, during that period of time other cell types with therapeutic potential-including certain lymphoid populations and other nonhematopoietic cells-were discovered and characterized; thus, CT became a promising discipline for the treatment of a broader diversity of diseases. Today (2011-2023), CT has significantly grownup through preclinical studies and clinical trials, and it is currently progressing toward its consolidation as one of the pillars of medicine in the 21st century. Indeed, different types of stem cells (e.g., hematopoietic, mesenchymal, neural, and pluripotent), as well as different lymphoid and myeloid cell populations (e.g., TILs, CAR-Ts, CAR-NKs, and DUOC-01) are being used in clinical settings or are being tested in clinical trials. For the past decade, several CT modalities have been developed, and today, many of them are being used in the clinic. Tomorrow (2024-2040), already established CT modalities will surely be improved and applied more frequently, and novel therapies (that will include cell types such as iPSCs) will enter and expand within the clinical ground. It is noteworthy, however, that despite significant advancements and achievements, problems still need to be solved and obstacles need to be overcome. Technical, ethical, and economic issues persist and they need to be addressed. Undoubtedly, exciting times of challenges and opportunities are coming ahead in the CT arena.


Subject(s)
Hematologic Diseases , Hematopoietic Stem Cell Transplantation , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/transplantation
13.
Hum Mol Genet ; 32(9): 1539-1551, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36611011

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is a maternally transmitted eye disease due to the degeneration of retinal ganglion cells (RGCs). Mitochondrial 11778G > A mutation is the most common LHON-associated mitochondrial DNA (mtDNA) mutation. Our recent studies demonstrated some LHON families manifested by synergic interaction between m.11778G > A mutation and YARS2 allele (c.572G > T, p.Gly191Val) encoding mitochondrial tyrosyl-tRNA synthetase. However, the RGC-specific effects of LHON-associated mtDNA mutations remain elusive and there is no highly effective therapy for LHON. Here, we generated patients-derived induced pluripotent stem cells (iPSCs) from fibroblasts derived from a Chinese LHON family (both m.11778G > A and c.572G > T mutations, only m.11778G > A mutation, and control subject). The c.572G > T mutation in iPSC lines from a syndromic individual was corrected by CRISPR/Cas9. Those iPSCs were differentiated into neural progenitor cells and subsequently induced RGC-like cells using a stepwise differentiation procedure. Those RGC-like cells derived from symptomatic individual harboring both m.11778G > A and c.572G > T mutations exhibited greater defects in neuronal differentiation, morphology including reduced area of soma, numbers of neurites and shortened length of axons, electrophysiological properties than those in cells bearing only m.11778G > A mutation. Furthermore, these RGC-like cells revealed more drastic reductions in oxygen consumption rates, levels of mitochondrial ATP and increasing productions of reactive oxygen species than those in other cell models. These mitochondrial dysfunctions promoted the apoptotic process for RGC degenerations. Correction of YARS2 c.572G > T mutation rescued deficiencies of patient-derived RGC-like cells. These findings provide new insights into pathophysiology of LHON arising from RGC-specific mitochondrial dysfunctions and step toward therapeutic intervention for this disease.


Subject(s)
DNA, Mitochondrial , Optic Atrophy, Hereditary, Leber , Retinal Ganglion Cells , Tyrosine-tRNA Ligase , Humans , Alleles , DNA, Mitochondrial/genetics , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/transplantation , Mitochondria/genetics , Mutation , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/physiopathology , Optic Atrophy, Hereditary, Leber/therapy , Tyrosine-tRNA Ligase/genetics
14.
Curr Stem Cell Res Ther ; 18(4): 487-498, 2023.
Article in English | MEDLINE | ID: mdl-35538805

ABSTRACT

Spinal cord injury (SCI) is a catastrophic event that incurs substantial personal and social costs. The complex pathophysiology associated with SCI often limits the regeneration of nerve tissue at the injured site and leads to permanent nerve damage. With advances in stem cell biology, the field of regenerative medicine offers the hope of solving this challenging problem. Neural stem/progenitor cells (NSPCs) possess nerve regenerative and neuroprotective effects, and transplanting NSPCs in their optimized form into an injured area holds promising therapeutic potential for SCI. In this review, we summarize the advantages and disadvantages of NSPCs derived from different sources while highlighting the utility of NSPCs derived from induced pluripotent stem cells, an NSPC source with superior advantages, according to data from in vivo animal models and the latest clinical trials.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Spinal Cord Injuries , Animals , Induced Pluripotent Stem Cells/transplantation , Cell Differentiation/physiology , Spinal Cord Injuries/therapy , Neural Stem Cells/physiology , Stem Cell Transplantation
15.
Mol Ther ; 31(1): 211-229, 2023 01 04.
Article in English | MEDLINE | ID: mdl-35982619

ABSTRACT

Cell-based therapies offer an exciting and novel treatment for heart repair following myocardial infarction (MI). However, these therapies often suffer from poor cell viability and engraftment rates, which involve many factors, including the hypoxic conditions of the infarct environment. Meanwhile, vascular endothelial growth factor (VEGF) has previously been employed as a therapeutic agent to limit myocardial damage and simultaneously induce neovascularization. This study took an approach to transiently overexpress VEGF protein, in a controlled manner, by transfecting human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with VEGF mRNA prior to transplantation. The conditioning of iPSC-CMs with VEGF mRNA ultimately led to greater survival rates of the transplanted cells, which promoted a stable vascular network in the grafted region. Furthermore, bulk RNA transcriptomics data and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) and AGE-RAGE signaling pathways were significantly upregulated in the VEGF-treated iPSC-CMs group. The over-expression of VEGF from iPSC-CMs stimulated cell proliferation and partially attenuated the hypoxic environment in the infarcted area, resulting in reduced ventricular remodeling. This study provides a valuable solution for the survival of transplanted cells in tissue-engineered heart regeneration and may further promote the application of modified mRNA (modRNA) in the field of tissue engineering.


Subject(s)
Induced Pluripotent Stem Cells , Myocardial Infarction , Stem Cell Transplantation , Vascular Endothelial Growth Factor A , Animals , Humans , Rats , Disease Models, Animal , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Myocardial Infarction/surgery , Myocytes, Cardiac/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism
16.
Brain Nerve ; 74(9): 1117-1122, 2022 Sep.
Article in Japanese | MEDLINE | ID: mdl-36065673

ABSTRACT

We have performed extensive basic and preclinical research to investigate the role of human induced pluripotent cell-derived neural stem/progenitor cell (hiPSC-NS/PC) grafts in spinal cord injury (SCI) models, and evidence obtained from animal experiments confirms the safety and effectiveness of this approach. We have initiated a first-in-human clinical trial of hiPSC-NS/PC transplantation in patients with subacute SCI. Research on the therapeutic mechanism underlying stem cell transplantation therapy is ongoing worldwide; this paper outlines the current knowledge of the therapeutic mechanism.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Spinal Cord Injuries , Animals , Clinical Trials as Topic , Humans , Induced Pluripotent Stem Cells/transplantation , Spinal Cord Injuries/therapy , Stem Cell Transplantation
17.
Cell Transplant ; 31: 9636897221104451, 2022.
Article in English | MEDLINE | ID: mdl-35758274

ABSTRACT

Loss of photoreceptor cells is a primary feature of inherited retinal degenerative disorders including age-related macular degeneration and retinitis pigmentosa. To restore vision in affected patients, photoreceptor cell replacement will be required. The ideal donor cells for this application are induced pluripotent stem cells (iPSCs) because they can be derived from and transplanted into the same patient obviating the need for long-term immunosuppression. A major limitation for retinal cell replacement therapy is donor cell loss associated with simple methods of cell delivery such as subretinal injections of bolus cell suspensions. Transplantation with supportive biomaterials can help maintain cellular integrity, increase cell survival, and encourage proper cellular alignment and improve integration with the host retina. Using a pig model of retinal degeneration, we recently demonstrated that polycaprolactone (PCL) scaffolds fabricated with two photon lithography have excellent local and systemic tolerability. In this study, we describe rapid photopolymerization-mediated production of PCL-based bioabsorbable scaffolds, a technique for loading iPSC-derived retinal progenitor cells onto the scaffold, methods of surgical transplantation in an immunocompromised rat model and tolerability of the subretinal grafts at 1, 3, and 6 months of follow-up (n = 150). We observed no local or systemic toxicity, nor did we observe any tumor formation despite extensive clinical evaluation, clinical chemistry, hematology, gross tissue examination and detailed histopathology. Demonstrating the local and systemic compatibility of biodegradable scaffolds carrying human iPSC-derived retinal progenitor cells is an important step toward clinical safety trials of this approach in humans.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Degeneration , Retinitis Pigmentosa , Animals , Biocompatible Materials/pharmacology , Humans , Induced Pluripotent Stem Cells/transplantation , Rats , Retina/pathology , Retinal Degeneration/pathology , Retinal Degeneration/therapy , Retinitis Pigmentosa/therapy , Stem Cell Transplantation/methods , Swine
18.
Cells ; 11(10)2022 05 10.
Article in English | MEDLINE | ID: mdl-35626637

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder associated with loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). One strategy for treating PD is transplantation of DA neuroblasts. Significant advances have been made in generating midbrain DA neurons from human pluripotent stem cells. Before these cells can be routinely used in clinical trials, extensive preclinical safety studies are required. One of the main issues to be addressed is the long-term therapeutic effectiveness of these cells. In most transplantation studies using human cells, the maturation of DA neurons has been analyzed over a relatively short period not exceeding 6 months. In present study, we generated midbrain DA neurons from human induced pluripotent stem cells (hiPSCs) and grafted these neurons into the SNpc in an animal model of PD. Graft survival and maturation were analyzed from 1 to 12 months post-transplantation (mpt). We observed long-term survival and functionality of the grafted neurons. However, at 12 mpt, we observed a decrease in the proportion of SNpc DA neuron subtype compared with that at 6 mpt. In addition, at 12 mpt, grafts still contained immature neurons. Our results suggest that longer-term evaluation of the maturation of neurons derived from human stem cells is mandatory for the safe application of cell therapy for PD.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Animals , Disease Models, Animal , Dopaminergic Neurons , Humans , Induced Pluripotent Stem Cells/transplantation , Mesencephalon , Mice , Parkinson Disease/therapy
19.
BMJ Open ; 12(5): e056264, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523485

ABSTRACT

INTRODUCTION: Heart failure (HF) is a growing global public health burden. However, due to the very limited regenerative capacity of mature cardiomyocytes in the adult mammalian heart, conventional treatments can only improve the symptoms of HF but fail to restore cardiac function. Heart transplantation is limited by a severe shortage of donors. Cell-based transplantation for the treatment of HF has become a promising strategy. Human-induced-pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been tested in animal models to assess safety and efficacy. This study aims at evaluating the safety and efficacy of epicardial injection of hiPSC-CMs in patients with advanced HF during coronary artery bypass grafting (CABG) surgery. METHODS: This study is a dose-escalation, placebo-controlled, single-centre phase I/IIa clinical trial. Dose escalation will be guided by a modified 3+3 design for three doses (1×108, 2×108 and 4×108 cells, sequentially). Patients with advanced heart failure will be enrolled and randomly allocated to receive epicardial injection of hiPSC-CMs during CABG surgery or CABG surgery alone, followed by a 12-month follow-up investigation. The primary endpoint is to assess the safety of hiPSC-CMs transplantation, including haemodynamic compromised sustained ventricular arrhythmias and newly formed tumours during 6 months postoperatively. The secondary endpoint is to evaluate the efficacy of epicardial injection of hiPSC-CMs and CABG surgery combination by comparison with CABG surgery alone. ETHICS AND DISSEMINATION: The study protocol has been approved by the Institutional Ethical Committee of Nanjing Drum Tower Hospital (No. SC202000102) and approved by National Health Commission of the PRC (MR-32-21-014649). Findings will be disseminated to the academic community through peer-reviewed publications and presentation at national and international meetings. TRIAL REGISTRATION NUMBER: NCT03763136.


Subject(s)
Heart Failure , Hematopoietic Stem Cell Transplantation , Induced Pluripotent Stem Cells , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Coronary Artery Bypass , Heart Failure/surgery , Humans , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/transplantation , Myocytes, Cardiac/pathology , Randomized Controlled Trials as Topic
20.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35482419

ABSTRACT

Once human photoreceptors die, they do not regenerate, thus, photoreceptor transplantation has emerged as a potential treatment approach for blinding diseases. Improvements in transplant organization, donor cell maturation, and synaptic connectivity to the host will be critical in advancing this technology for use in clinical practice. Unlike the unstructured grafts of prior cell-suspension transplantations into end-stage degeneration models, we describe the extensive incorporation of induced pluripotent stem cell (iPSC) retinal organoid-derived human photoreceptors into mice with cone dysfunction. This incorporative phenotype was validated in both cone-only as well as pan-photoreceptor transplantations. Rather than forming a glial barrier, Müller cells extended throughout the graft, even forming a series of adherens junctions between mouse and human cells, reminiscent of an outer limiting membrane. Donor-host interaction appeared to promote polarization as well as the development of morphological features critical for light detection, namely the formation of inner and well-stacked outer segments oriented toward the retinal pigment epithelium. Putative synapse formation and graft function were evident at both structural and electrophysiological levels. Overall, these results show that human photoreceptors interacted readily with a partially degenerated retina. Moreover, incorporation into the host retina appeared to be beneficial to graft maturation, polarization, and function.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Degeneration , Animals , Ependymoglial Cells , Humans , Induced Pluripotent Stem Cells/transplantation , Mice , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Retinal Cone Photoreceptor Cells , Retinal Degeneration/metabolism , Retinal Degeneration/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...